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ABSTRACT

Inference of topological and geometric attributes of a hidden man-
ifold from its point data is a fundamental problem arising in many
scientific studies and engineering applications. In this paper we
present an algorithm to compute a set of loops from a point data that
presumably sample a smooth manifold M C R<. These loops ap-
proximate a shortest basis of the one dimensional homology group
H1i (M) over coefficients in finite field Zs. Previous results ad-
dressed the issue of computing the rank of the homology groups
from point data, but there is no result on approximating the shortest
basis of a manifold from its point sample. In arriving our result, we
also present a polynomial time algorithm for computing a shortest
basis of Hy (KC) for any finite simplicial complex K whose edges
have non-negative weights.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Geometrical problems and
computations

General Terms
Algorithms, Theory

Keywords
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1. INTRODUCTION

Inference of unknown structures from point data is a fundamen-
tal problem in many areas of science and engineering that has mo-
tivated wide spread research [1, 13, 22, 24, 25, 26]. Typically, this
data is assumed to be sampled from a manifold sitting in a high
dimensional space whose geometric and topological properties are
to be derived from the data. In this work, we are particularly inter-
ested in computing a set of loops from data which not only captures
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the topology but is also aware of the geometry of the sampled man-
ifold. Specifically, we aim to approximate a shortest basis of the
one dimensional homology group from the data.

Recently, a few algorithms for computing homology groups from
point data have been developed. One approach would be to recon-
struct the sampled space from its point data [4, 7, 12] and then
apply known techniques for homology computations on triangula-
tions [21]. However, this option is not very attractive since a full-
blown reconstruction with known techniques requires costly com-
putations with Delaunay triangulations in high dimensions. Chazal
and Oudot [8] showed how one can use less constrained data struc-
tures such as Rips, Cech, and witness complexes to infer the rank
of the homology groups by leveraging persistence algorithms [19,
26]. Among these, the Rips complexes are the easiest to compute
though they consume more space than the others, an issue which
has started to be addressed [17].

All of the works mentioned above focus on computing the Betti
numbers, the rank of the homology groups. Although the persis-
tence algorithms [19, 26] also provide representative cycles of a
homology basis, they remain oblivious to the geometry of the man-
ifold. As a result, these cycles do not have nice geometric prop-
erties. A natural question to pose is that if the loops of the one
dimensional homology group are associated with a length under
some metric, can one approximate/compute a shortest set of loops
that generate the homology group in polynomial time? This ques-
tion has been answered in affirmative for the special case of sur-
faces when they are represented with triangulations [20]. In fact,
considerable progress has been made for this special case on var-
ious versions of the problem. We cannot apply these techniques,
mainly because we deal with point data instead of an input trian-
gulation. Also, these works either consider a surface [5, 6, 15, 20]
instead of a manifold of arbitrary dimension in an Euclidean space,
or use a local measure other than the lengths of the generators in a
basis [9].

Our main result is an algorithm that can compute a set of loops
from a Rips complex of the given data and a proof that the lengths
of the computed loops approximate those of a shortest basis of the
one dimensional homology group of the sampled manifold. In ar-
riving at this result, we also show how to compute a shortest basis
for the one dimensional homology group of any finite simplicial
complex whose edges have non-negative weights. Given that com-
puting a shortest basis for k-dimensional homology groups of a
simplicial complex over Zy coefficients is NP-hard for £ > 2 (Chen
and Freedman [11]), this result settles the open case for k£ = 1.



1.1 Background and notations

We use the concepts of homology groups, Cech and Rips com-
plexes from algebraic topology and geodesics from differential ge-
ometry. We briefly discuss them and introduce relevant notations
here; the readers can obtain the details from any standard book on
the topics such as [18, 21].

Homology groups and generators: A homology group of a topo-
logical space T encodes its topological connectivity. We use Hy (T)
to denote its k-dimensional homology group over the coefficients
in Zso. Since Zs is a field, Hi (T) is a vector space of dimension &
and hence admits a basis of size k. We are concerned with the 1-
dimensional homology groups H1(T). The elements of Hy (T) are
equivalent classes [g] of 1-dimensional cycles g, also called loops.
A set {[g1],.-.,[gx]} generating Hy(T) is called its basis where
k = rank(H1(T)). Simplifying the notation, we say {g1, ..., ga }
generates Hq(T) if {[g1], ..., [g9a]} generates Hi(T) and is a ba-
sis if a = rank(H(T)). We assume that each loop g in T is
associated with a non-negative weight w(g). If T is a simplicial
complex, the loops are restricted to its 1-skeleton and w(g) is de-
fined to be the sum of edge weights in g which are assumed to be
non-negative. If T is a Riemannian manifold, the weights on loops
are taken as their lengths in the Riemannian metric. The weights of
the loops define the length of a set of loops G = {g1,...,9a} as
Len(G) = X{_1w(g:). A shortest set of generators or a shortest
basis of Hi(T) is a basis G of Hi(T) where Len(G) is minimal
over all bases.

Complexes: Let B(p, ) denote an open Euclidean d-ball centered
at p with radius 7. For a point set P C R?, and a real » > 0,
the Cech complex C"(P) is a simplicial complex where a simplex
o € C"(P) if and only if Vert(c), the vertices of o, are in P and
are the centers of d-balls of radius 7/2 which have a non-empty
common intersection, that is, Npevert(o)B(p,7/2) # 0. Instead
of common intersection, if we only require pairwise intersection
among the d-balls, we get the Rips complex R"(P). It is well
known that the two complexes are related by a nesting property:

Proposition 1.1 For any finite set P C R® and any r > 0, one has
C'(P) C R"(P) C C*"(P).

Geodesics: The vertex set P of the simplicial complexes we con-
sider is a dense sample of a smooth compact manifold M C R?
without boundary. Assume that M is isometrically embedded, that
is, M inherits the metric from R%. For two points p,q € M, a
geodesic is a curve connecting p and g in M whose acceleration
has no component in the tangent spaces of M. Two points may
have more than one geodesic among which the ones with the mini-
mum length are called minimizing geodesics. Since M is compact,
any two points admit a minimizing geodesic. The lengths of min-
imizing geodesics induce a distance metric dys : M X M — R
where das(p, ¢) is the length of a minimizing geodesic between p
and g. Clearly, d(p, q) < dum(p, q) where d(p, q) is the Euclidean
distance. If d(p, q) is small, Proposition 1.2 asserts that there is an
upper bound on d(p, q) in terms of d(p, q). Our proof extends a
result in [2] where Belkin et al. show the same result on a surface in
R®. The reach p(M) is defined as the minimum distance between
M and its medial axis.

Proposition 1.2 If d(p,q) < p(M)/2, one has

) < (14 5. 0).
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PROOF. Let v(t) be a minimizing geodesic between p and ¢
parameterized by length and set I = das(p, ¢). By Proposition 6.3
in [24] we have that ! < 2d(p, q). Let uy = 5(t) be the unit tangent
vector of y at t. We have t = das(p, v(t)).

Let B : T, ) x Ty — T,f(t) be the second fundamental form
associated with the manifold M. Since ~y is a geodesic, du¢/dt =
B(u,ur) = 5(t). Write p = p(M) and d = d(p, q) for conve-
nience. From Proposition 6.1 in [24], we have

A <1/p

since the norm of the second fundamental form is bounded by 1/p
in all directions, and thus ||du./dt|| < 1/p. Hence we have that
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Furthermore, let v - v denote the dot-product between vectors u
and v. Then we have that
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On the other hand, observe that f[o ) Ut - Up dt measures the

length of the (signed) projection of « along the direction u,. That
is,
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Hence we have that
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The last inequality follows from the fact that | < 2d. This proves
the lemma. [

Convexity radius and sampling: For a point p € M, the set of
all points ¢ with da(p,q) < r form p’s geodesic ball By (p, )
of radius r. It is known that there is a positive real r, for each
point p € M so that Bas(p, ) is convex for r < r,. It means
that, for » < rp, any two points in B (p, ) admit a unique mini-
mizing geodesic that lies in Bas(p, 7). The convexity radius of M
is pe(M) = infpens rp. We use Euclidean distances to define the
sampling density. We say a discrete set P C M is an e-sample' of
M if B(z,e) N P # ( for each pointx € M.

1.2 Main results

We compute a set of loops G = {g1, ..., gr} from an e-sample
P of M whose total length is within a factor of the total length of
a shortest basis in Hy (Af). The factor depends on €, p(M), and an
input parameter r > 0.

Theorem 1.3 Let M C RY be a smooth, closed manifold with ¢
as the length of a shortest basis of Hi(M). Given an e-sample

! Here e-sample is not defined relative to reach or feature size as
commonly done in reconstruction literature [1, 7, 12].



P C M of n points and 4e < r < min{%\/gp(M pe(M)},

one can compute a set of loops G in R® where:
i
1
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3p2 (M)

¢ <Len(G) < (1+ %)6

1+

ii. Treating G as a 1-complex, there is a map h: G — M so
that h(Q) is basis of H1 (M) and the Hausdorff distance be-
tween the underlying space of g and h(g) is at most r /2 for
each g € G.

The loops in G can be computed in O(n(n+n.)?(ne+n¢))
time where n. and n are the numbers of edges and triangles
respectively in the Rips complex R*"(P).

iii.

The above result suggests that lim= .o Len(G) — £. To make
£ and r simultaneously approach 0, one may take 7 = O(1/€) and
let ¢ — 0. We note that n. = O(n?) and n; = O(n?®) giving
an O(n®) worst-case complexity for the algorithm. However, if
r = O(e) and points in P have () pairwise distance, n. and
n; reduce to O(n) by a result of [8]. In this case we get a time
complexity of O(n"). In arriving at Theorem 1.3, we also prove
the following result which is of independent interest.

Theorem 1.4 Let IC be a finite simplicial complex with non-negative
weights on edges. A shortest basis for Hi(K) can be computed in
O(n*) time where n is the size of K.

2. ALGORITHM DESCRIPTION

The algorithm that we propose proceeds as follows. We com-
pute a Rips complex R>"(P) out of the given point cloud P C M.
Next, we compute the rank & of Hy (M) by considering the persis-
tent homology group

H?"(R(P)) = image ¢.

where the inclusion t: R"(P) — R* (P) induces the homomor-
phism ¢, : Hi(R"(P)) — Hi(R*"(P)). As a homology group
over Zs, H; 2T( (P)) is a vector space and it is known that the
rank of H""(R(P)) coincides with that of Hy (M) for appropri-
ate r.

A basis of H">"(R(P)) is formed by the classes of a maxi-
mal set of loops in R"(P) whose classes remain independent in

(2R27 (P)) under the map ¢.. We show that a shortest basis of
(R(P)) approximates a shortest basis of Hy (M). Therefore,
we aim to compute a shortest basis of H]’ 2T(R(P)) from R"(P)
and R?"(P). To accomplish this, the algorithm augments R>"( P)
by putting a weight w(e) on each edge ¢ € R*"(P). The weights
are of two types: either they are the lengths of the edges, or a
very large value W which is larger than k times the total weight
of R"(P). Precisely we set

w@):{

Let the complex R*"(P) augmented with weights be denoted as
R *(P). A shortest basis of H; (R?""(P)) does not necessarily
form a shortest basis of H]">"(R(P)). However, the first k loops
sorted according to lengths in a shortest basis of Hi(R>*"T(P))
form a shortest basis of H7"”"(R(P)). We give an algorithm to
compute a shortest basis for any simplicial complex which we ap-
ply to R*" T (P).

length of e
w

ife € R"(P)
ife € R*(P)\ R"(P).
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Since we are interested in computing the generators of the first
homology group, it is sufficient to consider all simplices up to di-
mension two, that is, only vertices, edges, and triangles in the sim-
plicial complexes that we deal with. Henceforth, we assume that all
complexes that we consider have simplices up to dimension two.

2.1 Computing loops

We will prove later that a shortest basis for H]”*" (R(P)) indeed
approximates a shortest basis for Hy (M). The algorithm SHORT-
LooP computes them.

Algorithm 1 SHORTLOOP (P, r)

1: Compute the Rips complex R*"(P) and a weighted complex
R?"F(P) from it as described.
2: Compute the rank k of H]*"(R(P)) by the persistence algo-
rithm.
: Compute a shortest basis for H; (R*" T (P)).
: Return the first £ smallest loops from this shortest basis.

W

Theorem 2.1 The algorithm SHORTLOOP(P, r) computes a short-
est basis for the persistent homology group H7*" (R(P)).

PROOF. Letgi, ..., ga be the set of generators sorted according
to the non-decreasing lengths which are computed in step 3. They
generate Hy (R?"T(P)). Out of these generators the algorithm
outputs the first £ generators gi,...,gx. Since k is the rank of
H7?" (P) there are k independent generators in Hy (R"(P)) which
remain independent in Hy(R* " (P)). We claim that the loops
g1,- .-, gk reside in R"(P). For if they do not, the sum of their
lengths would be more than W which is & times larger than the total
weight of R"(P). Then, we can argue that any independent set of
k loops from R”(P) which remain independent in Hy (R*"T(P))

can replace g1, ..., g, to have a smaller length so that g1,...,¢q
could not be a shortest basis of H1 (R*" (P)).
The above argument implies that g1, . . . , g is a basis of H]"*"(P).

If it is not a shortest basis, it can be replaced by a shorter one so
that again we would have a basis of H; (R?"*(P)) which is shorter
than the one computed. This is a contradiction. [

It remains to show how to compute a shortest basis of Hy (R*"*(P))
in step 3 of SHORTLOOP.

2.2 Shortest basis

Let K be any finite simplicial complex embedded in R? whose
edges have non-negative weights. To compute a shortest basis for
H1(K) we make use of the fact that H; (K) is a vector space as
we restrict ourselves to Za coefficients. For such cases, Erickson
and Whittlesey [20] observed that if a set of loops £ in K con-
tains a shortest basis, then the greedy set G chosen from L is a
shortest basis. The greedy set G of L is an ordered set of loops
{g91,... gk} k = rank H,(K), satisfying the following condition.
The first element g; is the shortest loop in £ which is nontrivial
in H1(K). Suppose g1, . . ., g; have already been defined in the set
G. The next chosen loop gi+1 is the shortest loop in £ which is
independent of g, . . ., gs, that is, [g;+1] cannot be written as a lin-
ear combination of [g1], ..., [g:]. The check for independence is a
costly step in this greedy algorithm which we aim to reduce. We
construct a set of canonical loops which contains a basis of Hy (KC).
This set is pruned by a persistence based algorithm before applying
the greedy algorithm.



2.2.1 Canonical loops

We start with citing a result of Erickson and Whittlesey [20]. A
simple cycle L is tight if it contains a shortest path between every
pair of points in L.

Proposition 2.2 With non-negative weights, every loop in a short-
est basis of H1 (KC) is tight.

To collect all tight loops, we consider the canonical loops defined as
follows. Let T" be a shortest path tree in K rooted at p. Notice that
we are not assuming 7’ to be unique, but it is fixed once computed.
For any two nodes ¢1,q2 € P, let ITr(q1, g2) denote the unique
path from ¢; to g2 in T'. Let Er be the set of edges in I". Given
a non-tree edge e (¢1,92) € E \ Er, define the canonical
loop of e with respect to p, ¢, (e) in short, as the loop formed by
concatenating Ilr(p, 1), e, and Il (g2, p), that is,

cp(e) = Tr(p,q1) o e oz (g2, p).

Let C), be the set of all canonical loops with respect to p, i.e.,
Cp = {cp(e) : e € E\ Er}. Then we have the following easy
consequence.

Proposition 2.3 U,c pC), contains all tight loops.

Therefore U,c pC), is a set of loops from which the greedy set can
be selected. However, U,c pC), can be a very large set containing
possibly many trivial loops which result into many unnecessary in-
dependence checks. To remedy this, we identify the greedy set G,
of C}, and choose the greedy set from the union U,c pG), instead
of Upe pC). It turns out that G, can be computed by a persistence
based algorithm thereby avoiding explicit independence checks.

If the lengths of the loops in C), are distinct, the greedy set G,
is unique. However, in presence of equal length loops we need
a mechanism to break ties. For this we introduce the notion of
canonical order. We assign a unique number v(e) between 1 to m
to each non-tree edge e if there are m of them. For any two non-
tree edges e and €', let e < €’ if and only if either Len(c,(e)) <
Len(cp(e)), or Len(cp(e)) = Len(cp(e')) and v(e) < v(e).
The total order imposed by ‘<’ provides the canonical order

e <ex<...<é€m.

Based on this canonical order, we form the greedy set G, of C), as
described in the beginning of Section 2.2.

Below we argue that Upe pG), is good for our purpose and each
set G, can be computed based on the persistence algorithm.

Proposition 2.4 The greedy set chosen from Upc pGy, is a shortest
basis of H1 (K).

PROOF. We show that Up,c pG), contains a shortest basis of Hy (/C).

Then, the proposition follows by the argument as delineated at the
beginning of section 2.2.

Consider all canonical loops Upec pCp. Sort them in non-decreasing

order of their lengths. If two loops have equal lengths and if there
are points p; € P for which both of them are in Cp,, break the
tie using the canonical order applied to the canonical loops for
any such one point. Otherwise, break the tie arbitrarily. Based on
this order let G be the greedy set from Upe pC)p. Proposition 2.2
and Proposition 2.3 imply that U,c pC), contains a shortest basis of
H1(K) and thus G is a shortest basis. Consider any loop L in G. It
is a canonical loop with respect to some g € P for which all loops
appearing before L in the canonical order precede it in the sorted
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sequence. The loop L is independent of the loops in U,e pC), ap-
pearing before L, in particular independent of the loops in Cy ap-
pearing before L in the canonical order, which means L € G,.
Therefore U,cpG), contains a shortest basis G of Hi(K). The
proposition follows. [

Motivated by the above observations, we formulate an algorithm
CANONGEN that computes the greedy set GG}, of C',. We note that,
very recently, Chen and Freedman [9] proposed a similar algorithm
which computes an approximation of a shortest basis of a simplicial
complex rather than an optimal one.

Algorithm 2 CANONGEN (p, K)

1: Construct a shortest path tree 7" in /C with p as the root. Let
E7 denote the set of tree edges.

2: For each non-tree edge ¢ = (q1,q2) € E \ Er, let ¢,(e) be
the canonical loop of e.

3: Perform the persistence algorithm based on the following fil-
tration of KC: all the vertices in P = Vert(K), followed by
all tree edges in 7', followed by non-tree edges in the canon-
ical order, and followed by all the triangles in /C. There are
k = rank(H:(K)) number of edges unpaired after the algo-
rithm, and each of them is necessarily a non-tree edge. Return
the set of canonical loops associated with them.

Proposition 2.5 CANONGEN (p, K) outputs the greedy set G, cho-
sen from C.

PROOF. Let {e1,e2---,em} be the set of non-tree edges for
the shortest path tree 7" listed in the canonical order. Let

Gp = {cpler), cp(e3), - cpler)}-

It suffices to show that {e], e5 - - - , e}, } is the set of unpaired edges.
Observe that for any ej, c¢,(e;) is independent of any subset of
{en(es) s e5 <ef}

We prove the proposition by contradiction. Assume some e;
gets paired by a triangle ¢ in the persistence algorithm. Let K,
denote the complex in the filtration right before ¢ is added. Let
f : Ki — K be the inclusion map; it induces a homomorphism
fv = Hi(K¢) — Hi(K). Let [L]¢ denote the homology class in
K¢ carried by the loop L. The boundary Ot uniquely determines a
subset of unpaired positive edges €] < --- < e} in K; such that
[0t]: = [cp(el)]e + - - -+ [cp(€%)]e. The persistence algorithm [19]
picks the youngest one from this subset to pair with ¢, i.e., e} = e.
On the other hand, we have

[ep(€D)] + -+ + [ep(€lm1)] + [ep(e])]
= fallep(€D)]e + -+ + [ep(sn)]e + [ep(€9)]e)
= f.([0t]) =0

which means that c,(e;) is dependent on a subset of {c,(e;) :
ej < e;j }. We reach a contradiction. []

All previous results put together provide a greedy algorithm for
computing a shortest basis of Hy (K).

2.2.2  Checking independence

In step 7 of SPGEN we need to determine if a generator g is
independent of all generators g1, ..., g, so far selected in G. Sup-
pose we obtain g from running persistence algorithm on a shortest
path tree based filtration for a point p in step 3 of CANONGEN.
At the end of this persistence algorithm we must have gotten an



Algorithm 3 SPGEN (K)

1: For each p € P = Vert(K) compute G,
(p.K). Let k = |Gp|.

: Sort all loops in U, G, by their lengths in the increasing order.
Let g1, ..., gk p| be this sorted list.

: Initialize G := {g1 }.

: for i := 2to k| P|, do

if |G| = k, then
Exit the for loop.

else if g; is independent of all loops in G, then
Add g; to G.

end if

: end for

Return G.

:=CANONGEN

[\

TV IN AR
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unpaired edge, say e, where ¢, (e) = g. To determine if ¢ is inde-
pendent of all generators selected so far we adopt a sealing tech-
nique proposed in [9]. We fill g1 . .. g with triangles. The filling is
done only combinatorially by choosing a dummy vertex, say v, and
adding triangles vv;v; 41 for each edge v;v;41 of the loops to be
filled. Let K be the new complex after adding these triangles and
their edges to IC. In effect, these triangles and edges destroy the
generators g1, . . . , g5 from K. They destroy the generator g as well
if and only if g is dependent on g7, ..., g.. Since we are sealing
according to the greedy order, the proof of Lemma 4.4 in [9] ap-
plies to establish this fact. Whether ¢ is rendered trivial or not can
be determined as follows. We continue the persistence algorithm
corresponding to the vertex p with the addition of the simplices in
K’ \ K and check if e is now paired or not.

Let ny, ne, and n; denote the number of vertices, edges, and
triangles respectively in /. Notice that we add at most n. edges
and triangles for sealing since the dummy vertex is added to at most
ne edges to create new triangles in '

2.3 Time complexity

First, we analyze the time complexity of CANONGEN. Shortest
path tree computation in step 1 of CANONGEN takes O (n,, log n,+
ne) time. The persistence algorithm for CANONGEN can be imple-
mented using matrix reductions [14] in time O((n., 4 n¢)%(ne +
nt)). This is because there are n, + n. rows in this matrix and
each insertion of n. +n: simplices can be implemented in O (n., +
n.) column operations each taking O(n, + n.) time. Therefore,
CANONGEN takes O(ny log ny + (1 4+ ne)? (ne + 1)) time.

Step 1 of SPGEN calls CANONGEN n,, times. Therefore, step
1 of SPGEN takes O(n?, log ny + 1y (ny + ne)Q(ne + nt)) time.
Step 2 of SPGEN can be performed in O(n.k log n, k) time where
k = O(ne) is the rank of H;(K). The time complexity for inde-
pendence check in step 7 is dominated by the persistence algorithm
which is continued on K to accommodate simplices in C'. Since
we add O(n.) new simplices in X', it has the same asymptotic
complexity as for running the persistence algorithm on /C. We con-
clude that SPGEN spends O (1., (1, +n.)? (ne +n4)) time in total.
If we take n = (n*) time complexity.

Now, we analyze the time complexity of SHORTLOOP which is
the main algorithm. Let n. and n; be the number of edges and
triangles in R"(P) created out of n points. Step 1 takes at most
O(n+ne +ny) time since we only compute edges and triangles of
R*"(P) out of n points. Accounting for the persistence algorithm
in step 2 and the time complexity of step 3 we get that SHORTLOOP
takes

O(n(n+ne)*(ne +ny)) time.
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The procedure SPGEN(K') computes canonical sets (G, which
is ensured by Proposition 2.5. Then, it forms a greedy set from
these canonical sets which is a shortest basis for H () by Propo-
sition 2.4. This and the time analysis for SPGEN establish Theo-
rem 1.4.

3. APPROXIMATION FORM

The algorithm SPGEN is used in SHORTLOOP to produce a short-
est basis for the persistent homology group H">" (R (P)). Proposi-
tion 3.5 in this section shows that a shortest basis of H"*" (R(P))
coincides with a shortest basis in Hy(C"(P)). Therefore, if we
show that a shortest basis in Hy (C"(P)) approximates a shortest
basis in Hy (M), we have the approximation result of Theoerm 1.3.

3.1 Connecting M, Cech complex, and Rips
complex

First, we note the following result established in [24] which con-
nects M with the union of the balls P" = U,epB(p, ).

Proposition 3.1 Let P C M be an e-sample. If 2¢ < r <
\/g p(M), there is a deformation retraction from P" to M so that

the corresponding retraction t : P — M has t(B) C B for any
ball B € {B(p,7)}pep-

Recall that C*" ( P) is the nerve of the cover { B(p, ) }pe p of the
space P". By aresult of Leray [23], it is known that P” and C*" (P)
are homotopy equivalent. The next proposition follows from exam-
ining the specific equivalence maps used to prove the Nerve Lemma
in Hatcher [21]. In particular, the simplices of the Cech complex
are mapped to a subset of the union of the balls centered at their
vertices, see Appendix for its proof.

Proposition 3.2 There exists a homotopy equivalence f : C*"(P) —
P" such that for each simplex ¢ € C*"(P), one has f(o) C
Upevert(o) B(p, 1) and f(p) = p for any p € P.

The two propositions above together provide the connection be-
tween M and the Cech complex:

Proposition 33 Let P C M be an e-sample. If 2¢ < r <

\/7 p(M), there is a homotopy equivalence map h = to f :
C*"(P) — M such that h(c) C M N (Upevers(o)B(p, )) and
h(p) = pforanyp € P.

Now we establish a connection between Cech complex and Rips
complexes which helps proving Proposition 3.5.

Proposition 3.4 Let P C M be an e-sample. Then, for 4 < r <
3y/20()

HY*" (R(P)) ~ Hi(C"(P))

, we have the following isomorphisms

J1x

~
~

H1(C* (P)) & Hi(CY (P)),

where ji. and jo. are induced by the inclusion maps j1 and jo
respectively. Moreover, if

i1

cr(P) &L RT(P)) 2 ¢*(P)) L RY(P)) A

then ji = i20i1, and jo = i40i3 and H*" (R(P)) = image (1+)
where 1, : Hi(R"(P)) — H1(R?*"(P)) is induced by the inclu-

sion t = 13 O 19.

¢ (p),

PROOF. Based on Proposition 3.3, it can be proved by following
the idea in [8] of intertwined Cech and Rips complexes. [



By definition the set of edges in C" (P) is same as the set of edges
in R"(P). This means a set of loops in R" (P) also forms a set of
loops in C"(P). In light of Proposition 3.4, this implies:

Proposition 3.5 Let P C M be an e-sample and 4 < r <
%\/gp(]\/[) Then H*"(R(P)) and Hy (M) are isomorphic and

a basis for H}*"(R(P)) is shortest if and only if it is shortest for
H.(C"(P)).

PROOF. From Proposition 3.3 and Proposition 3.4, we have the
following isomorphisms:

HY*" (R(P)) ~ Hi(C"(P)) &~ Hi(M).

Let A = {ai, - ,ax} be a shortest basis for H}”*" (R(P)). Each
a; is aloop in R"(P) and hence in C" (P). Obviously A is a basis
of Hi(C"(P)) as the inclusion map from C" (P) to R"(P) induces
a homomorphism. Thus, a shortest basis for H; (C" (P)) must be no
longer than that of H"*" (R (P)). Similarly if A = {a1,--- ,ax}is
a shortest basis of H; (C"(P)), then each a; must be in R" (P) and
survive in R?"(P) as it must survive in C*"(P). Thus A is a basis
for H]*"(R(P)) and hence a shortest basis of H]"*" (R (P)) is no
longer than that of Hy (C"(P)). This proves the proposition. []

3.2 Bounding the lengths

Our idea is to argue that a shortest basis of H1(C"(P)) can be
pulled back to a basis of Hi (M) by the map A of Proposition 3.3.
We argue that the lengths of the generators cannot change too much
in the process.

Let g be any closed curve in M. Following [3], we define a pro-
cedure to approximate g by a loop § in the 1-skeleton of C"(P).
This procedure called Decomposition method is not part of our al-
gorithm, but is used in our argument about length approximations
of loops in M.

Decomposition method.

If £ = Len(g) > r — 2e > 0, we can write £ = (o + ({1 +
b1+ ...+ l1) + by where {1 = r —2eand r — 26 > lp >
(r — 2e)/2. Starting from an arbitrary point, say x, split g into
pieces whose lengths coincide with the decomposition of ¢. This
produces a sequence of points * = xg,Z1,...,Tm = x along g
which divide it according to the lengths constraints. Because of
our sampling condition, each point z; has a point p; € P within
e distance. We define a loop ¢ = {pop1 - .. pm } With consecutive
points joined by line segments. Proposition 3.6 shows that g resides
in the 1-skeleton of C" (P).

Proposition 3.6 Given a closed curve g on M with Len(g) > r —
2e > 0, Decomposition method finds a loop G from the 1-skeleton
of C"(P) such that: Len(g) < —5-Len(g).

— r—2e

PROOF. From the construction and sampling condition, it fol-
lows that, for 1 < i < m — 2,

d(pispi+1) < d(mi,pi) + d(xi, zig1) + d(@ig1, pit1)

r
24+l =r = ——-—4
< seth=r (r—2e) !
Similarly,
r
d < o and d(pym—1,p0) < lo.
(po,p1) < g toan (Pm-1,p0) < Y
Since =54y < r, each edge pipi+1 belongs to C"(P). There-

fore, we obtain a loop § = pop1 - . . pm in the 1-skeleton of C"(P)

whose length satisfies:

Len(§) = 2725 d(pi, pit1) <

— Len(g).

O

Consider a basis of Hy(M) where each generator is a closed
geodesic on M. For a smooth, compact manifold such a basis al-
ways exists by a well known result in differential geometry [18].
Let G = {q1,..., gk} be this set of geodesic loops. By Proposi-
tion 3.6, we claim that there is a set of loops G = {g1,..., 0%}
in C"(P) whose length is within a small factor of the length of G.
However, we need to show that G indeed generates H, (C"(P)).
We show this by mapping each g; € GtoM by the homotopy
equivalence h (Proposition 3.3) and arguing that [h(g;)] = [g;] in
Hi(M). Since h is a homotopy equivalence map, it follows that
the isomorphism h* : Hy(C"(P)) — Hi (M) maps the class [§;]
to [g;]. This implies that G generates H (C" (P)).

To prove that h(§;) is a representative of the class [g;], we con-
sider a tubular neighborhood of g; of radius  which is smaller than
the convexity radius p.(M). Then, we show that each segment
pipi+1 of g; is mapped to a curve h(p;pi;+1) which lies within
this tubular neighborhood. Because of this containment, A (p;pi+1)
must be homotopic to a geodesic segment of g;. All these homo-
topies together provide a homotopy between h(g;) and g;. First
we show that the tubular neighborhood of a segment of g; that we
consider is indeed simply connected.

Proposition 3.7 Let v = ~(p,q) be a minimizing geodesic be-
tween two points p,q € M. Consider its tubular neighborhood
Tubs(y) on M that consists of the points on M within a geodesic
distance s from~, i.e., Tubs(vy) = {x € M : minye, dum(z,y) <
s}. Then if s < pc(M), Tubs(y) is contractible, in particular,
Tubs () is simply connected.

PROOF. We show that Tub, () deformation retracts to -y. For
any point x € Tub,(7), consider an open geodesic ball B of ra-
dius s. We claim that v N B has a unique point z,, which is at
a minimum geodesic distance from x. Suppose not, that is, there
is another minimum z,,. The geodesic segement (Zy,, T, ) on
~ goes outside the open geodesic ball B = By (z, dn (z, Tm)).
Since s < p.(M), B’ has a radius less than the convexity radius. It
follows that there is a unique minimizing geodesic between x,, and
x}, lying in B’. Then, we have two distinct minimizing geodesics
between ., and x,,,, one lying in B’ and another going outside B’
though both of which lie in B. This is impossible since B also has
a radius less than the convexity radius.

Consider the retraction map ¢ : Tubs(y) — 7 where t(z) =
Zm. One can construct a deformation retraction that deforms the
identity on Tubs(7) to ¢ by moving each point x along the mini-
mizing geodesic path that connect = to x,, in y. [

Proposition 3.8 Ler P C M be an e-sample and 4 < r <
min{$p(M), pc(M)}. If § is the loop on C" (P) constructed from
a geodesic loop g in M by Decomposition method, then [h(g)] =
[g] where h is the homotopy equivalence defined in Proposition 3.3.

PROOF. Since g is a geodesic loop, it follows from standard re-
sults in differential geometry [18] that Len(g) > 2p.(M). Thus
g can be constructed from a geodesic loop g using Decomposition
method. Each vertex p; of § is within an € Euclidean distance from
the point x; in g. Next, notice that, since C" (P) uses balls of radius
r /2, the stated range of r satisfies the condition of Proposition 3.3.



By Proposition 3.3, for any point y on the segment p;p;11, h(y)
is within /2 Euclidean distance to either p; or p;+1. This im-
plies that h(y) is within /2 4 ¢ Euclidean distance, and hence,
by Proposition 1.2, within r geodesic distance to either x; or z;41.
In addition, since the sub-curve of the geodesic loop g between x;
and z;41, denoted y(z, Tit1), is of length {1 = r — 2e < p.(M),
~(zi, zi41) is a minimizing geodesic between x; and ;41. There-
fore h(pipi+1) € Tub,(y(zi, zi+1)) In particular, there are mini-
mizing geodesics y(zi, h(p;)) and y(xi41, h(pi+1)) that reside in
Tub, (v(2i, Tit1))-

Consider the loop formed by the three geodesic segments v (z;, Zi+1),

Y(zi, h(pi)), Y(xit1, h(pi+1)), and the curve h(p;p;+1). From
Proposition 3.7, this cycle is contractible in M as it resides in
Tub, (y(zi, xi+1)). In fact, there is a homotopy H; that takes
h(pipi.t,_l) to 'y(a:i,a:i+1) while Hi keeps h(pz) and h(pi+1) on
the geodesics ~(zi,p;) and v(xi41, pi+1) respectively. We can
combine all homotopies H; for 0 < ¢ < m to define a homotopy
between h(g) and g. It follows that [h(§)] = [g]. O

Proposition 3.9 Letr P C M be an e-sample and 4 < r <
min{1p(M), pe(M)}. [FG = {gu.... 1} and G' = {gf. ..., gk}
are the generators of a shortest basis of H1(

M) and H1(C"(P))
respectively, then we have Len(G') < (1 + 2)Len(G).

PROOF. Itis obvious that any g; must be a geodesic loop. Let g;
be the loop constructed by Decomposition method in the 1-skeleton
of C"(P). Thus, we have a set G = {§1,- -, gr}. By Proposi-
tion 3.8, there is a homotopy equivalence h : C"(P) — M so that
[h(4;)] = [g:], which means that G is also a basis of H; (C"(P)).
By Proposition 3.6,

Len(G') < Len(C) < Len(G) < (14 £

R )Len(G)

O

We now consider the opposite direction, and provide a lower
bound for the total length of a shortest basis of H; (C" (P)) in terms
of the length of a shortest basis of Hi (M).

Proposition 3.10 Let P C M be an e-sample and 4 < r <
min{1p(M), p.(M)}. Let G and G’ be defined as in Proposi-

tion 3.9. We have LenG < (1 + %)Len(G/). Moreover,

there exists a map h: G' — M so that h(G') is a basis of H1 (M)
and the Hausdorff distance between each loop g € G' and h(g') is
at most .

PROOF. We construct a set of loops in M from G’. First, we

4r? :
W) times
the length of G’. Next, we show that the constructed loops generate
Hi(M).

For each loop ¢’ € G’, we construct g as follows. The vertices
and edges of g’ are the vertices and edges of C"(P). For an edge
e=1pq €g,p,q € Pthus p,g € M. We connect p and g by
a minimizing geodesic y(p, ¢) on M, and map e to this geodesic.
Mapping each edge in ¢’ on M, we obtain g. Thus we obtain a

show that the length of these loops is at most (1 +

set G = {g1, - ,Jx}. By Proposition 1.2, du(p,q) < (1 +
2

Ag‘f)z((fj\’g)d(p, q) < (1+ 502 (M))d(p, q). Hence the length bound

follows.

We now show that the set (3 is a basis for M. Consider mapping
g; € G’ to M by the equivalence map h. Each edge e = pq €
g; is mapped to a curve h(pg). From Proposition 3.3, we have
that h(p) = p and h(q) = ¢ and each point of h(pq) is within
r/2 Euclidean distance and hence r geodesic distance to either p
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or g. This implies that h(pg) C Tub.(v(p,q)). Then, by using
similar argument as in Proposition 3.7, we claim that v(p, ¢) and
h(pq) are homotopic. Combining all homotopies for each edge of
gj» we get that h(g}) is homotopic to g;. Since  is a homotopy
equivalence, h(G') and hence G = {gi,...,Jr} are a basis of
Hi(M). Therefore,

_4r
3p* (M)
The loops in h(G’) form a basis of Hi(M) and each loop ¢’ €

G’ has a Hausdorff distance of /2 with h(g’) satisfying the last
claim. [

Len(G) < Len(G) < (1 + YLen(G").

Thanks to Proposition 3.5, shortest bases in C" (P) and H}"*" (R(P))

are same for an appropriate range of .

Theorem 3.11 Let P C M be ane- sample and r be a real positive
with 4 < r < min{} [p M)}. Let G and G’ be a

shortest basis of H1 (M) and HY’ 2T( )) respectively. We have

(
i, —L>—Len(G) <Len(G') < (1+
NE)

42)Len(G).

ii. There is amap h : G' — M so that h(G') is a basis of
Hi (M) and the Hausdorff distance between the underlying
space of g’ and h(g') is at most v /2 for each g’ € G'.

Theorem 1.3 follows from Theorem 3.11, Theorem 2.1, and the
time complexity analysis in section 2.3.

4. CONCLUSIONS

We have given a polynomial time algorithm for approximating
a shortest basis of the first homology group of a smooth manifold
from a point data. We have also presented an algorithm to com-
pute a shortest basis for the first homology of any finite simplicial
complex.

We use Rips complexes for computations and use Cech com-
plexes for analysis. One may observe that Cech complexes can be
used directly in the algorithm. Since we know that C" (P) is homo-
topy equivalent to M for an appropriate range of r, we can compute
a shortest basis for H; (C"(P)) which can be shown to approximate
a shortest basis for Hy (M) using our analysis. In technical terms,
this will get rid of the weighting in step 1 and also step 4 of SHORT-
Loor algorithm, and make Theorem 2.1 and Proposition 3.5 re-
dundant. Although the time complexity does not get affected in
the worst-case sense, computing the triangles for Cech complexes
becomes harder numerically in high dimensions than those for the
Rips complexes. This is why we chose to describe an algorithm
using the Rips complexes.

Computing a shortest basis for other homology groups under Zo
has been shown to be NP-hard by Chen and Freedman [11]. A re-
lated topic that has been addressed in the literature is the problem
of homology localization which asks for computing a shortest cy-
cle in a given homology class. The problem has been shown to be
NP-hard for a large number of cases [6, 11] under Z> coefficient.
Interestingly, it is shown in [16] that the problem is polynomial
time solvable for a class of spaces when the homology is defined
with Z instead of Zz. Does similar disparity exist for the shortest
basis problem between different coefficient rings?
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Figure 1: Loops in a shortest homology basis computed in Rips complexes (left column) constructed out of point data (right column).
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Appendix

Proof of Proposition 3.2.

PROOF. The proof is based on that of Nerve Lemma in [21]
(Chapter 4.G). Let T' be the barycentric subdivision of C*"(P).
Taking the definitions of the maps Ap, Agq, and the space AP"
from Hatcher [21], we consider the following sequence

P AP T P

P

Py &1 = (1)
A

We prove the proposition by showing f = 7m o Ag o h which is a

homotopy equivalence. We first introduce the concept of mapping

cylinder. For amap f : X — Y, the mapping cylinder My is the

quotient space of the disjoint union (X x I)| | Y with (z, 1) iden-

tified with f(z) € Y, denoted My = X | |; Y, see Figure 2(a).

It is obvious that My deformation retracts to Y. It is also well-
known that f is a homotopy equivalence map if and only if My
deformation retracts to X, see Figure 2(b), where the map g =
ex oty is a homotopy equivalence map from Y to X.

We are now ready to explain each map in the composition of
the map f. T is the barycentric subdivision of C*"(P). Thus h is
an identity map between the underlying spaces of C*"(P) and I'.
Index the points in P = {p; };*; arbitrarily. Let B, = B(p;, ).
To facilitate the argument, label the vertices in I" using B;’s and
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f XUy

Figure 2: (a) the mapping cylinder M; = X | | i Y (courtesy of
Hatcher [21]); (b) the maps among X, Y and M

their finite intersections, see Figure 3. Each edge (one simplex) in
I" is associated with an inclusion map, which induces a sequence of
inclusion maps over a simplex of any dimension in I'.

AP" can be realized using the concept of mapping cylinder, see
the top right most picture in Figure 3. The sequence of inclusion
maps associated with each simplex in I

(BZ'O n---N Bin)

—

(Bio m"'mBin—l)
— (BZO m“.mBin—k)a

<
induces an iterated mapping cylinder. AP" is obtained by gluing
these iterated mapping cylinders over all simplices in I, see [21] for
details. There is a canonical projection Ap : AP" — T" induced
by projecting each finite intersection to its corresponding vertex in
I". Consider the mapping cylinder Ma,. The Nerve Lemma is
proved in [21] by showing Ma, deformation retracts to AP". In
fact, the deformation retraction described in [21] maps a simplex
A € T to the part of AP” defined over the same A*, namely
Aq = eapr oir is a homotopy equivalence and maps a simplex
A* ¢ T into the iterated mapping cylinder defined by the sequence
of inclusion map associated with A*.

On the other hand, AP" can also be considered as the quotient
space of the disjoint union of all the products B;, N- - -NB;,, x A",
as the subscripts range over set of n+1 distinct indices and any n >
0, with the identifications over the faces of A™ using inclusions
Bi, N---NBi, — Bij,N---NB;; N---N B;, where ™ means
the corresponding term is missing. From this viewpoint, any point
x € P" has afiber 77! (x) in AP" defined as follows. 7~ (x)
{3, tizi} where >_,t; = Land ¢ > 0, and z; is a copy of z in
B; for those B; containing x. see the bottom left most picture in
Figure 3. It is easy to see that P" can be embedded into AP" as a
section of AP", in particular 7 is a homotopy equivalence. Thus f
is a homotopy equivalence.

Observe that each point y in an iterated mapping cylinder over
some simplex AF = (BiycN---NBy,, - ,BizN---NB;,_,)in
I is in the fiber 7 *(z) for some z in B;,. In other words, if A*
is in the closure of the star of a point p € P in I, then any point y
in the iterated mapping cylinder over A¥ is in the fiber of a point
x € B(p,r). Now consider a simplex o € C?"(P). Any simplex
in its barycentric subdivision much be in the closure of the star of
some vertex of o. Thus o, under the map A, oh, is mapped into the
union of the iterated mapping cylinders defined over the simplices



Figure 3: Illustration of the maps and the spaces involved in Eq. 1.

in the barycentric subdivision of ¢, and its image, under the map 7,
is further mapped into Uy, cvert(o) B(p, 7).

In addition, it is clear that the map f can fix each vertex in
C?"(P). This proves the proposition. [J
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