
3
Streaming Algorithms

Great Ideas in Theoretical Computer Science
Saarland University, Summer 2014

Some Admin:

• Deadline of Problem Set 1 is 23:59, May 14 (today)!

• Students are divided into two groups for tutorials. Visit our course web-
site and use Doodle to to choose your free slots.

• If you find some typos or like to improve the lecture notes (e.g. add
more details, intuitions), send me an email to get .tex file :-)

We live in an era of “Big Data”: science, engineering, and technology are producing in-
creasingly large data streams every second. Looking at social networks, electronic commerce,
astronomical and biological data, the big data phenomenon appears everywhere nowadays,
and presents opportunities and challenges for computer scientists and mathematicians. Com-
paring with traditional algorithms, several issues need to be considered: A massive data set
is too big to be stored; even an O(n2)-time algorithm is too slow; data may change over time,
and algorithms need to cope with dynamic changes of the data. Hence streaming, dynamic
and distributed algorithms are needed for analyzing big data.

To illuminate the study of streaming algorithms, let us look at a few examples. Our first
example comes from network analysis. Any big website nowadays receives millions of visits
every minute, and very frequent visit per second from the same IP address are probably gen-
erated automatically by computers and due to hackers. In this scenario, a webmaster needs
to efficiently detect and block those IPs which generate very frequent visits per second. Here,
instead of storing all IP record history which are expensive, we need an efficient algorithm
that detect most such IPs.

The second example is to quickly obtain statistical information of a massive data set as a
preprocessing step to speed-up the runtime of algorithms. Assume that you want to solve a
problem in a massive data set (database, graph, etc.), and solving the problem is quite time-
consuming. However, you can get some information by quickly scanning the whole data. For
instance, for graph algorithms you want to roughly know if the graph is dense or sparse, if the
graph is connected, and so on. This information usually provides statistics of the massive data
set, e.g. the frequency of items appearing in the data set, or properties of the set (typically

1

2 Streaming Algorithms

graphs), e.g. how well connected the graph is. Although such statistics is not precise for most
cases, this approximate information is usually used to speedup subsequent processes.

Thees examples motivate the study of streaming algorithms, in which algorithms have
access to the input in a certain order, algorithm’s space is limited, and fast approximation is
required.

3.1 Model & Basic Techniques

A data stream is a sequence of data

S = s1, s2, . . . , sm, . . . ,

where each item si belongs to the universe U , where |U | = n. A data streaming algorithm
A takes S as input and computes some function f of stream S. Moreover, algorithm A has
access the input in a “streaming fashion”, i.e. algorithm A cannot read the input in another
order and for most cases A can only read the data once.

Depending on how items in U are expressed in S, there are two typical models [20]:

1. Cash Register Model: Each item si in stream S is an item of U . Different items come
in an arbitrary order.

2. Turnstile Model: In this model we have a multi-set D, and D = ∅ initially. Every
coming item is associated with one of two special symbols in order to indicate the
dynamic changes of the data set. For instance, every item in S can be a pair (x, U),
and x is added into D if U is “+”, and x is deleted from D if U is “−”. The turnstile
model captures most practical situations that the dataset may change over time. Recent
references also call this model dynamic streams.

Typically, the size of the universe U is a huge number, and storing the whole data and
computing the exact value of f is computationally expensive. Hence the goal is to design
sublinear-space algorithms which give a good approximation of f for most cases. Formally,
our goal is to design an algorithm A with the following two constraints:

• Space: Space of algorithm A is O(poly log(n)).
• Quick update time: For every coming item in the stream, quick update time is desired.
• Approximate: For confidence parameter ε > 0 and approximation parameter δ > 0, the

output of A achieves a (1 ± ε)-approximation of the exact value f(S) with probability
at least 1− δ. That is, the output f?(S) satisfies

Pr [f?(S) ∈ [(1− ε)f(S), (1 + ε)f(S)]] ≥ 1− δ.

Remark 3.1. Another widely studied model is called the semi-streaming model. In the semi-
streaming model algorithms run in O(n · poly logn) space, and typically graph streaming al-
gorithms are studied in the semi-streaming model. Note that O(n · poly logn) space allows an
algorithm to store all nodes which take O(n logn) bits of space, but storing the whole graph is
impossible for dense graphs.

3.2. Hash Functions 3

Basic Techniques. Sampling and sketching are two basic techniques for designing stream-
ing algorithms.

The idea behind sampling is easy to state. Every arriving item is retained with a certain
probability, and only a subset of the data is retained for further computation. Sampling is
easy to implement, and has wide applications.

Sketching is the other technique for designing streaming algorithms. A sketch-based algo-
rithm A creates a compact synopsis of the data which has been observed, and the size of the
synopsis is vastly smaller than the full observed data. Each update observed in the stream po-
tentially causes this synopsis to be updated, so that the synopsis can be used to approximate
certain functions of the data seen so far.

Figure 3.1 shows one example of sketches. Durand and Flajolet [12] proposed the LogLog
sketch in 2003, which is used to estimate the number of distinct items in a data set. Based on
the LogLog sketch, they condense the whole of Shakespear’s works to a table of 256 “small
bytes” of 4 bits each. The estimate of the number of distinct words by the LogLog sketch here
is 30897, while the true answer is 28239. I.e., a relative error is +9.4%.

ghfffghfghgghggggghghheehfhfhhgghghghhfgffffhhhiigfhhffgfiihfhhh
igigighfgihfffghigihghigfhhgeegeghgghhhgghhfhidiigihighihehhhfgg
hfgighigffghdieghhhggghhfghhfiiheffghghihifgggffihgihfggighgiiif
fjgfgjhhjiifhjgehgghfhhfhjhiggghghihigghhihihgiighgfhlgjfgjjjmfl

Figure 3.1: The table above condenses the whole of Shakespear’s works. The estimate of the number of distinct
words by the LogLog sketch here is 30897, while the true answer is 28239. I.e., a relative error is +9.4%.

Notations. We list basic notations used in this lecture. For any integer M , let [M] ,
{0, . . . ,M − 1}. For any set X, x ∼R X stands for choosing x uniformly at random from
set X.

3.2 Hash Functions

Most data streaming algorithms rely on constructions of a class of functions, called hash
functions, that have found a surprising large number of applications. The basic idea behind
using hash functions is to make input date have certain independence through some easy-to-
compute function. Formally, we want to construct a family of functionsH = {h | h : N 7→M}
such that (1) every function h ∈ H is easy to represent; (2) for any x ∈ N , h(x) is easy
to evaluate; (3) for any set S of small cardinality, hashed values of items in S have small
collisions.

Recall that a set of random variables X1, . . . , Xn is k-wise independent if, for any index
set J ⊂ {1, . . . , n} with |J | ≤ k and for any values xi, i ∈ J , it holds that

Pr

 ⋂
i∈J

Xi = xi

 =
∏
i∈J

Pr [Xi = xi] .

In particular, the random variables X1, . . . , Xn are said to be pairwise independent if they are

4 Streaming Algorithms

2-wise independent. That is, for any i, j and values x, y, it holds that

Pr
[
(Xi = x) ∩ (Xj = y)

]
= Pr [Xi = x] Pr

[
Xj = y

]
.

Hash functions with similar properties are called k-wise independent and pairwise indepen-
dent hash functions, respectively.

Definition 3.2 (Pairwise Independent Hash Functions). A family of functions H = {h | h :
N 7→M} is pairwise independent if the following two conditions hold:

1. ∀x ∈ N , the random variable h(x) is uniformly distributed in M , where h ∼R H,

2. ∀x1 6= x2 ∈ N , the random variables h(x1) and h(x2) are independent, where h ∼R H.

These two conditions state that for any different x1 6= x2 ∈ N , and any y1, y2 ∈ M , it holds
that

Prh∼RH [h(x1) = y1 ∩ h(x2) = y2] = 1
|M |2

,

where the probability above is over all random choices of a function from H.

Theorem 3.3. Let p be a prime number, and let ha,b = (ax+ b) mod p. Define

H = {ha,b | 0 ≤ a, b ≤ p− 1}.

Then H is a family of pairwise independent hash functions.

Proof. We need to show that, for any two different x1, x2 ∈ N and any two y1, y2, it holds
that

Prh∼RH [h(x1) = y1 ∩ h(x2) = y2] = 1
p2 . (3.1)

For any a, b, the conditions that ha,b(x1) = y1 and ha,b(x2) = y2 yield two equations ax1 + b =
y1 mod p, and ax2 + b = y2 mod p. Such system has a unique solution of a and b, out of p2

possible pairs of (a, b). Hence (3.1) holds, and H is a family of pairwise independent hash
functions.

3.3 Counting Distinct Elements

Our first problem is to approximate the Fp-norm of items in a stream. We first define the
Fp-norm.

Definition 3.4 (Fp-norm). Let S be a multi-set, where every item i of S is in [N]. Let mi be
the number of occurrences of item i in set S. Then the Fp-norm of set S is defined by

Fp ,
∑

i∈[N]
|mi|p,

where 0p is set to be 0.

By definition, the F0-norm of set S is the number of distinct items in S, and the F1-norm
of S is the number of items in S. In this lecture we focus on approximating F0.

3.3. Counting Distinct Elements 5

Problem 3.5. Let S be a data stream representing a multi set S. Items of S arrive consecutive-
ly and every item si ∈ [n]. Design a streaming algorithm to (ε, δ)-approximate the F0-norm
of set S.

3.3.1 The AMS Algorithm

Algorithm. The first algorithm for approximating F0 is by Noga Alon, Yossi Matias, and
Mario Szegedy [4], and most references use AMS to name their algorithm. The intuition
behind their algorithm is quite simple. Assume that we have seen sufficiently many numbers,
and these numbers are uniformly distributed. We look at the binary expression Binary(x)
of every item x, and we expect that for one out of d distinct items Binary(x) ends with d

consecutive zeros. More generally, let

ρ(x) , max
i
{i : x mod 2i = 0}

be the number of zeros that Binary(x) ends with, and we have the following observation:

• If ρ(x) = 1 for any x, then it is likely that the number of distinct integers is 21 = 2.

• If ρ(x) = 2 for any x, then it is likely that the number of distinct integers is 22 = 4.

• If ρ(x) = 3 for any x, then it is likely that the number of distinct integers is 23 = 8.

• If ρ(x) = r for any x, then it is likely that the number of distinct integers is 2r.

To implement this idea, we use a hash function h so that, after applying h, all items in S
are uniformly distributed, and on average one out of F0 distinct numbers hit ρ(h(x)) ≥ logF0.
Hence the maximum value of ρ(h(x)) over all items x in the stream could give us a good
approximation of the number of distinct items.

Algorithm 3.1 An Algorithm For Approximating F0

1: Choose a random function h : [n] → [n] from a family of pairwise independent hash
functions;

2: z ← 0;
3: while an item x arrives do
4: if ρ(h(x)) > z then
5: z ← ρ(h(x));
6: Return 2z+1/2

Analysis. Now we analyze Algorithm 3.1. Our goal is to prove the following statement.

Theorem 3.6. By running Θ(log(1/δ)) independent copies of Algorithm 3.1 and returning
the medium value, we achieve an (O(1), δ)-approximation of the number of distinct items in
S.

6 Streaming Algorithms

Proof. Let Xr,j be an indicator random variable such that Xr,j = 1 iff ρ(h(j)) ≥ r. Let Yr =∑
j∈S Xr,j be the number of items j such that ρ(h(j)) ≥ r, and z? be the value of z when the

algorithm terminates. Hence, Yr > 0 iff z? ≥ r.
Since h is pairwise independent, h(j) is uniformly distributed, and

E[Xr,j] = Pr [ρ(h(j)) ≥ r] = Pr [h(x) mod 2r = 0] = 1
2r
.

By linearity of expectation, we have

E[Yr] =
∑
j∈S

E[Xr,j] = F0
2r
,

and
Var[Yr] =

∑
j∈S

Var[Xr,j] ≤
∑
j∈S

E[X2
r,j] =

∑
j∈S

E[Xr,j] = F0
2r
.

By using the Markov’s Inequality and Chebyshev’s Inequality, we have

Pr [Yr > 0] = Pr [Yr ≥ 1] ≤ E[Yr]
1 = F0

2r
,

and

Pr [Yr = 0] ≤ Pr [|Yr −E[Yr]| ≥ F0/2r] ≤ Var[Yr]
(F0/2r)2 ≤

2r

F0
.

Let F ? be the output of the algorithm. Then F ? = 2z?+1/2. Let a be the smallest integer
such that 2a+1/2 ≥ 3F0. Then

Pr [F ? ≥ 3F0] = Pr [z? ≥ a] = Pr [Ya > 0] ≤ F0
2a
≤
√

2
3 .

Similarly, let b be the largest integer such that 2b+1/2 ≤ F0/3. We have

Pr [F ? ≤ F0/3] = Pr [z? ≤ b] = Pr [Yb+1 = 0] ≤ 2b+1

F0
≤
√

2
3 .

Running k = Θ(log(1/δ)) independent copies of Algorithm 3.1 above and returning the
median value, we can make the two probabilities above at most δ. This gives an (O(1), δ)-
approximation of the number of distinct items over the stream.

3.3.2 The BJKST Algorithm

Our second algorithm for approximating F0 is a simplified version of the algorithm by Bar-
Yossef et al. [5]. In contrast to the AMS algorithm, the BJKST algorithm uses a set to keep
the sampled items. By running Θ(log(1/δ)) independent copies in parallel and returning
the medium of these outputs, the BJKST algorithm (ε, δ)-approximates the F0-norm of the
multiset S.

The basic idea behind the sampling scheme of the BJKST algorithm is as follows:

1. Let B be a set that is used to retain sampled items, and B = ∅ initially. The size of B is
O(1/ε2) and only depends on approximation parameter ε.

3.3. Counting Distinct Elements 7

2. The initial sampling probability is 1, i.e. the algorithm keeps all items seen so far in B.

3. When the set B becomes full, shrink B by removing about half items and from then on
the sample probability becomes smaller.

4. In the end the number of items in B and the current sampling probability are used to
approximate the F0-norm.

A simplified version of the BJKST algorithm is presented in Algorithm 3.2, where c is a
constant.

Algorithm 3.2 The BJKST Algorithm (Simplified Version)

1: Choose a random function h : [n] → [n] from a family of pairwise independent hash
functions

2: z ← 0 . z is the index of the current level
3: B ← ∅ . Set B keeps sampled items
4: while an item x arrives do
5: if ρ(h(x)) ≥ z then
6: B ← B ∪ {(x, ρ(h(x)))}
7: while |B| ≥ c/ε2 do . Set B becomes full
8: z ← z + 1 . Increase the level
9: shrink B by removing all (x, ρ(h(x))) with ρ(h(x)) < z

10: Return |B| · 2z

3.3.3 Indyk Algorithm

Algorithm 3.1 and Algorithm 3.2 work in the cash register model, and cannot handle dele-
tions of items. We next show that F0-norm of a set S can be estimated in dynamic streams.
This algorithm, due to Piotr Indyk [13], presents beautiful applications of the so-called stable
distributions in designing streaming algorithms.

Problem 3.7. Let S be a stream consisting of pairs of the form (si, Ui), where si ∈ [n] and
Ui = +/− represents dynamic changes of si. Design a data streaming algorithm that, for any
ε and δ, (ε, δ)-approximates the F0-norm of S.

Stable Distributions. An important property of Gaussian random variables is that the sum
of two of them is again a Gaussian random variable. One consequence of this fact is that if
X is Gaussian, then for independent copies of X, expressed by X1 and X2, and any a, b ∈ N,
aX1 + bX2 has the same distribution as cX + d for some positive c and some d ∈ R, i.e. the
shape of X is preserved. One class of distributions with similar properties was characterized
by Paul Lévy in 1920s when he studies sums of independent identically distributed terms.

Informally, a random variable is stable if for independent copies of a random variable
X, expressed by X1, X2, there are positive constants c, d such that aX1 + bX2 has the same

8 Streaming Algorithms

distribution as cX + d. A generalization of this stable property allows us to define p-stable
distributions for parameter p ∈ (0, 2].

Definition 3.8 (Stable Distribution). Let p ∈ (0, 2]. A distributionD over R is called p-stable,
if for any a1, . . . , an ∈ R, and independent and identically distributed random variables
X1, . . . , Xn with distribution D, the random variable

∑
i aiXi has the same distribution as

the random variable (
∑

i |ai|p)1/pX, where X is a random variable with distribution D.

Remark 3.9. Such distributions exist for any p ∈ (0, 2]. However, except for p = 1/2, 1, 2, we
have not found closed formulae of their density functions and their distributions are defined with
respect to their characteristic functions. That is, distribution D is p-stable if a random variable
X with distribution Dp satisfies E[eitX] = e−|t|p . When p = 1/2, 1 or 2, closed formulae of
the density functions are known. Actually, they are Lévy distribution, Cauchy distribution, and
Gaussian distributions, respectively.

Although closed formulae of density functions of general p-stable distributions are un-
known, such distribution for any p ∈ (0, 2] can be generated easily as follows [7]: (i) Pick
Θ uniformly at random from [−π/2, π/2], and pick r uniformly at random from [0, 1]. (ii)
Output

sin(pΘ)
cos1/p(Θ)

·
(

cos(Θ(1− p))
− ln r

)(1−p)/p

. (3.2)

For detailed discussion of stable distributions, see [3]. Reference [8] gives a short and inter-
esting introduction to stable distributions in designing streaming algorithms.

Indyk Algorithm. Algorithm 3.3 gives an idealized algorithm for estimating Fp-norm for
any p ∈ (0, 2]. The basic setting is as follows: Assume that every item in the stream is in
[n], and we want to achieve an (ε, δ)-approximation of the Fp-norm. Let us further assume
that we have matrix M of k , Θ(ε−2 log(1/δ)) rows and n columns, where every item in M
is a random variable drawn from a p-stable distribution, generated by (3.2). Given matrix
M, Algorithm 3.3 keeps a vector z ∈ Rk which can be expressed by a linear combination of
columns of matrix M.

Let us prove that this idealized algorithm gives an (ε, δ)-approximation of the Fp-norm.

Lemma 3.10. The F0 norm of multi-set S can be approximated by Algorithm 3.3 for choosing
sufficiently small p, assuming that we have an upper bound K of the number of occurrences
of every item in the stream.

Proof. Let M·,j be the jth column of matrix M. Then the vector z in Algorithm 3.3 can be
written as

z =
∑
j∈S

mj ·M·,j ,

where mj is the number of occurrences of item j. Hence zi =
∑

j∈S mj ·Mi,j . Since Mi,j

is drawn from the p-stable distribution, zi =
∑

j∈S mj ·Mi,j has the same distribution as

3.3. Counting Distinct Elements 9

Algorithm 3.3 Approximating Fp-norm in a Turnstile Stream (An Idealized Algorithm)

1: while 1 ≤ i ≤ k do
2: zi ← 0
3: while an operation arrives do
4: if item j is added then
5: for i← 1, k do
6: zi ← zi + M[i, j]
7: if item j is deleted then
8: for i← 1, k do
9: zi ← zi −M[i, j]

10: if Fp-norm is asked then
11: Return medium1≤i≤k{|zi|p} · scalefactor(p)

(∑
j∈S |mj |p

)1/p
. Note that

∑
j∈S |mj |p = Fp, and

F0 =
∑
j∈S

|mj |0 ≤
∑
j∈S

|mj |p = Fp ≤ Kp ·
∑
j∈S

|mj |0,

where the last inequality holds by the fact that |mj | ≤ K for all j. Hence by setting p ≤
log(1 + ε)/ logK ≈ ε/ logK, we have that

Fp ≤ (1 + ε)
∑

i

|mi|0 = (1 + ε) · F0.

This idealized algorithm relies on matrix M of size k×n, and for every occurrence of item
i, the algorithm needs the ith column of matrix M. However, sublinear space cannot store
the whole matrix! So we need an effective way to generate this random matrix such that (1)
every entry of M is random and generated according to the p-stable distribution, and (2)
each column can be reconstructed when necessary.

To construct such matrix M, we use Nisan’s pseudorandom generators1. Specifically, when
the column indexed by i is required, Nisan’s generator takes i as the input and, together with
the original see, outputs a sequence of pseudorandom numbers. Based on two consecutive
pseudorandom numbers, we use (3.2) to generate one random variable.

The theorem below gives the space complexity of Algorithm 3.3. See [9, 13] for the
correctness proof.

Theorem 3.11. For any parameters ε, δ, there is an algorithm (ε, δ)-approximates the number
of distinct elements in a turnstile stream. The algorithm needs O(ε−2 logn log(1/δ)) bits of
space. The update time for every coming item is O(ε−2 log(1/δ)).

1We will discuss Nisan’s pseudorandom generators (PRG) in later lectures, but at the moment you can consider
a PRG as a deterministic function f : {0, 1}n 7→ {0, 1}m, where m is much larger than n, such that if we use
a random number x as input, f(x) looks almost random. I.e., f extends a truly random binary sequence to an
“almost” random binary sequence.

10 Streaming Algorithms

3.4 Frequency Estimation

A second problem that we study is to estimate the frequency of any item x, i.e. the number
of occurrences of any item x. The basic setting is as follows: Let S be a multi-set, and is
empty initially. The data stream consists of a sequence of update operations to set S, and
each operation is one of the following three forms:

• INSERT(S, x), performing the operation S ← S ∪ {x};
• DELETE(S, x), performing the operation S ← S \ {x};
• QUERY(S, x), querying the number of occurrences of x in the multiset S.

Problem 3.12 (Frequency Estimation). Design a streaming algorithm to support
INSERT,DELETE, and QUERY operations, and the algorithm approximates the frequency
of every item in S.

Cormode and Muthukrishnan [10] introduced the Count-Min Sketch for this frequency
estimation problem. Count-Min Sketch consists of a fixed array C of counters of width w

and depth d, as shown in Figure 3.2. These counters are all initialized to be zero. Each row
is associated to a pairwise hash function hi, where each hi maps an element from U to
{1, . . . , w}. Algorithm 3.4 gives a formal description of update procedures of the Count-Min
sketch.

Algorithm 3.4 Frequency Estimation

1: d = dlog(1/δ)e
2: w = de/εe
3: while an operation arrives do
4: if Insert(S, x) then
5: for j ← 1, d do
6: C[j, hj(x)]← C[j, hj(x)] + 1
7: if Delete(S, x) then
8: for j ← 1, d do
9: C[j, hj(x)]← C[j, hj(x)]− 1

10: if the number of occurrence of x is asked then
11: Return m̂x , min1≤j≤dC[j, hj(x)]

Choosing w and d. For given parameters ε and δ, the width and height of Count-Min sketch
is set to be w , de/εe and d , dln(1/δ)e. Hence for constant ε and δ, the sketch only consists
of constant number of counters. Note that the size of the Count-Min sketch only depends on
the accuracy of the approximation, and independent of the size of the universe.

Analysis. The following theorem shows that the Count-Min Sketch can approximate the
number of occurrences of any item with high probability.

3.5. Other Problems in Data Streams 11

w = de/εe

d = dlog 1
δ
e

h1(x)

h2(x)

h3(x)h4(x)

Figure 3.2: Count-Min Sketch.

Theorem 3.13. The estimator m̂i has the following property: m̂i ≥ mi, and with probability
at least 1− δ, m̂i ≤ mi + ε · F1, where F1 is the first-moment of the multi-set S.

Proof. Clearly for any i ∈ [n] and 1 ≤ j ≤ d, it holds that hj(i) ≥ mi and hence m̂i ≥ mi.
So it suffices to prove the second statement. Let Xi,j be the number of items y ∈ [n] \ {i}
satisfying hj(i) = hj(y). Then C[j, hj(i)] = mi + Xi,j . Since different hash functions are
pairwise independent, we have

Pr
[
hj(i) = hj(y)

]
≤ 1
w
≤ ε

e ,

and E[Xi,j] ≤ ε
e · F1. By Markov’s inequality we have

Pr [m̂i > mi + ε · F1] = Pr
[
∀j : C[j, hj(i)] > mi + ε · F1

]
= Pr

[
∀j : mi +Xi,j > mi + ε · F1

]
= Pr

[
∀j : Xi,j > ε · F1

]
≤ Pr

[
∀j : Xi,j > e ·E[Xi,j]

]
≤ e−d ≤ δ.

3.5 Other Problems in Data Streams

We discussed two basic problems in the lecture, these two problems appeared in early ref-
erences in the community of streaming algorithms. This line of study over the past years
has achieved a number of exciting results. Here we select a few problems for which data
streaming algorithms work well:

• Approximate the number of triangles in a graph [6, 16]. The stream consists of edges of
an underlying graph G, the goal is to approximately count the number T3 of triangles
in G. This number relates the clustering coefficient, and the connectivity coefficient in
a network, and can be used to analyze topologies of networks. Reference [14, 17] give
further generalization of this problem for counting arbitrary subgraphs.

12 References

• Spectral Sparsification of a graph. The stream consists of edges of an underlying undi-
rected graph G, and the goal is to output a subgraph H of G with suitable weights on
edges of H, such that all spectral properties between graph G and H are preserved. An-
other notable property of graphH is that, for any vertex subset S, the cut value between
S and V \ S in H and G are approximately preserved. Spectral sparsification is wide-
ly used as a subroutine to solve other graph problems, and problems in solving linear
systems. Kelner and Levin [15] give the first data streaming algorithm for constructing
spectral sparsification, and their algorithm works in the semi-streaming setting. It is
open for constructing spectral sparsifications in the dynamic semi-streaming setting.

• Estimating PageRank in graph streams [21].

3.6 Further Reference

There are excellent surveys in data streams. Muthukrishnan [20] gives a general introduction
of streaming algorithms and discusses basic algorithmic techniques in designing streaming
algorithms. Cormode and Muthukrishnan [11] give the survey of various applications of the
Count-Min sketch. McGregor [18] gives a survey for graph stream algorithms.

There are also some online resources. The website [1] gives a summary, applications, and
implementations of the Count-Min Sketch. The website [2] maintains a list of open questions
in data streams which were proposed in the past workshops on streaming algorithms.

For a general introduction to Hash functions, we refer the reader to [19].

References

[1] Count-Min Sketch & Its Applications. https://sites.google.com/site/countminsketch/.

[2] Open questions in data streams. http://sublinear.info/index.php?title=Main_Page.

[3] Stable distributions. http://academic2.american.edu/~jpnolan/stable/stable.html.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the fre-
quency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[5] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In 6th Annual European Symposium (ESA’02), pages 1–10, 2002.

[6] Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and Chris-
tian Sohler. Counting triangles in data streams. In 25th Symposium on Principles of Database
Systems (PODS’06), pages 253–262, 2006.

[7] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for simulating stable random vari-
albes. J. Amer. Statist. Assoc., 71:340–344, 1976.

[8] Graham Cormode. Stable distributions for stream computations: It is as easy as 0,1,2. In In
Workshop on Management and Processing of Massive Data Streams, at FCRC, 2003.

[9] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing data streams
using hamming norms (how to zero in). In 28th International Conference on Very Large Databases
(VLDB’02), pages 335–345, 2002.

[10] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

https://sites.google.com/site/countminsketch/
http://sublinear.info/index.php?title=Main_Page
http://academic2.american.edu/~jpnolan/stable/stable.html

References 13

[11] Graham Cormode and S. Muthu Muthukrishnan. Approximating data with the count-min sketch.
IEEE Software, 29(1):64–69, 2012.

[12] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended abstrac-
t). In 11th International Workshop on Randomization and Computation (RANDOM’03), pages
605–617, 2003.

[13] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream com-
putation. J. ACM, 53(3):307–323, 2006.

[14] Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary subgraphs
in data streams. In 39th International Colloquium on Automata, Languages, and Programming
(ICALP’12), pages 598–609, 2012.

[15] Jonathan A. Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. Theory
Comput. Syst., 53(2):243–262, 2013.

[16] Konstantin Kutzkov and Rasmus Pagh. Triangle counting in dynamic graph streams. CoRR,
abs/1404.4696, 2014.

[17] Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approximate
counting of cycles in streams. In 19th International Workshop on Randomization and Computa-
tion (RANDOM’11), pages 677–688, 2011.

[18] Andrew McGregor. Graph stream algorithms: A survey. http://people.cs.umass.edu/
~mcgregor/papers/13-graphsurvey.pdf.

[19] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algorithms and
probabilistic analysis. Cambridge University Press, 2005.

[20] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in The-
oretical Computer Science, 1(2), 2005.

[21] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph
streams. J. ACM, 58(3):13, 2011.

http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf
http://people.cs.umass.edu/~mcgregor/papers/13-graphsurvey.pdf

	Streaming Algorithms
	Model & Basic Techniques
	Hash Functions
	Counting Distinct Elements
	Frequency Estimation
	Other Problems in Data Streams
	Further Reference

	References

