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NP-hard optimization problems appear everywhere in our life. Under the assumption
that P 6= NP there is no efficient algorithm for any of these problems. One relaxation of
these problems is to find an approximate solution with desired approximation guarantee.
Theoreticians proved that efficient algorithms exist for certain NP-hard problems, and simple
greedy strategy usually provides good approximation. On the downside, for a few problems
even obtaining a reasonable approximation is as hard as finding the optimal solution. This
line of research studies NP-hard problems from two aspects:

• Approximation Algorithms studies design of polynomial-time algorithms with certain
approximation guarantees.

• Inapproximability studies the hardness of approximating NP-hard problems with certain
approximation ratios.

In addition to these, Parameterized Complexity seeks for exact algorithms with running
time O(cn) for smaller c and, besides the input size, the influence of other parameters in
designing algorithms for hard problems. Average-Case Complexity associates input of an NP-
hard problem with a distribution, and studies the complexity of hard problems in the average-
case. Study of Randomness provides simple randomized algorithms for hard problems, and
these randomized algorithms usually give a desirable output with high probability.

In today’s lecture we give an introductory discussion on approximation algorithms, and
inapproximability.

2.1 Exact Algorithms

We start with exact algorithms for NP-hard problems, and these algorithms always give opti-
mal solutions of the problems, with super-polynomial time.

Enumeration & Local Search. We first discuss exact algorithms for NP-hard problems. The
simplest exact algorithm is complete enumeration. For example, for the SAT problem, in order
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2 How to Cope with NP-Completeness

to find out whether a boolean formula over variables x1 to xn is satisfiable, we could simply
iterate over all 2n possible assignments.

Can we do better than enumerating 2n possible assignments? Many short-cuts are pos-
sible. For example, if the formula contains a unit-clause, i.e., a clause consisting of a single
literal, this literal must be set to true and hence only half of the assignments have to be tried.
Note that unit-clauses arise automatically when we systematically try assignments, e.g., if
x1 ∨ x2 ∨ x3 is a clause and we have set x1 and x2 to false, then x3 must be set to true.
There are many rules of this kind that can be used to speed-up the search for a satisfying as-
signment. We refer the reader to [11] for an in-depth discussion. There has been significant
progress on speeding-up SAT-solvers in recent years and good open source implementations
are available.

Local Search. Local search is a strategy for solving computationally hard optimization prob-
lems. Basically a local search algorithm moves from one candidate solution to another in the
searching space by applying local changes, until a solution with certain criteria is found. We
illustrate this method by a simple randomized algorithm for the 3-SAT problem by Schön-
ing [12] that runs in time (4/3)n, where n is the number of variables. The algorithm adapted
from [13] is described in Algorithm 2.1. For simplicity we assume that all clauses have at
most k literals.

Algorithm 2.1 A randomized algorithm for SAT
1: T ← 0;
2: while T ≤ 2 ·

(
2·(k−1)

k

)n
· ln 1

ε do
3: T ← T + 1
4: Choose an assignment x ∈ {0, 1}n uniformly at random
5: for count← 1 to Ck · n do . Ck is a constant
6: if ϕ(x) = 1 then return ϕ is satisfiable . This answer is always correct

7: Let C be a clause of ϕ that is not satisfied
8: Choose a literal in C at random and flip the value of the literal in x

9: return ϕ is unsatisfiable . This is incorrect with probability at most ε

Now we analyze Algorithm 2.1. Suppose that the input formula ϕ has n variables and ϕ
is satisfiable. Let x? be one such satisfiable assignment. We split the set of 2n possible assign-
ments into blocks, where block Bi consist of all assignments x whose Hamming distance to
x? is i, i.e.

Bi ,

x ∈ {0, 1}n ∣∣∣ ∑
1≤j≤n

xj ⊕ x?j = i

 ,
where ⊕ represents the XOR operation of boolean variables.

Let x be our current assignment, and let C be a clause of ϕ that is not satisfied by x. Then
all literals of C are set to false by x and ` ≥ 1 literals of C are set to true by x?. If we flip the
value of one of these ` literals, the Hamming distance of x and x? decreases by one. If we flip
the value of one of the other at most k − ` literals of C, the Hamming distance will increase
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i + 1 i i− 1

≥ 1/k ≥ 1/k

≤ 1− 1/k ≤ 1− 1/k

Figure 2.1: Explanation of Algorithm 2.1.

by one. Thus, if x belongs to Bi, the next x belongs to Bi−1 with probality at least 1/k and
belongs to Bi+1 with probability at most 1 − 1/k. The algorithm accepts at the latest when
x ∈ B0, and it may accept earlier when x equals some other satisfying assignment.

Hence, in order to analyze the algorithm, it suffices to analyze the random walk with
states 0, 1, 2, . . . and transition probability 1/k from state i to state i − 1 and probability
1 − 1/k from state i to state i + 1, as illustrated in Figure 2.1. So we only need to analyze
the probability of reaching state 0 when starting in state i and the expected length of a walk
leading us from state i to state 0.

What should we expect? The walk has a strong drift away from zero and hence the proba-
bility of ever reaching state 0 should decrease exponentially in the index of the starting state.
For the same reason, most walks will never reach state 0. However, walks that reach state 0
should be relatively short. This is because long walks are more likely to diverge.

Now we start our formal analysis. Remember that the initial assignment x is chosen uni-
formly at random from {0, 1}n. We look at the Hamming distance between x and x?. Clearly,
the distribution is binomially distributed, i.e.,

Pr [ Hamming distance = i ] =
(
n

i

)
· 2−n. (2.1)

We first state two claims before formally proving the performance of the algorithm.

Claim 2.1. The probability of reaching state 0 from state i is exponential in i. Formally, it
holds that

Pr [ absorbing state 0 is reached | process started in state i ] =
( 1
k − 1

)i
.

Proof. Let p be the probability of reaching state 0 from state 1. Such a walk has the following
form: the last transition is from state 1 to state 0, with probability 1/k. Before that it performs
a walk of length 2t ≥ 0 starting from and ending at state 1 without visiting state 0, with
probability ((k − 1)/k)p)t. Therefore it holds that

p = 1
k

∑
t≥0

(
k − 1
k
· p
)t

= 1
k
· 1

1− k−1
k · p

= 1
k − (k − 1) · p.

This equation has solutions p = 1 and p = 1
k−1 . We exclude the former on semantic reasons.
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Thus the probability of reaching state i − 1 from state i is 1/(k − 1) and the probability of
reaching it from state i is the ith power of this probability.

Claim 2.2.

E
[

# steps until state 0 is reached
∣∣∣ process started in state i and the absorb-

ing state 0 is reached

]
= Cki,

where Ck = 1 + 2
k(k−2) .

Proof. Let L be the expected length of a walk from state 1 to state 0. Such a walk has the
following form: the last transition is from state 1 to state 0 (length 1). Before that it performs
a walk of length 2t ≥ 0 starting from and ending at state 1 without visiting state 0, with
probability (

k − 1
k
· p
)t
· 1
k
,

where p is the same as in Claim 2.1 and the length of such walk is t · (L+ 1). Thus

L = 1 +
∑
t≥0

(
k − 1
k
· p
)t
· 1
k
· t · (1 + L) = 1 + (L+ 1) ·

∑
t≥1

t · k−t−1

= 1 + (L+ 1)
∑
t≥1

d
dk (−k−t) = 1− (L+ 1) d

dk
1/k

1− 1/k

= 1− (L+ 1) d
dk (k − 1)−1 = 1 + (L+ 1)(k − 1)−2.

The solution of this equation is L = k2−2k+2
k(k−2) , and therefore the expected length of a walk

starting from i and reaching 0 is i times this number.

Theorem 2.3 (Schöning). There is an algorithm that decides the satisfiability of a boolean
formula with n variables, m clauses, and at most k literals per clause. The algorithm has one
sided error ε and runs in time O

((
2(k−1)
k

)n
· poly(n,m) · ln 1

ε

)
.

Proof. Combing (2.1), Claim 2.1 and Claim 2.2, we have that

Pr [ the absorbing state 0 is reached ]

=
∑

0≤i≤n

(
n

i

)
2−n

( 1
k − 1

)i
= 2−n

(
1 + 1

k − 1

)n
=
(

k

2(k − 1)

)n
, (2.2)

and the expected number of steps for a random walk reaching state 0 is

E
[
# of steps until 0 is reached | 0 is reached

]
=
∑
i≥0

Ck · i ·
(
n

i

)
· 2−n = Ck ·

n

2n ·
∑
i≥1

(
n− 1
i− 1

)
= Ck · n

2 .
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By Markov’s inequality the probability that a non-negative random variable is less than twice
its expectation is at least 1/2. Thus

Pr
[
0 is reached in at most Ckn steps | 0 is reached

]
≥ 1/2. (2.3)

Combining (2.2) and (2.3), we obtain

Pr [ after at most Ckn steps the state 0 is reached ] ≥ 1
2

(
k

2(k − 1)

)n
.

Now we set

p = 1
2

(
k

2(k − 1)

)n
,

and the probability that a satisfiable assignment x? is reached from a random x is at least p.
If we repeat the experiment T times, the probability that we never reach x? is bounded by
(1− p)T = exp(T ln(1− p)) ≤ exp(−Tp), since ln(1− p) ≤ −p for 0 ≤ p < 1. In order to have
error probability at most ε, it suffices to choose T such that exp(−Tp) ≤ ε, i.e.,

T ≥ 1
p

ln 1
ε

= 2
(

2(k − 1)
k

)n
ln 1
ε
.

Branch-and-Bound-and-Cut. For optimization problems, the branch-and-bound and
branch-and-bound-and-cut paradigm are very useful. We illustrate the latter for the Trav-
elling Salesman Problem.

Problem 2.4 (Traveling Salesman Problem, TSP). Given a complete graph with nonnegative
edge costs, find a minimum cost cycle visiting every vertex exactly once.

The definition of subtour elimination LP for the traveling salesman problem in a graph G =
(V,E) is given below. Let ce be the cost of edge e. We have a variable xe for each edge.

min
∑
e

cexe

subject to
∑
e∈δ(v)

xe = 2 for each vertex v

∑
e∈δ(S)

xe ≥ 2 for each set S ⊆ V , ∅ 6= S 6= V

xe ≥ 0

We solve the LP above. If we are lucky, the solution is integral and we found the optimal
tour. In general, we will not be lucky. We select a fractional variable, say xe, and branch on it,
i.e., we generate the subproblems xe = 0 and xe = 1. We solve the LP for both subproblems.
This gives us lower bounds for the cost of optimal tours for both cases. We continue to
work on the problem for which the lower bound is weaker (= lower). We may also want
to introduce additional cuts. There are additional constraints known for the TSP. There are
also generic methods for introducing additional cuts. We refer the reader to [1] for a detailed
computational study of the TSP.
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2.2 Approximation Algorithms

Approximation algorithms construct provably good solutions and run in polynomial-time.
Algorithms that run in polynomial-time but do not come with a guarantee on the quality of
the solution found are called heuristics. Approximation algorithms may start out as heuristics.
Improved analysis turns the heuristic into an approximation algorithm.

2.2.1 Vertex Cover

Our first approximation algorithm is for the vertex cover problem. We will show that a simple
greedy strategy gives a 2-appproximate solution.

Problem 2.5 (Vertex Cover). Given a graph G = (V,E), find a subset S ⊆ V of minimum
size such that every edge in G has at least one endpoint incident at S.

Lemma 2.6. A factor 2-approximation to the optimum vertex cover can be computed in
polynomial-time.

Proof. For an input graph G, we compute a maximal matching M of G, and output the
endpoints of the edges in M . A maximal matching can be computed greedily. For instance,
we can iterate over the edges in arbitrary order, and add one edge e in the matching if the
endpoints of e are uncovered.

Clearly, the size of the cover is 2|M |. Since an optimal cover must contain at least one
endpoint of every edge in M , we obtain a 2-approximate solution.

2.2.2 Set Cover

Problem 2.7 (Set Cover). Let U be a set of n items, and S1, . . . , Sk be subsets of U . Every
set Si has cost cost(Si) ≥ 0. Find a miminum cost collection of sets that covers all items in U .

We show a simple greedy strategy that yields a O(logn)-factor approximation for this
NP-hard problem. One intuition behind the algorithm is that, we always pick the most effec-
tive set, i.e., the set that covers uncovered elements at the smallest cost per newly covered
element. More formally, let C be the set of covered elements before an iteration. Initially,
C is the empty set. Define the cost-effectiveness of Si as c(Si)/|Si \ C|, i.e., as the cost per
uncovered elements covered by Si. Given this, each iteration simply consists of finding the
best Si and updating set C. See Algorithm 2.2 for formal description.

Let OPT be the cost of the optimum solution. For the analysis, number the elements in
the ground set U in the order in which they are covered by the algorithm above. Let e1 to en
be the elements in this numbering.

Lemma 2.8. For all k, price(ek) ≤ OPT/(n− k + 1).

Proof. Let C = {e1, . . . , ei−1} be the set of covered elements after t iterations by the greedy
algorithm. Assume that the uncovered n − i + 1 elements in U\C are covered by ` sets
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Algorithm 2.2 Greedy Set Cover Algorithm [5, 9, 10]

1: C ← ∅;
2: while C 6= U do
3: Let i be the index minimizing c(Si)/|Si \ C|.
4: C ← C ∪ Si;
5: set the price of every e ∈ Si \ C to price(e) = c(Si)/|Si \ C|
6: Return the picked set.

{
S?j1 , . . . , S

?
j`

}
in the optimal solution. Therefore

OPT
n− i+ 1 ≥ 1

n− i+ 1
∑̀
k=1

c
(
S?jk

)
= 1
n− i+ 1

∑̀
k=1

∣∣∣S?jk\C∣∣∣ c
(
S?jk

)
∣∣∣S?jk\C∣∣∣

≥
∑`
k=1

∣∣∣S?jk\C∣∣∣
n− i+ 1 min

k∈[l]

c
(
S?jk

)
∣∣∣S?jk\C∣∣∣ ≥ min

k∈[l]

c
(
S?jk

)
∣∣∣S?jk\C∣∣∣

≥ min
j

c
(
Sj
)∣∣Sj\C∣∣ = price (ei) .

Theorem 2.9. The greedy algorithm for the set cover problem produces a solution of cost at
most HnOPT, where Hn = 1 + 1/2 + 1/3 + . . .+ 1/n is the n-th Harmonic number.

Proof. By Lemma 2.8 the cost of the solution produced by the greedy algorithm is bounded
by

OPT
∑

1≤k≤n

1
n− k + 1 = OPT ·Hn.

Since Hn = O(logn), Algorithm 2.2 has approximation ratio of O(logn).
The following example shows that no better approximation ratio can be proved for this

algorithm: Let the ground set be of size n. We have the following sets: a singleton set covering
element i at cost 1/i and a set covering all elements at cost 1 + ε. The optimal cover has
a cost of 1 + ε, however the greedy algorithm chooses the n singletons in the sequence
{n, n− 1, . . . , 1}.

The following result shows that, under certain complexity assumptions, essentially this
simply greedy strategy achieves the best approximation ratio that we can hope for.

Theorem 2.10 ([7]). If there is an approximation algorithm for set cover with approximation
ratio o(logn), then NP ⊆ ZTIME

(
nO(log logn)

)
, where ZTIME(T (n)) is the set of problems

which have a Las Vegas algorithm with runtime T (n).
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2.2.3 Knapsack

Problem 2.11 (Knapsack Problem). Given a set S = {a1, . . . , an} of objects, with specified
weight weight(ai) = wi and value value(ai) = vi. For a capacity W , find a subset of objects
whose total weight is bounded by W and total value is maximized.

For simplicity we may assume wi ≤W for all i.

The Greedy Heuristic. Let us first look at a simple greedy heuristic. We order the items ai
by value per unit weight, i.e., by value(ai)/weight(ai). We start with the empty set S of items
and then iterate over the items in decreasing order of the ratio value(ai)/weight(ai), i.e., if
the current weight plus the weight of the current item ai does not exceed the weight bound,
then we add ai, otherwise we discard ai. Let Vgreedy be the value computed.

The greedy heuristic is simple, but no good. Consider the following example. Let S =
{a1, a2}. The first item a1 has value 1, and weight 1, and the second item a2 has value 99
and weight 100. Let W = 100. Since 1/1 > 99/100, the greedy heuristic considers the first
item first and adds it to the knapsack. Having added the first item, the second item will not
fit. Thus the heuristic produces a value of 1. However, the optimum is 99.

A small change turns the greedy heuristic into an approximation algorithm that guaran-
tees half of the optimum value.

Return the maximum of Vgreedy and vmax, where vmax , maxi{vi}.

Lemma 2.12. This modified greedy algorithm runs in time O(n logn), and achieves a value
of Vopt/2, where Vopt is the optimal value of the problem.

Proof. Since we only need to sort items according to the ratio of value to weight and iterate
over items, the runtime O(n logn) is obvious.

Now we look at the approximation ratio of the algorithm. Order the items by decreasing
ratio of value to weight, i.e.,

v1
w1
≥ v2
w2
≥ · · · ≥ vn

wn
.

Let k be minimal such that w1 + . . . + wk+1 > W . Then w1 + . . . + wk ≤ W . The greedy
algorithm will pack the first k items and maybe some more. Thus Vgreedy ≥ v1 + . . .+ vk.

The value of the optimal solution is certainly bounded by v1 + . . .+ vk + vk+1. Thus

Vopt ≤ v1 + . . .+ vk + vk+1 ≤ Vgreedy + vmax ≤ 2 max
{
Vgreedy, vmax

}
.

Dynamic Programming. We assume that the values are integers, and let vmax be the maxi-
mum value of item in set S. We show how to compute an optimal solution in timeO(n2·vmax).

Clearly, the maximum value of the knapsack is bounded by n · vmax. We fill a table B[0, n ·
vmax] such that, at the end, B[s] is the minimum weight of a knapsack of value s for 0 ≤ s ≤
n · vmax. We fill the table in phases 1 to n and maintain the invariant that after the ith phase:

B[s] = min

 ∑
1≤j≤i

wjxj :
∑

1≤j≤i
vjxj = s and xj ’s ∈ {0, 1}

 .
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The minimum of the empty set is ∞. The entries of the table are readily determined. With
no item, we can only obtain value 0, and we do so at a weight of zero. Consider now the ith
item. We can obtain a value of s in one of two ways: either by obtaining value s with the first
i− 1 items or by obtaining value s− vi with the first i− 1 items. We choose the better of the
two alternatives. The formal description in shown in Algorithm 2.3 below.

Algorithm 2.3 An approximation algorithm for the Knapsack Problem

1: B[0]← 0;
2: for i← 1 to n · vmax do B[i] =∞
3: for i← 1 to n do
4: for s← n · vmax downto vi do
5: B[s]← min(B[s], B[s− vi] + wi)
6: Return the maximum s such that B[s] ≤W

It is straightforward to have the following result.

Lemma 2.13. Algorithm 2.3 solves the knapsack problem in time O(n2 · vmax).

A small trick improves the running time to O(n · Vopt). We maintain a value K which is
the maximum value seen so far. We initialize K to zero and replace the inner loop (Line 3–5)
by

K ← K + vi
for s← K downto vi do
B[s]← min(B[s], B[s− vi] + wi)

Observe that this running time is NOT polynomial as vmax may be exponential in the size
of the instance.

Scaling. We now improve the running time by scaling at the cost of giving up optimality.
We will see that we can stay arbitrarily close to optimality.

Let S be an integer. We will fix it later. Consider the modified problem, where the scale
the values by S, i.e., we set v̂i = bvi/Sc. We can compute the optimal solution to the scaled
problem in time O(n2vmax/S). We will next show that an optimal solution to the scaled
problem is an excellent solution to the original problem.

Let x = (x1, . . . , xn) be an optimal solution of the original instance and let y = (y1, . . . , yn)
be an optimal solution of the scaled instance, i.e.,

Vopt =
∑
i

vixi = max

 ∑
1≤i≤n

vizi :
∑

1≤i≤n
wizi ≤W and zi’s ∈ {0, 1}

 , and

∑
i

v̂iyi = max

 ∑
1≤i≤n

v̂izi :
∑

1≤i≤n
wizi ≤W and zi’s ∈ {0, 1}

 .
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Let Vapprox =
∑
i viyi be the value of the knapsack when filled according to the optimal

solution of the scaled problem. Then

Vapprox =
∑
i

viyi = S
∑
i

vi
S
yi

≥ S
∑
i

⌊
vi
S

⌋
yi

≥ S
∑
i

⌊
vi
S

⌋
xi since y is an optimal solution of scaled instance

≥ S
∑
i

(
vi
S
− 1

)
xi

≥
∑
i

vixi − S
∑
i

xi

≥
∑
i

vixi − n · S

= Vopt − n · S. since x is an optimal solution of original instance

Thus

Vapprox ≥
(

1− n · S
Vopt

)
Vopt.

It remains to choose S. Let ε > 0 be arbitrary. Set S = max(1, bεVopt/nc). Then Vapprox ≥
(1− ε)Vopt, since Vapprox = Vopt if S = 1. The running time becomes O(min(n · Vopt, n

2/ε)).
This is nice, but the definition of S involves a quantity that we do not know. The modified

greedy algorithm comes to rescue. It determines Vopt up to a factor of two. We may use
the approximation instead of the true value in the definition of S. The following theorem
summarized our result.

Theorem 2.14. For any ε > 0, there is an algorithm that runs in time O(n2/ε) and computes
a solution to the knapsack problem with Vapprox ≥ (1− ε) · Vopt.

2.2.4 Maximum Satisfiability

We continue with Maximum Satisfiability problem. Comparing with the SAT problem which
asks whether a boolean formula is satisfiable, Max-k-SAT problem asks an assignment that
maximizes the total number of satisfied clauses.

Problem 2.15 (Max-k-SAT). Let Φ be a CNF formula where each clause has at most k literals.
Find an assignment that maximizes the total number of satisfied clauses.

Lemma 2.16. Let Φ be a formula in which every clause has exactly three distinct literals.
There is a randomized algorithm that satisfies in expectation 7/8 of the clauses.

Proof. Consider a random assignment x. For any clause C, the probability that x satisfies
C is 7/8 because exactly one out of the eight possible assignments to the variables in C
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are not satisfied. Thus the expected number of satisfied clauses is 7/8 times the number of
clauses.

It is crucial for the argument above that every clause has exactly three literals and that
this literals are distinct. Clauses of length 1 are only satisfied with probability 1/2 and clauses
of length 2 only with probability 3/4. So the randomized algorithm does not so well when
there are short clauses. However, there is an algorithm that does well on short clauses, see
[14] for detailed discussion.

2.3 The PCP-Theorem (Probabilistically Checkable Proofs)

Since the discovery of NP-completeness in 1972, researchers have tried to find efficient algo-
rithms for approximating optimal solutions of NP-hard problems. They also realized that even
providing approximate solutions of an NP-hard problem may be difficult. The PCP-theorem
discovered in 1992 shows that for certain problems computing an approximate solution is as
hard as computing the exact solutions. Besides this, the PCP-theorem gives another equiva-
lent formulation of set NP.

New Characterizations of NP. Loosely speaking, a probabistically checkable proof system
for a language L is a randomized algorithm having direct access to individual bits of a binary
string. This string presents a proof, and typically will be accessed only partially by the verifier.
The verifier is supposed to decide whether a given input x belongs to the language L based
on the partial information it reads and coin tosses. The requirement is that the verifier always
accepts a string x ∈ L, and rejects a string x 6∈ L with probability at least 1/2. The formal
definition is as follows:

Definition 2.17 (Probabilistic Checkable Proofs-PCP). A probabilistically checkable proof
system of a language L is a probabilistic polynomial-time algorithm M , called verifier, such
that

• Completeness: For every x ∈ L, there exists an oracle πx such that

Pr [Mπx(x) = 1 ] = 1.

• Soundness: For every x 6∈ L and every oracle π it holds that

Pr [Mπ(x) = 1 ] ≤ 1/2,

where the probability is taken over M ’s internal coin tosses.

Definition 2.18 (Complexity of PCP(r, q)). Let r, q : N 7→ N be two functions. The complex-
ity class PCP(r, q) consists of languages having a probabilistically checkable proof system M

such that

• On input x ∈ {0, 1}?, the verifier M uses at most r(|x|) coin tosses.

• On input x ∈ {0, 1}?, the verifier M makes at most q(|x|) queries.
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Verifier
r(|x|) coin tosses

q(|x|) queries

Figure 2.2: Explanation of a PCP system. With the help of an oracle, the verifier only reads q(|x|) bits of the
proof.

Figure 2.2 explains the role of q(|x|) and r(|x|) in a verifier.
One important consequence of the PCP-theorem is a new characterization of NP. From

last lecture, we know that a language L belongs to NP if and only if there is a deterministic
polynomial-time algorithm V (called the verifier), such that for any x ∈ {0, 1}? it holds that

• If x ∈ L, there is a certificate y such that V accepts.

• If x 6∈ L, there is no y such that V accepts.

Based on PCP-systems we can show the following theorem:

Theorem 2.19 ([2, 4]). NP = PCP(O(logn), O(1)).

The direction PCP(O(logn), O(1)) ⊆ NP is easy (Guess y and then run V for all random
strings of length c logn. Accept if V accepts for all random strings).

The other direction is a deep theorem. The crux is bringing the error probability below
1/2. With a larger error bound, the statement is easy. Let us look at the following algorithm
for SAT. The verifier interprets y as an assignment and the random string as the selector of a
clause C. It checks whether the assignment satisfies the clause. Clearly, if the input formula
is satisfiable, the verifier will always accept (if provided with a satisfying assignment). If
the input formula is not satisfiable, there is always at least one clause that is not satisfied.
Therefore the verifier will accept with probability at most 1 − 1/m, where m is the number
of clauses.

The PCP-theorem is a powerful tool to show hardness of approximation results. To illus-
trate this, we look at a toy problem.

Problem 2.20 (Maximize Accept Probability). Let V be a PCP(O(logn), O(1))-verifier for
SAT. On input Φ, find a proof y that maximizes the acceptance probability of V .

We use the PCP-theorem to show that this problem does not have a 1/2-approximation
algorithm unless P = NP.
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Theorem 2.21. Maximize Accept Probability has no factor 1/2 approximation algorithm
unless P = NP.

Proof. The proof is by contradiction, and we assume that there is such algorithm A. Let Φ be
any formula and let y be the proof returned by algorithm A. We run V with y and all random
strings and compute the acceptance probability p. If p is less than 1/2, then we declare Φ
non-satisfiable. Otherwise we declare Φ satisfiable.

Why is this correct? If Φ is satisfiable, there is proof with acceptance probability 1. Hence
algorithm A must return a proof with acceptance probability at least 1/2. If Φ is not satis-
fiable, there is no proof with acceptance probability at least 1/2. In particular, for the proof
returned by algorithm A, we must have p < 1/2.

Hardness of Approximating Max-3-SAT. We show how to use the PCP-theorem to prove
hardness of approximating Max-3-SAT problem.

Theorem 2.22. There is no approximation algorithm for Max-3-SAT with an approximation
guarantee of 1− ε for a constant ε, assuming P 6= NP.

Proof. We give a gap-introducing reduction from SAT to MAX-3-SAT. Let V be a
PCP(O(logn), O(1))-verifier for SAT. On an input Φ of length n, verifier V uses a random
string r of length c logn and inspects at most q positions of the proof, where q is a constant.

Hence there are at most qnc bits of the proof that are inspected for all random strings. Let
B = B1 . . . Bqnc be a binary string that encodes these places of the proof. The other places
of the proof are irrelevant. We will construct a formula Ψ over variables B1 to Bqnc with the
following properties: (1) If Φ is satisfiable, Ψ is satisfiable. (2) If Φ is not satisfiable, then any
assignment does not satisfy a constant fraction of the clauses in Ψ.

For any random string r, the verifier inspect a particular set of q bits, say the bits indexed
by i(r, 1) to i(r, q). Let fr(Bi(r,1), . . . , Bi(r,q)) be a boolean function of q variables that is one
if and only if the verifier accepts with random string r and the q bits of the proof as given by
Bi(r,1) to Bi(r,q).

Notice that this construction have the following two properties: (1) If Φ is satisfiable,
there is a proof y that makes V accept with probability one. Set B according to y. Then all
functions fr, r ∈ {0, 1}c logn, evaluate to true. (2) If Φ is not satisfiable, every proof makes V
accept with probability less than 1/2. Hence every B does not satisfy more than half of the
functions fr. Each fr is a function of q variables and hence has a conjunctive normal form Ψr

with at most 2q clauses. Each clause is a disjunction of q literals. An assignment that sets fr
to 0 does not satisfy at least one the clauses in Ψr.

Let Ψ′ be the conjunction of the Ψr, i.e., Ψ′ =
∧
r Ψr. We finally turn Ψ′ into a formula

Ψ with exactly three literals per clause using the standard trick. Consider a clause C =
x1 ∨ x2 ∨ . . . ∨ xq. Introduce new variables y1 to yq−2 and consider

C ′ = (x1 ∨ x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ y2) ∧ . . . ∧ (¬yq−2 ∨ xq−1 ∨ xq).
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An assignment satisfying C can be extended to an assignment satisfying C ′. Conversely, an
assignment that does not satisfy C has at least one unsatisfied clause in C ′.

What have we achieved? Ψ consists of no more than nc2q(q−2) clauses. Each clause has 3
literals. Therefore we have that: (1) If Φ is satisfiable, there is a proof y that makes V accept
with probability one. Set B according to y. Then all functions fr, r ∈ {0, 1}c logn, evaluate
to true and hence Ψ is satisfied. (2) If Φ is not satisfiable, every proof makes V accept with
probability less than 1/2. Hence, every B does not satisfy more than half of the functions fr,
and thus B has more than nc/2 unsatisfied clauses in Ψ.

By setting α = (nc/2)/(nc2q(q − 2)) = 1/((q − 2)2q+1), we have the following result:

Theorem 2.23. The above is a gap introducing reduction from SAT to MAX-3-SAT with α =
1/((q − 2)2q+1).

The theorem can be sharpened considerably. Johan Håstad showed that the theorem holds
for any α = 1/8− ε for any ε > 0.

2.4 Further Reading

The book Approximation Algorithms by Vijay Vazirani covers basic techniques for designing
approximation algorithms [14]. The first connection between PCP and hardness of approx-
imation was shown in [8], which shows the connections to max-Clique. The connection to
max-3-SAT was given in [3]. A simplified proof of the PCP theorem is shown by Irit Dinur [6].
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