Shortest Essential Cycles.

(according to Tiezhi Wang Presentation)

Summary.

A loop or cycle is *contractible* if it can be continuously deformed into a point.

On a disk or a sphere, every loop or cycle is contractible.

Contractibe \Rightarrow separating.

Non-separating \Rightarrow non-contractible.

Contractibe \Leftrightarrow Zero in the homotopy group.

Separating \Leftrightarrow Zero in the \mathbb{Z}_2 -homology group.

Lemma1. A simple loop (or cycle) is *contractible* if and only if it bounds a disk.

Given an edge $e \in C$, the loop $\sigma(e)$ is defined as a loop with basepoint b that follows the shortest path tree to go from its root b to a face incident with e, crosses e, and goes back from the other face incident with e to the root. This can be done so that all the loops $\sigma(e)$ are simple and disjoint.

(except, of course, at their basepoint b we shall omit this triviality in the sequel).

Define the weight of an edge e of C to be the length of the corresponding loop $\sigma(e)$.

Lemma 2. A simple loop (or cycle) is contractible if and only if it bounds a disk.

A set L of loops satisfies the 3-path condition if, for any point $a \neq b$ and any three paths p, q, and r from b to a, if p. \bar{q} and q. \bar{r} belong to L, then p. \bar{r} belongs to L.

Lemma 3. The set of contractible loops satisfies the 3-path condition.

Cut locus. Let T be the shortest path tree from b to a point in each face of G^* . Remove all edges of G^* crossed by T.

Lemma 4. Let L be a set of loops satisfying the 3-path condition. Some shortest loop not in L crosses the cut locus C at most once.

Lemma 5. Some shortest non-contractible loop has the form $\sigma(e)$.

Lemma 6. Let e be an edge of C. Then $\sigma(e)$ is contractible if and only if some component of C\e is a tree.

Theorem 1. Finding a shortest non-contractible loop can be done in O(n log n) time. The loop computed is simple.

Corollary 1. Finding a shortest non-contractible cycle can be done in $O(n^2 \log n)$ time.

- Choose a vertex as basepoint.
- Compute C, assign every e of C a weight that is length of $\sigma(e)$. O(nlogn)
- Eliminate the edges e such that at least one component of C\e is a tree. O(n)
- Select the e with minimum weight in remaining edges of C. O(n)
 Overall O(n² log n)

A simple loop ℓ is separating if $\varphi \setminus \langle \ell \rangle$ is not connected. A simple contractible loop bounds a disk, hence is separating; the converse is false.

A chain $\hat{E} \in E$ is a homology cycle if every vertex of V is incident with an even number of edges of \hat{E} . A chain $\hat{E} \in E$ is a homology boundary if the faces of G can be colored black and white so that \hat{E} is the set of edges of E with exactly one black and one white incident face.

Lemma 7. A simple loop ℓ in G disconnects φ if and only if it is a homology boundary. So the notion of homology boundary extends the notion of being separating.