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If you have tried to solve a crossword puzzle, you know that it is much harder to solve it
than to verify a solution provided by someone else. Likewise, proving a mathematical state-
ment by yourself is usually much harder than verifying a proof provided by your instructor.
A usual explanation for this difference is that solving a puzzle, or proving a mathematical
statement, requires some creativity, which makes it much harder than verifying a solution.

This lecture studies several complexity classes, which classify problems with respect to
their hardness. We will define a complexity class P which consists of problems that can be
solved efficiently, and a complexity class NP which consists of the problems that can be
verified efficiently. One of the outstanding open questions in mathematics is whether P = NP,
or verifying a statement is indeed much easier than proving a statement. We will discuss
efforts theoreticians have made towards solving the question over the 40 years, and the
consequences of this question.

1.1 P and NP

In early days of computer science, various algorithm design techniques are discovered which
lead to efficient solutions of problems. We list a few here.

Problem 1.1 (Euler Cycle Problem). Give a graph G, is there a closed cycle which visits each
edge of G exactly once? It is not difficult to prove that such cycle exists if and only if the degree
of every vertex in G is even.

Problem 1.2 (Shortest Path). Given a graph G and two vertices s and t, find the shortest
path between s and t. The famous Dijkstra algorithm solving this problem is discovered by
Edsgar Dijkstra in 1959 [4]. The algorithm runs in time linear in the number of edges in G.
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Problem 1.3 (Max Flow). Given a graph G and two vertices s and t, compute the maximum
flow between s and t. This problem was first formulated in 1954 by Ted Harris and Frank
Ross. The first algorithm for this problem is presented in 1956, by Lester Ford, Jr., and Delbert
Fulkerson [5].

Algorithms solving these problems run in time polynomial in the size of the inputs, and we
call such algorithms efficient. Efficient algorithms for solving problems are usually based on
(i) mathematical properties of the problem, (ii) techniques of algorithm design, e.g. dynamic
programing or greedy strategy, and (iii) use of data structures. However, there are problems
for which the existence of efficient algorithms is unknown, and researchers still do not known
the answer after 40 year’s extensive studies. Let us look at some problems for example.

Problem 1.4 (Clique). Given a graph G of n vertices, is there a clique of size k in G?

Problem 1.5 (Hamiltonian Cycle). Given a graph G of n vertices, is there a cycle of length
n which visits every vertex exactly once?

Problem 1.6 (Satisfiability). Given a boolean formula φ with n variables and m clauses,
where every clause has at least three literals, is ϕ satisfiable? That is, we ask if there is an
assignment of x1, . . . , xn such that ϕ(x1, . . . , xn) = 1?

While efficient algorithms for these problems are unknown, these problems have some
properties in common: (i) all existing algorithms for solving any of these problems are essen-
tially based on brute-force search, i.e. listing all possible candidate solutions and checking
if one candidate is indeed a solution. (ii) For every candidate solution, verifying the candi-
date is efficient and takes polynomial-time. Thousands of problems in different disciplines
have been shown to have these two properties. A question of efficient algorithms for these
problems essentially asks whether brute-force search can be avoided.

In 1956, Kurt Gödel wrote a letter to John von Neumann [7], and mentioned this problem
in the letter. Despite that Kurt Gödel described the question in a remarkably modern way,
the question can be more or less summarized by how much we can improve upon the brute-
force search. Unfortunately, the question was stated as a mathematical logic problem and the
Gödel’s letter was “lost”. It takes theoretical computer scientists almost 15 years until Stephen
Cook re-formulated the P versus NP conjecture in [3]!

Search versus Decision. We have informally defined P as a set of problems which can be ef-
ficiently solved, and NP as a set of problems for which a solution can be efficiently verified. To
give mathematical definitions of P and NP, we reduce search problems to decision problems,
i.e. we study the decision problems (“Is this cycle a Hamiltonian cycle?”) instead of search
problems (“Find a Hamiltonian cycle.”). Clearly, search problems are harder than decision
problems. Solutions of a search problem gives a solution of decision problems. Moreover, the
hardness of decision problems implies the hardness of the corresponding search problems.
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Problems versus Sets. We build up correspondence between problems and sets. For any
problem P, we define a set SP , and SP consists of the instances for which the answer to the
decision problem is Yes. For instance, for a parameter k the Clique problem is defined as the
set

Clique , {G | ∃v1, . . . , vk : G(v1, . . . , vk) is a complete graph}, (1.1)

where G(v1, . . . , vk) is the induced subgraph of G by v1, . . . , vk. The satisfiability problem is
defined as

SAT , {ϕ | ∃x1, . . . , xn : ϕ(x1, . . . , xn) = 1}. (1.2)

That is, SAT consists of boolean formulae for which there is a satisfiable assignment.

Certificate. From (1.1) and (1.2), we know that every instance in the set has a short cer-
tificate, a string supporting the membership of every instance in the set. For instance, for the
set Clique, every graph G ∈ Clique can use vertices v1, · · · , vk as a certificate, and for the set
SAT, every infeasible assignment is a certificate of ϕ ∈ SAT. Moreover, given the certificate,
membership of instances in a set can be effectively verified. For instance, let us look at the
Hamiltonian problem. We know that an n-vertex graph G ∈ Hamiltonian if and only if there is
a permutation of G, denoted by v1, . . . , vn, such that (i) every vertex u of G appears exactly
once in the sequence, and (ii) for any 1 ≤ i ≤ n−1, {vi, vi+1}, as well as {vn, v1}, are edges in
G. For the SAT problem, it is easy to verify if x1, . . . , xn, xi ∈ {0, 1}, is a feasible assignment
of ϕ.

P, NP and NP-Completeness. Now we define P and NP. The complexity class P formalizes
the intuition of efficiently solvable problems, and consists of the problems that can be solved
in polynomial-time. The complexity class NP formalizes the intuition of efficiently verifiable
problems, and consists of all problems that admit a short “certificat” for membership. Given
this certificate, also called a witness, membership can be verified efficiently in polynomial
time.

Definition 1.7 (P). The class P consists of those problems that are solvable in polynomial
time, i.e. the problems that can be solved in time O(nk) for some constant k, where n is the
size of the input to the problem.

Definition 1.8 (NP). The class NP consists of problems for which the solutions can be verified
in polynomial-time. More formally, NP consists of sets L such that for all x ∈ {0, 1}?

x ∈ L⇔ ∃w ∈ {0, 1}p(|x|) : M(x,w) = 1,

where p : N 7→ N is a polynomial, and M is a polynomial-time algorithm that is used to verify
the membership of x.

Intuitively, an algorithm M verifies a language L if for any string x ∈ L, there is a certifi-
cate y that M can use to prove that x ∈ L. Moreover, for any string x 6∈ L, there must be no
certificate proving that x ∈ L.

Example 1.9 (Composite Numbers). Given a number N , decide N is a composite. This problem
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is in NP, since any number N is composite iff there is two numbers p, q ≥ 2 such that N = p · q.
Hence any numbers p, q with p · q = N is the witness of N being composite.

Example 1.10 (Subset Sum). Given a set S of numbers x1, · · · , xn, and a number T , decide if
there is a subset of numbers in S that sums up to T . The certificate is the list of members in S.

Since if a problem in P then we can solve it in polynomial-time without knowing a certifi-
cate, we have that P ⊆ NP. However, because of various practical problems for which only
brute-force based algorithms are known, people are interested in finding polynomial-time
algorithms for such problems.

To study this, Stephen Cook [3] and Leonid Levin [10] independently proposed the no-
tion of NP-completeness around 1971, and gave examples of combinatorial NP-complete
problems. They show that, in order to prove P = NP, it suffices to study a few problems
in NP. These problems are supposed to be the “hardest” problems in NP, and is called NP-
complete problems (NPC problems). They further show that a polynomial-time algorithm for
any problem in NPC implies P = NP.

Definition 1.11 (Reduction). A language L ⊆ {0, 1}? is a polynomial-time reducible to a
language L′ ⊆ {0, 1}?, denoted by L ≤p L

′, if there is a polynomial-time computable function
f : {0, 1}? 7→ {0, 1}? such that for every x ∈ {0, 1}?, x ∈ L if and only if f(x) ∈ L′.

We say that L′ is NP-hard if L ≤p L
′ for every L ∈ NP. We say that L′ is NP-complete if

L′ is NP-hard and L′ ∈ NP.

Theorem 1.12. If any NP-complete problem can be solved in polynomial-time, then every
NP-complete problem has a polynomial-time algorithm.

Theorem 1.13 (Cook-Levin Theorem). SAT is NP-complete.

In 1972, Richard Karp further showed 21 problems where are NP-complete [8]. In par-
ticular, Karp’s paper includes NP-completeness proofs for the clique, vertex cover, and the
Hamiltonian cycle problem. After that, thousands of problems are shown to be NP-complete.

What are the consequences of the P vs. NP question? First, P = NP implies that every ef-
ficiently verifiable problem can be solved efficiently, and brute-force search can be essentially
avoided. Various seemingly hard problems have efficient algorithms for the exact solutions.
Moreover, all randomized polynomial-time algorithms can be derandomized, and we do not
need randomness in algorithm design. On a negative side, P = NP implies that any encryp-
tion scheme has a trivial decoding scheme, and modern cryptography does not exist anymore.

On the other hand, P 6= NP implies that brute-force search is essential and cannot be
avoided for most problems. This also shows existence of hard problems which are the basis
for cryptography.

Ladner Theorem. We know that (i) P ⊆ NP, and (2) NPC ⊆ NP \ P, if P 6= NP. A tricky
question arising is that, assuming P 6= NP, if there are problems that is in an “intermediate”
state between P and NPC? I.e. is NP \ P \ NPC = ∅? Richard Ladner gave an affirmative
answer to this question [9] in 1975.
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Figure 1.1: How most theoretical computer scientists view the relationship among P, NP, and NPC. Here P 6= NP
and NP \ P \ NPC 6= ∅.

Theorem 1.14 (Ladner Theorem, 1975). If P 6= NP, then NP \ P \ NPC 6= ∅.

Ladner showed that if P 6= NP, then there are infinitely many levels of difficulties inside
NP, see Figure 1.1. However, assuming that P 6= NP we know few natural candidates which
“should” be non NP-complete.

Problem 1.15 (graph isomorphism). Given two simple graphs G1 = (V1, E1) and G2 =
(V2, E2), decide if there is an isomorphism mapping between G1 and G2, i.e. a permutation
φ : V1 7→ V2 such that {u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2.

Problem 1.16 (Factoring). Given a number N ∈ N, L, U , decide if N has a prime factor p
in the interval [L,U ].

These two problems are in NP, and are conjectured to be not NP-complete. Graph Iso-
morphism is used to build zero-knowledge proofs, and Factoring is widely used nowadays
in building crypto systems. Indeed, we do not know yet how to base cryptography on NP-
complete problems.

1.2 Polynomial-Time Hierarchy

Oracle. Alam Turing introduced the notion of oracle in his PhD thesis in 1939. Informally, an
oracle is a hypothetical device that would solve a computational program, free of charge. For
instance, say we have a subroutine to multiply two matrices. After we create the subroutine,
we do not have to think about how to multiply two matrices again, we simply think about it
as a “black block” which always returns the correct answer.

Now assume that we have a program M , and program M uses another program A as a
subroutine. Program M can invoke A as many times as it likes. We use MA to represent such
a program. Moreover, we denote PA by the set of polynomial-time algorithms where each
algorithm can use A as a subroutine and the runtime of A is assumed to be O(1). Similarly,
for complexity classes A, B, we define AB as the set of problems which can be solved by
using an algorithm in A that invokes another procedure in B as a subroutine.

Example 1.17. PP = P.
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Proof. Since use of oracles gives algorithms extra power, we have P ⊆ PP. Now we prove
PP ⊆ P. Let L be any problem in PP, then there is a polynomial-time algorithm A to solve
L, where A uses another polynomial-time algorithm O as an oracle. Suppose that on input x
the runtime of A is p(|x|), and the runtime of O is q(|x|), where p, q are polynomials. Now,
instead of spending O(1) time to get an answer from the oracle O, algorithm A simulates
the task of O, and the runtime of this new algorithm is at most p(|x|) · q(|x|), which is a
polynomial of |x|. Hence L ∈ P, which implies that PP = P.

So far we discussed two complexity classes: P and NP. While most practical problems
can be categorized into these two classes and most people in early 70s were studying the
relationship between P and NP, a young graduate student, Larry Stockmeyer, and his advisor
Albert Meyer started to think what the next step is. In the 1972’s paper [11], they looked at
the following problem.

Problem 1.18. The set MINIMAL consists of all boolean formulas for which there is no
shorter and equivalent boolean formula.

We look at the complexity of MINIMAL, and show the following result.

Theorem 1.19. MINIMAL ∈ NPNP.

Proof. Note that for any formula ϕ and ϕ′ of n variables, if ϕ 6≡ ϕ′, then there is an assign-
ment x′

1, . . . , x
′
n such that ϕ(x′

1, . . . , x
′
n) 6= ϕ′(x′

1, . . . , x
′
n). This assignment x′

1, . . . , x
′
n is the

certificate of ϕ 6≡ ϕ′. Hence the question of testing ϕ 6≡ ϕ′ is in NP. Let A ∈ NP be the
algorithm testing if ϕ 6≡ ϕ′.

Now we use A as an oracle. By definition, a formula ϕ ∈ MINIMAL if and only if there is
a formula ϕ′ such that (1) the size of ϕ′ is smaller than the size of ϕ, and (2) ϕ ≡ ϕ′.

By Item (1), ϕ′ can be used as a certificate, and the property of Item (2) can be checked
by oracle A. Therefore we have that MINIMAL ∈ NPNP.

Polynomial-Time Hierarchy. In 1975, Larry Stockmeyer generalized the notion of P, NP,
and oracles, and defined the Polynomial-Time Hierarchy [14]. Polynomial-Time Hierarchy
contains an infinite number of subclasses, and these subclasses are conjectured to be distinct.

Definition 1.20 (Polynomial-Time Hierarchy). Σi is a sequence of sets and is defined induc-
tively as follows:

1. Σ0 , P, Σ1 , NP;

2. Σi+1 , NPΣi .

Moreover, let Πi , coΣi, and ∆i+1 , PΣi .

We say the Polynomial-Time Hierarchy is infinite if Σi 6= Σi+1 for any i ≥ 0 and otherwise
we say it collapses. We call the Polynomial-Time Hierarchy collapses to the ith level if Σi =
Σi+1. In such case, we have that PH = Σi.
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Theorem 1.21. The following statements hold:

1. If Σi = Πi, then PH = Σi;

2. If Σi = Σi+1, then PH = Σi.

Many complexity theoreticians conjecture that the Polynomial-Time Hierarchy is infinite
and such a conjecture implies that many other complexity results. In computational complex-
ity theory we will see many “pigs can fly” theorems, that show that if some conjecture does
not hold then the Polynomial-Time Hierarchy collapses. If someone eventually does prove
that the Polynomial-Time Hierarchy is infinite, then we will immediately get that all these
conjectures are true. For instance, one such “pigs can fly” result relates the complexity of
graph isomorphism to Σ2.

Theorem 1.22 ([2]). If Graph Isomorphism is NPC, then PH = Σ2.

Problem 1.23. Language Σi-SAT is the set of boolean formulae ϕ such that there are vectors
~xi of boolean variables satisfying

∃ ~x1∀ ~x2 · · ·Qi ~xiϕ( ~x1, . . . , ~xi) = 1,

where Qi = ∀ if i is even, and Qi = ∃ otherwise. Language Πi-SAT is defined similarly.

Theorem 1.24. Σi-SAT is Σi-complete, and Πi-SAT is Πi-complete.

Theorem 1.24 shows that there are complete problems in every level of PH. In contrast
to thousands of NP-complete problems we known, our knowledge of complete problems in
various levels of PH is quite limited. A list of complete problems in higher levels of PH can
be found in [12].

1.3 Remarks

• The definition of NP shows that for every language L in NP, and every x ∈ L, there
is a short witness y, such that membership of x can be efficiently verified given the
witness y. This definition implies that a non-deterministic algorithm A for language L.
For any input x, algorithm A picks a random string y′ as the witness and verifies the
membership of x. If x 6∈ L, there is no witness at all, and algorithm A always outputs
correct answers. Otherwise, x ∈ L, and algorithmA successes with nonzero probability.

• The complexity class P consists of problems that can be solved in polynomial-time. We
can use a similar way to define the complexity class BPP, which consists of problems
that can be solved by a randomized polynomial-time algorithm, i.e., for every problem
P in BPP, there is a randomized algorithm that runs in polynomial-time and outputs
correct solutions of P with probability at least 99%. Clearly, P ⊆ BPP. A lot of research
in complexity theory indicates that randomization does not provide more power over
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the deterministic algorithms, and most theoreticians believe that P = BPP.

• We already showed that computing exact solutions of certain problems are NP-hard.
The study of hardness of approximation shows that, for many NP-hard problems, even
computing an approximate solution with certain approximate guarantees are NP-hard.

1.4 Further Reading

“The history and status of the P versus NP question” is an excellent survey [13], in which
you can find the Gödel’s original letter and the translation in English. An essay by Scott
Aaaronson titled “NP-Complete Problems and Physical Reality” [1] addresses the question
if NP-complete problems can be solved efficiently in the physical reality. [6] summaries the
work of Larry Stockmeyer.
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