
Linear Programming and Integer Linear Programming

Kurt Mehlhorn

May 26, 2013
revised, May 20, 2014

1 Introduction 2

2 History 3

3 Expressiveness 3

4 Duality 4

5 Algorithms 8
5.1 Fourier-Motzkin Elimination . 8
5.2 The Simplex Algorithm . 8
5.3 Seidel’s Randomized Algorithm . 9
5.4 The Ellipsoid Method . 9
5.5 Using the Ellipsoid Method to Put Problems into P 11
5.6 Interior Point Methods . 12
5.7 Optimality and Feasibility . 13

6 Integer Linear Programs 14
6.1 Some LPs are guaranteed to have integral optimal solutions 15
6.2 ILPs can be solved by repeatedly solving LP-Relaxations 16
6.3 LP-relaxations are the basis for approximation algorithms 17

1

1 Introduction
A linear program (LP) is the task of optimizing a linear function under linear constraints. For-
mally, it is an optimization problem of the form

maxcT x
subject to Ax≤ b

x≥ 0,

where A is an m×n matrix, b is an m vector, and c is an n vector. The entries of A and the vectors
b and c are integral. x is an n vector of real unknowns. Each of the m+n inequalities in Ax ≤ b
and x ≥ 0 is called a constraint. Geometrically, each constraint is a half-space in Rn. The term
linear in linear program refers to the fact that the objective function and the constraints are linear
functions of the variables.

The set P := {x; Ax≤ b and x≥ 0} is called the set of feasible solutions. An LP is feasible
if the set of feasible solution is non-empty. The set of feasible solutions is a convex set as it is the
intersection of half-spaces. Intersections of half-spaces are usually called polyhedra. A feasible
LP is bounded if the set

{
cT x; x is feasible

}
is bounded from above. If an LP is bounded, there

is an optimal feasible x, namely an x∗ with x∗ is feasible and cT x∗ ≥ cT x for every feasible x. A
feasible LP is unbounded if the set

{
cT x; x is feasible

}
contains arbitrarily large values.

We will see that the language of linear programs is very expressive (Section 3). Every LP has
a dual LP which sheds additional light on the optimization problem (Section 4). There are many
algorithms for solving linear programs (Section 5). In particular, the Simplex and the Interior
Point algorithms are of great practical importance, and the Ellipsoid method is of great theoreti-
cal importance. LPs can be solved in polynomial time in n, m, and logL, where L is the absolute
value of the largest entry of A, b, and c. It is open, whether there is a strongly polynomial algo-
rithm, i.e., an algorithm whose running time is polynomial in n and m. Integer linear programs
(ILP) are linear programs with the additional constraint that x is integral (Section 6. Integer linear
programming is NP-complete. If the number of variables is fixed, integer linear programming is
in P. Some LPs are guaranteed to have optimal integral solutions. The linear programming relax-
ation of an ILP is obtained by dropping the integrality constraint on the variables. LP relaxations
are a useful tool for solving ILPs exactly and approximately.

In the formulation of LPs, we may allow inequalities and equalities and unconstrained vari-
ables. This does not add to the expressive power. For example, an unconstrained variable x may
be replaced by xp− xn with xp ≥ 0 and xn ≥ 0. An equality aT x = b is equivalent to the two in-
equalities aT ≥ b and aT x≤ b. An inequality aT x≤ b can be turned into an equality aT x+ s = b
by the introduction of a nonnegative slack variable.

Open-source solvers for linear programs and integer linear programs are available.
The books [Sch03] are bibles on linear and integer linear programming. The books are de-

manding. [Chv93] is an easy going introduction to linear programming. [CCPS98] emphasizes
the connection between linear programming and combinatorial optimization.

2

2 History
Already, Fourier (French Mathematician of the 18th century) investigated the problem of solv-
ing systems of linear inequalities. Leonid Kantorovish used linear programs to model logistic
problems during World War II. Georg Dantzig published the Simplex method for solving linear
programs in 1947 and John von Neumann invented duality theory in the context of game theory.
Leonid Khachiyan obtained the first polynomial-time algorithm in 1979 and Narenda Karmakar
introduced the interior-point method in 1984. Linear programming solvers usually offer the sim-
plex algorithm and some interior-point method.

3 Expressiveness
Many important problems can be formulated as LPs. We give three examples.

Max Flow: We are given a directed graph G = (V,E) with two special vertices s and t and a
non-negative capacity of each edge cap : E 7→ R≥0. We are searching for a flow f from s to t
of maximum value. A flow is a function f : E 7→ R≥0 obeying the capacity constraints (the flow
across an edge is never more that the capacity of the edge) and flow conservation (the flow into
a vertex is equal to the flow out of a vertex) for every vertex distinct from s and t, i.e.,

max ∑
e;e=(s,_)

fe− ∑
e;e=(_,s)

fe

subject to fe ≤ cape for all e

∑
e;e=(_,v)

fe = ∑
e;e=(v,_)

fe for all v 6= s, t

fe ≥ 0 for all e

The value of a flow is the net-flow out of s.

Max Flow, Alternative Formulation: We have a variable fp for every path p from s to t. Its
value is the flow along p. Then flow conservation is guaranteed and we only have to enforce the
capacity constraint. Thus

max ∑
p

fp

subject to ∑
p;e∈p

fe ≤ cape for all e

fp ≥ 0 for all p

Observe that this formulation uses an exponential number of variables; exponential in the graph
parameters n = |V | and m = |E|.

3

Shortest Paths: The formulation of a problem as an LP may be counterintuitive at first. The
shortest path problem is an example.

We have a directed graph G. Each edge e has a length `e. We are interested in the shortest
distance from s to t. We have a variable dv for every vertex v. Consider

max dt

subject to dv ≤ du + `e for every edge e = (u,v)
ds ≤ 0

Observe that we formulated the shortest path problem as a maximization problem. Intuitively,
this formulation can be understood as follows. Build a physical model of the graph by replacing
any edge e by a string of length `e. Lift up the graph at s and let the other vertices fall down.
They will come to rest at some vertical distance below s. This distance is exactly the shortest
path distance from s.

Formally, we can argue as follows. Let µv be the length of the shortest path from s to v.
The vector µ satisfies all inequalities. Conversely, if d is a vector satisfying all inequalities, then
dv ≤ µv for all v. This can be proved by induction on kv, the number of edges in a shortest path
from s to v.

Exercise 1 Show that the LP is infeasible if and only if the graph contains a negative cycle.

4 Duality
With every linear program

max cT x
subject to Ax≤ b

x≥ 0,

there is an associated linear program, called its dual. It is a linear program in m variables, which
we collect into a vector y.

min yT b

subject to yT A≥ c
y≥ 0

In this context, the original LP is called the primal LP.
Observe that the primal has m constraints Ax≤ b and n non-negativity constraints x≥ 0. The

dual has one variable for each primal constraint in Ax ≤ b. The objective function of the dual
is determined by the right hand side b. Besides the non-negativity constraints for the variables,
the dual has one constraint for each variable in the primal. Let A have entries Ai j, 1 ≤ i ≤ m,
1≤ j ≤ n. Then Ai j is the coefficient of x j is the i-th constraint and c j is the coefficient of x j in
the primal objective function. The constraint of the dual corresponding to the j-th variable of the
primal is ∑i yiAi j ≥ c j. The dual has remarkable properties.

4

Theorem 1 (Weak Duality) If x and y are feasible solutions of the dual and primal respectively,
then

cT x≤ yT b.

Proof:
cT x≤ yT Ax≤ yT b

where the first inequality holds since x ≥ 0 and yT A ≥ cT and the second inequality holds since
y≥ 0 and Ax≤ b.

Theorem 2 (Strong Duality) The following four possibilities are exhaustive.

• The primal and the dual are feasible and bounded. Then they have the same optimal values
and there are feasible x∗ and y∗ with cT x∗ = (y∗)T b.

• The primal is feasible and unbounded and the dual is infeasible.

• The dual is feasible and unbounded and the primal is infeasible.

• Primal and dual are infeasible.

In particular, if the primal is feasible and bounded then the dual is also feasible and bounded.
Moreover, the optimal objective values are the same.

Theorem 3 (Complimentary Slackness) Assume primal and dual are feasible and x∗ and y∗

are optimal solutions of the primal and dual, respectively. Then

x∗j > 0 ⇒ ∑
i

yiAi j = c j

y∗i > 0 ⇒ ∑
j

Ai jx j = bi,

i.e., the constraints corresponding to positive variables are tight.

Proof: By strong duality, cT x∗ = (y∗)T b. Thus both inequalities in the proof of weak duality
must be equalities. The claim follows.

Let us have a look at the duals of the programs of Section 3.

5

Max Flow, Alternative Formulation: We have a variable fp for every path p from s to t. Its
value is the flow along p. Then flow conservation is guaranteed and we only have to enforce the
capacity constraint. Thus

max ∑
p

fp

subject to ∑
p;e∈p

fe ≤ cape for all e

fp ≥ 0 for all p.

In the dual, we have a variable ye for each edge and a constraint for each path.

min ∑
e

capeye

subject to ∑
e;e∈p

ye ≥ 1 for all p

ye ≥ 0 for all e.

What does the dual say? We have to assign nonnegative values to the ye such that for every path
p the sum of the ye for the edges in the path sum to at least one (we say the path is cut). We
call such a vector y a fractional cut. The goal is to minimize the capacity of the cut, i.e., the sum
∑e capeye.

Let (f ∗p) and (y∗e) be optimal solutions. Complementary slackness tells us that only satu-
rated edges (edges e with ∑p;e∈p f ∗p = cape) can be used in the minimum cut, i.e., have y∗e > 0.
Similarly, if f ∗p > 0, then ∑e∈p y∗e = 1.

Lemma 1 The dual always has an integral optimal solution, i.e., a solution with ye ∈ {0,1}. An
integral optimal solution of the dual is called a minimum cut.

Proof: This proof is inspired by the proof of Theorem 3.20 in [CCPS98]. Let (f ∗,y∗) be
an optimal solution to the primal and dual, respectively. Consider the following shortest path
problem. We assign length y∗e to edge e. For any vertex v let zv be the length of a shortest path
from s to v. Then zs = 0 and zt = 1; the latter follows from complementary slackness. Order the
vertices in order of increasing z-values as

v1 = s,v2, . . . ,vk = t,vk+1, . . .vn.

For i, 1 ≤ i < k, let Ri = {v1, . . . ,vi } and let Ci be the set of edges with exactly one endpoint in
Ri. Observe that an edge v jv` belongs to Ci if and only if j ≤ i < `. Then

∑
1≤i<k

cap(Ci)(zvi+1− zvi) = ∑
1≤i<k

∑
e∈Ci

cap(e)(zvi+1− zvi)

≤ ∑
e=viv j

cap(e)(zv j − zvi)

≤∑
e

cap(e)y∗e .

6

Here the first inequality follows the observation above that an edge v jv` belongs to the cuts C j to
C`−1 (≤ since we are only summing over the cuts C1 to Ck−1) and the second inequality follows
from the fact that the distance from s to v j is at most the distance from s to vi plus y∗e .

We have now established

∑
1≤i<k

cap(Ci)(zvi+1− zvi)≤∑
e

cap(e)y∗e .

Since zvi+1 − zvi ≥ 0 for all i and ∑1≤i<k zvi+1 − zvi = zvk − zv1 = zt − zs = 1, there must be an i
with cap(Ci) ≤ ∑e cap(e)y∗e , i.e., an integral cut whose capacity is most the minimum capacity
of a fractional cut.

Corollary 4 (Max-Flow-Min-Cut) The value of a maximum flow is equal to the capacity of a
minimum cut.

Proof: By strong duality, the value of a maximum flow is equal to the minimum capacity
of a fractional cut. By the preceding Lemma, the minimum capacity of a fractional cut is the
minimum capacity of a cut.

Shortest Paths: The formulation of a problem as an LP may be counterintuitive at first. The
shortest path problem is an example.

We have a directed graph G. Each edge e has a length `e. We are interested in the shortest
distance from s to t. We have a variable dv for every vertex v. Consider

max dt

subject to dv ≤ du + `e for every edge e = (u,v)
ds ≤ 0

Observe that the edge inequalities can also be written as dv− du ≤ `e for every edge e = (u,v).
In the dual, we have a variable ye for each edge and a variable z corresponding to the inequality
ds ≤ 0, and one constraint for each vertex. The constraints are:

z− ∑
e;e=(s,_)

ye + ∑
e;e=(_,s)

ye ≥ 0

− ∑
e;e=(v,_)

ye + ∑
e;e=(_,v)

ye ≥ 0 for v 6= s, t

− ∑
e;e=(t,_)

ye + ∑
e;e=(_,t)

ye ≥ 1

and the objective is min∑e `eye. Let p be any s-t path. If we set ye = 1 for e ∈ p and ye = 0 for
e 6∈ p, and z = 1, we obtain a feasible solution with objective value “length of p”. Since by weak

7

duality, the shortest path distance from s to t is a lower bound on the objective value of the dual,
the shortest path from s to t is an optimal solution to the dual.

Further insight: the constraints of the dual are flow constraints. Call ye the flow across e. We
want a net-flow of at least one into t, flow conservation in all vertices different from s to t, and
call z the net-flow into s. The goal is to minimize the cost ∑e `eye of the flow.

5 Algorithms
There are numerous algorithms for solving linear programs. Some of them only decide feasibil-
ity. We will see in Section 5.7 that optimality can be reduced to feasibility.

5.1 Fourier-Motzkin Elimination
This is the simplest algorithm. It decides feasibility and is extremely simple to state.

Choose an arbitrary variable, say x, and solve all inequalities for x. We obtain inequalities Iu
that upper bound x as a linear function of the other variables, I` that lower bound x as a linear
function of the other variables, and inequalities I that do not mention x.

We generate for each pair x≤ u of inequality in Iu and x≥ ` of inequality in I` a new inequality
`≤ u and add it to I. Let I′ be the resulting set of inequalities.

Lemma 2 I′ is feasible if and only if the original system I∪ Iu∪ I` is feasible.

Proof: If the original system is feasible, clearly the derived system is feasible.
If the derived system is feasible consider a feasible solution of I. We show how to choose

the value for x such that all inequalities in I∪ Iu∪ I` hold. If Iu and I` are both empty, set x to an
arbitrary value. If Iu is non-empty, set x to the minimum of the right-hand sides of inequalities
in Iu. Since I′ is feasible, this minimum satisfies all the inequalities in I`. If Iu is empty, but I` is
not, proceed symmetrically.

If all variables are eliminated, we have a set of inequalities between numbers. Such a system
is readily decided.

The disadvantage of Fourier-Motzkin elimination is that the number of inequalities may
square whenever a variable is eliminated.

5.2 The Simplex Algorithm
The Simplex algorithm was published by Georg Dantzig in 1947. It is still the most widely used
method for solving linear programs. The algorithm is simple.

Recall that the feasible region R is a polytope in Rn. A polytope has vertices and edges
connecting two vertices. Geometric intuition tells us that the optimal solution is a vertex of
the polytope (there may be others and we have to be a bit careful when the LP is unbounded).
Moreover, we can find an optimal solution by walking along the edges of the polytope. This
leads to the following algorithm.

8

find a vertex v of the feasible region
while true do

if v has a neighbor with a higher objective value, let v be some such neighbor
if v has no such neighbor, stop. v is optimal.

end while
If there is more than one neighbor with a higher objective value, the pivot rule determines the

neighbor. Popular pivot rules are:

• any neighbor

• a random neighbor

• the neighbor across the steepest edge

• the neighbor with the best objective value

• . . .

Some facts about the Simplex algorithm.

• In practice, the algorithms usually works very well and terminates in a number of iterations
that grows only linearly with the dimension max(n,m) of the input.

• For most known pivot rules, there are examples for which the algorithms needs a super-
polynomial number of iterations.

• There is a randomized Pivot rule that guarantees a running time of O(mn2 + eO(
√

n logn)).
(Matousek/Sharir/Welzl).

• The smoothed complexity (Spielman and Teng) of the Simplex algorithm is polynomial:
here, one perturbs the LP by adding small random noise to each entry of A, b, and c. The
smoothed running time is then the expected running time on the perturbations.

5.3 Seidel’s Randomized Algorithm
Raimund Seidel (UdS) invented a very simple randomized algorithm. Choose a constraint aT x≤
b at random and remove it temporarily. Find an optimal solution x∗ of the smaller system. If
aT x∗ ≤ b, return x∗. Otherwise, the constraint aT x ≤ b must be satisfied with equality at the
optimum of the full system. Solve aT x = b for one of its variables and substitute into all other
inequalities. This reduces the number of variables by one.

5.4 The Ellipsoid Method
The Ellipsoid method was invented by Khachiyan in 1979. It decides feasibility. Let P =
{x ∈ Rn; Ax≤ b and x≥ 0} be the feasible region. For simplicity, we assume that P is bounded
and has non-empty interior. The algorithm maintains an ellipsoid E that contains all vertices of
P.

9

Let R be large enough so that all vertices of P are contained in the ball of radius R centered at
the origin. Initialize E to this ball.
while true do

Let z be the center of E. If z is feasible, stop and return z.
If z is not feasible, find an inequality that is violated by z, say aT z > b.
Let E ′ be the smallest ellipsoid (smallest = minimum volume) containing the “half-ellipsoid”
E ∩

{
x; aT x≤ aT z

}
.

set E to E ′.
If the volume of E is sufficiently small, stop and declare the LP infeasible.

end while
Some explanations are in order. We set E ′ to E∩

{
x; aT x≤ aT z

}
instead of E∩

{
x; aT x≤ b

}
.

This simplifies the calculations. The hyperplane aT x = aT z is parallel to the hyperplane aT x = b
(since the normal vector is a in both cases) and passes through z.

We need to have an algorithm that given a point z decides whether z is feasible. If z is infea-
sible, the algorithm must return a violated inequality. Such an algorithm is called a separation
oracle.

Clearly, P ⊆ E is an invariant of the algorithm. There are three crucial ingredients to the
correctness proof.

• R can be chosen such that lnR is a polynomial in n and logL. Recall that L is the largest
absolute value of any entry in A, b, or c. The volume of the initial ellipsoid E is bounded
by Rn. Thus

lnvol(E)≤ n lnR≤ p1(n, logL)

for some polynomial p1.

• The volume of E ′ is substantially smaller than the volume of E. Substantially smaller
means, that the logarithm of the volume decreases by at least 1/p2(n, logL) for some
polynomial p2.

lnvol(E ′)≤ lnvol(E)− 1
p2(n, logL)

.

• If P is non-empty then
lnvol(P)≥−p3(n, logL)

for some polynomial p3. This lower bound holds only if P has non-empty interior. So we
stop, once lnvol(E)<−p3(n, logL).

Can it not be the case that the feasible region is non-empty, but has empty interior. Yes,
this can be the case. The work-around is to add a small positive quantity ε to all right-hand
sides. The quantity must be small enough such that an infeasible problem stays infeasible
and such that a feasible problem gets an interior for which the lower bound on the volume
applies. It can be shown that such a quantity exists.

Theorem 5 The number of iterations of the Ellipsoid method is polynomial.

10

Proof: The logarithm of the volume of the initial ellipsoid is upper bounded by p1(n, logL). In
each step, the log of the volume decreases by at least 1/p2(n, logL). Thus the logarithm of the
volume volume of the ellipsoid constructed in the t-th iteration is at most

p1(n, logL)− t/p2(n, logL).

If iteration t is not the last, we have

p1(n, logL)− t/p2(n, logL)≥−p3(n, logL).

Thus
t ≤ p2(n, logL)(p1(n, logL)+ p3(n, logL)).

Observe (!!!) that the upper bound does not depend on m, the number of constraints. As long
as we have a separation oracle, the number of constraints is unimportant. It may be exponential
in n or even infinite.

5.5 Using the Ellipsoid Method to Put Problems into P
We formulate the traveling salesman problem as an integer linear program.

We have a variable xe for every edge which we constrain to have values in {0,1}. This is
achieved by 0≤ xe ≤ 1 and xe ∈ N. A tour contains two edges incident to every vertex, i.e.,

∑
e;e∈δ (v)

xe = 2 for every v,

where δ (v) is the set of edges incident to v. Any set of edges which contains exactly two edges
incident to every vertex consists of a collection of cycles. We must exclude that a solution
consists of a collection of subtours. This is the purpose of the subtour elimination constraints.

∑
e;e∈δ (S)

xe ≥ 2 for every S⊆V with /0 6= S 6=V ,

where δ (S) is the set of edges with exactly one endpoint in S.
The objective function is min∑e cexe, where ce is the cost of e.
The traveling salesman problem is NP-complete. The linear programming relaxation of the

TSP is obtained by dropping the integrality constraint xe ∈ N.

Lemma 3 The LP-relaxation of the TSP is in P.

Proof: We use the Ellipsoid method to solve the LP. The LP has an exponential number of
constraints. We need a separation oracle.

Let x∗e , e ∈ E, be a vector of real values. We perform the following checks:

11

1. If there is an e, with x∗e < 0 or x∗e > 1, we have found a violated inequality.

2. If there is a vertex v with ∑e;e∈δ (v) xe 6= 2, we have found a violated inequality.

3. Consider the graph, where we assign capacity ∩e = x∗e to edge e. If this graph has a cut of
capacity less than two, we have a violated inequality. We fix a vertex s and check for every
other vertex t, whether there is a cut of value less than two separating s from t.

Assume we would not know that the min-cut problem (= max-flow problem) is in P. Recall
the s-t-cut-LP. We have a variable ye for each edge and a constraint for each path.

min ∑
e

capeye

subject to ∑
e;e∈p

ye ≥ 1 for all s-t paths p

ye ≥ 0 for all e.

Let y∗e be a vector of real values. We check ye ≥ 0 for every e and then compute a shortest
path from s to t with respect to the edge lengths y∗e . If the distance from s to t is less than one,
the shortest path yields a violated inequality.

Finally, the shortest path problem is in P, because it is an LP with a polynomial number of
constraints.

5.6 Interior Point Methods
The interior point methods are alternative polynomial time algorithms for solving general LPs.
They are inspired by methods used in convex optimization for many years. They are of great
practical value. In recent years, interior point methods for specific LPs, e.g., max-flow and min-
cost flow, have been determined. These methods are competitive with combinatorial algorithms
for the problem. We might see a revolution of combinatorial optimization in the sense that
combinatorial methods are replaced by numerical methods.

Consider maxcT x subject to Ax≤ b. The idea is to approximate the polyhedron P defined by
Ax≤ b by a hierarchy of convex sets. Let

Φ(x) = ∑
1≤i≤m

ln(bi−aT
i x),

where aT
i is the i-th row of A. The function − ln(bi− aT

i x) goes to minus infinity (in fact, very
quickly) as x goes to the hyperplane bi = aT

i x inside P. For x ∈ R, let Lz = {x; Φ(x)≤ z}. Then

Lz ⊆ P for all z ∈ R and ∪z∈R Lz = P, i.e.,

each level set is contained in P and the level sets exhaust P.

12

c^T x

x^*
central path

x^*(infinity)

Figure 1: An illustration of the interior point method. The polygon P is indicated by a solid line.
Dashed lines indicate level sets of logarithmic barrier function Φ(x). For fixed µ , x∗(mu) lies on
the boundary of some level set; the tangent to the level set at x∗(µ) is parallel to the level sets of
the objective function. The central path is indicated by dots.

We could now proceed as follows. We maximize cT x subject to x∈ Lz for increasing values of
z. For each fixed z, this is a convex optimization problem. One can use the method of Lagrange
multipliers to solve the problem.

Alternatively, we maximize cT x+ µΦ(x), where µ > 0 is a parameter. Let x∗(µ) be the
unique optimal solution. The solution is unique since cT x+µΦ(x) is concave. For fixed µ , one
can find x∗(µ) by standard methods, e.g., Newton’s method.

The idea is to compute x∗(µ) for decreasing value of µ . A near optimal solution is easy to
find for large µ . As one decreases µ , a near-optimal solution for the previous value of µ is taken
as the starting value for the search for the next x∗(µ). For µ → 0, the solution x∗(mu) traces a
path (called the central path) converging to the optimal solution of the LP.

5.7 Optimality and Feasibility
In this section we show that computing an optimal solution can be reduced to deciding feasibility.
For this purpose, we have a closer look at the vertices of the feasible region.

Let A be m× n and let b be an m-vector. We assume for simplicity that the polytope
P = {x ∈ Rn; Ax≤ b and x≥ 0} is full-dimensional. In each vertex of P, n out of the m+ n
constraints are tight, i.e., satisfied with equality. Each vertex of the feasible region is the solu-
tion of a n×n system of linear equations, say A′x = b′, consisting of n tight constraints (tight =
satisfiedwith equality). Let L be the largest absolute value of the entry in A, b, and c. The entries
are integral. By Cramer’s rule each coordinate of a vertex is the quotient of two determinants.
The denominator is detA′, i.e., all coordinates have the same denominator. For the numerator of
the i-th coordinate the i-th column of A′ is replaced by b′. The determinants are determinants of

13

n×n matrices with integer entries bounded by L and hence have value in [1,n!Ln]. Recall that a
determinant is a sum of n! terms each bounded by Ln. Thus the coordinates are rational numbers
±p/q with 0≤ p≤ n!Ln ≤ (nL)n and 1≤ q≤ n!Ln ≤ (nL)n and therefore the maximal objective
value at a vertex is nn!Ln+1 ≤ (nL)n+1 and the minimal objective value is the negative of this
number.

An LP is unbounded iff the LP Ax ≤ b, x ≥ 0, cT x ≥ 1+(nL)n+1 is feasible. Observe that
log(nL)n+1 ≤ (n+1)(logn+ logL) is polynomial in n and logL.

Assume now we have a bounded and feasible LP. We can find the maximal objective value
by binary search. Let U = (nL)n+1 and L = −U . Let M = (L+U)/2. We test whether Ax ≤ b,
x ≥ 0, cT x ≥M is feasible. If so, we set L = M. If not, we set U = M. When can we stop? We
know at all times, that there is a vertex having an objective value of at least L and there is no
vertex that has a value of U or more. We can stop if the interval is small enough so that no two
distinct values are contained in it.

Consider a vertex. It’s i-th coordinate is a rational number of the form pi/q with q ≤ (nL)n;
recall that all coordinates have the same denominator. Consider two vertices v and v′ and their
objective values cT v and cT v′. Let q be the common denominator of the coordinates of v and q′

be the common denominator of the coordinates of the vertices of v′. If the objective values are
different, they differ by at least 1/(qq′)≥ 1/(nL)2n.

How long does the binary search take? We start with an interval of length no more than
(nL)n+1 and end with an interval of length 1/(nL)2n. Thus the number of iterations is at most

log2
(nL)n+1

(nL)2n = (3n+1) log(nL) = poly(n, logL).

We can now also compute a lower bound on the volume of P. Observe that the vertices have
denominators q with q ≤ (nL)n. Consider the simplex spanned by any (n+ 1) vertices v1 to
vn+1 of P. It has volume 1/(n!) times the determinant of the n×n matrix with columns v2− v1,
v3− v1, . . . , vn+1− v1. The entries in column i are rational numbers with denominators qi+1q1,
where qi is the common denominator of the coordinates of the i-th vertex. We can move the
denominators out of the determinant and obtain 1/(n!(∏2≤i≤n+1 qi)qn

1) times the determinant of
a matrix with integer entries. The latter is at least one. Thus

vol(P)≥ 1/(n!(∏
2≤i≤n+1

qi)qn
1)≥

1
Lpoly(n)

.

6 Integer Linear Programs
A integer linear program (ILP) is a linear program with the additional constraint that the values
of the variables must be integral.

Deciding feasibility of ILPs is NP-complete. Every NP-complete problem can be formulated
as an ILP. For many NP-complete problems, this formulation is elegant.

14

The Traveling Salesman Problem: We have a variable xe for every edge which we constrain
to have values in {0,1}. This is achieved by 0≤ xe ≤ 1 and xe ∈ N. A tour contains two edges
incident to every vertex, i.e.,

∑
e;e∈δ (v)

xe = 2 for every v,

where δ (v) is the set of edges incident to v. Any set of edges which contains exactly two edges
incident to every vertex consists of a collection of cycles. We must exclude that a solution
consists of a collection of subtours. This is the purpose of the subtour elimination constraints.

∑
e;e∈δ (S)

xe ≥ 2 for every S⊆V with /0 6= S 6=V ,

where δ (S) is the set of edges with exactly one endpoint in S.
The objective function is min∑e wexe, where we is the weight of e.

The Vertex Cover Problem: We have a variable xv for every vertex v which we constrain to
have values in {0,1}. For each edge e = uv, we have the constraint xu+xv ≥ 1. The objective is
min∑v xv.

The LP-relaxation of an ILP is obtained by dropping the integrality constraints on the vari-
ables. The optimal solution of an LP-relaxation is, in general, fractional. Nevertheless, LP-
relaxations are interesting for several reasons.

6.1 Some LPs are guaranteed to have integral optimal solutions
We give two examples:

Maximum Weight Bipartite Matching: Consider a bipartite graph G. Let n be the number of
nodes of G. Each edge e has an associated positive weight we. We want to find a matching of
maximum weight. A matching is a set of edges no two of which share an endpoint. We introduce
a variable xe for each edge. The goal is to maximize ∑e wexe subject to ∑e;e∈δ (v) ≤ 1 for all v and
xe ∈ {0,1}.

In the LP-relaxation, we replace xe ∈ {0,1} by xe ≥ 0. Observe that xe ≤ 1 in any optimal
solution.

Lemma 4 The LP-relaxation has an optimal integral solution.

Proof: We show that the vertices of the feasible region are integral. A vertex of the feasible
region is a solution of a m×m linear system. Each row in this system is either of the form
xe = 0 for some e or of the form ∑e;e∈δ (v) = 1 for some node v of the graph. We show that the
determinant of such a linear system is in {−1,0,+1}. The rows corresponding to equations of
the form xe = 0 contain a single one and hence we can eliminate them. We are left with a system
coming from equations of the form ∑e;e∈δ (v) = 1. Consider any column of the system (columns
are indexed by edges), say the column corresponding to e = uv. If neither the constraint for u

15

nor the constraint for v is present, the column contains no non-zero entry and the determinant is
zero. If exactly one of the constraints is present, the column contains a single one, and we can
delete the column and the row containing the one without changing the value of the determinant.
We are left with the case that each column contains exactly two ones. At this point, we use the
fact that our graph is bipartite. Let U and V be the two sides of the bipartite graph. Multiply
the equations for V with −1 and then add all equations. We get the all-zero vector. Thus the
determinant is zero.

Let me give an alternative proof. Let (xe)e∈E be an optimal solution with a maximum num-
ber of integral entries. If all entries are integral, we are done. Otherwise, consider the sub-
graph G f (f stands for fractional) formed by the edges with fractional values, i.e., by the edges
{e; 0 < xe < 1}. Let V ′ be the vertex set of G f . The vertices in V ′ have degree at least two and
hence G f contains a cycle C. C has even length since G is bipartite. Split C into two set of edges
C1 and C2 by putting edges alternatingly into C1 and into C2. Consider the solution

x′e = xe +

ε if e ∈C1

−ε if e ∈C2

0 if e 6∈C.

If ε is small enough, the vector x′=(x′e)e∈E is feasible. It weight is the weight of x plus ε(w(C1)−
w(C2)). If w(C1) 6= w(C2), the solution x is not optimal. If the weight are equal, we can get an
optimal solution with an additional integral entry, a contradiction to the choice of x.

Curve Reconstruction: The LP-relaxation of the TSP-ILP given above (the sub-tour LP) is
not integral. It may have fractional solutions. Figure 2 shows an example.

However, for the following class of instances, the LP-relaxation always has an integral op-
timal solution [AM02]. There is an unknown closed curve in the plane and the vertices of the
graph correspond to points on this curve. The distances between the vertices are the Euclidean
distances between the points. If the points are sufficiently dense sampled, the LP-relaxation has
an integral optimal solution and the Traveling Salesmen Tour reconstructs the curve. Figure 3
shows an example.

6.2 ILPs can be solved by repeatedly solving LP-Relaxations
How can one solve ILPs? Popular methods are branch-and-bound and branch-and-cut. The
principle is simple. I assume for simplicity that all variables are constrained to be either 0 or 1.

Assume we have computed an optimal solution to an LP-relaxation. If the solution is integral,
we are done. If the solution is fractional, we have two choices.

Branch: Take one of the fractional variables, say xi, and consider two subproblems. In the first
problem, one sets xi to zero, and in the second problem, one sets xi to one.

16

Fractional Optimal Solution

1

2 2

1

2

1

2

2

2

1

1/2 1/2

1

1/2

1

1/2

1/2

1/2

• left side: edges weights right side: optimal solution to LP

• optimal tour has cost 4 · 2 + 2 · 1 = 10.

• fractional solution has cost 6 · 0.5 · 2 + 3 · 1 · 1 = 9.
10

Figure 2: The left side shows an instance of the Traveling Salesman Problem. The right hand
side shows an optimal solution to the Sub-tour-LP.

Cut: Try to find an additional inequality that is satisfied by all integral solutions, but is violated
by the fractional solution. Add the inequality and resolve. There are systematic procedures for
finding additional valid inequalities.

The book [ABCC06] discusses computational approaches to the Traveling Salesman Prob-
lem.

6.3 LP-relaxations are the basis for approximation algorithms
The book [Vaz03] discusses the use of linear programming for approximation algorithms.

I give one example to show you the flavor of what can be done. Recall the vertex cover
problem. The goal is to find a minimum number of vertices that cover all edges. We have
variables xv, one for each vertex, and the constraints xu + xv ≥ 1 for each edge uv and xv ≥ 0 for

17

Figure 3: The left hand side shows a point set. The right hand side shows the optimum Traveling
Salesman tour through this set of points. It is obtained as a solution of the sub-tour LP.

each vertex v. Moreover, xv ∈ {0,1}. The objective is to minimize ∑v xv. In the LP-relaxation,
we replace the integrality constraints on the variables by xv ≥ 0 for all v.

Let x∗v , v ∈ V be an optimal solution to the LP-relaxation and let s∗ = ∑v x∗v . We refer to
s∗ as the size of an optimum fractional vertex cover. Clearly s∗ is at most the cardinality of an
optimum vertex cover. Then 0 ≤ x∗v ≤ 1 for all v. We interpret the x∗v as probabilities. Consider
the following algorithm.

initialize C to the empty set.
for all vertices v do

flip a coin with success probability x∗v k times. If at least one success, put v into C.
end for

Lemma 5 Let s∗ be the size of an optimum (fractional) vertex cover, and let k = d1+ log4 me,
where m is the number of edges. Then with probability at least 1/2, the algorithm above con-
structs a vertex cover C with |C| ≤ 4ks∗.

Proof: v is added to C an expected number of kx∗v times. Thus the expected size of C is
k ∑v x∗v ≤ ks∗. The probability that the size of C is four times its expectation or more is at most
1/4. If C is not a vertex cover, there must be an edge e = uv that is not covered. The probability
that neither u nor v is put into C is bounded by

(1− x∗u)
k · (1− x∗v)

k = (1− x∗u− x∗v + x∗ux∗v)
k ≤ 1

4k ,

18

where the last inequality uses 1− (a+ b)+ ab ≤ 1/4 for a+ b ≥ 1. The probability that some
edge is not covered is at most m times this. By the choice of k, the probability that some edge is
not covered is at most 1/4.

We conclude that the probability that C is either not a node cover or has size more than 4ks∗

is bounded by 1/2.

References
[ABCC06] D. Applegate, B. Bixby, V. Chvatal, and W. Cook. The Traveling Salesman Problem:

A Computational Study. Princeton University Press, 2006.

[AM02] Ernst Althaus and Kurt Mehlhorn. Traveling Salesman-Based Curve Reconstruction
in Polynomial Time. SIAM Journal on Computing, 31(1):27–66, February 2002.

[CCPS98] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. John Wiley & Sons, Inc, 1998.

[Chv93] V. Chvatal. Linear Programming. Freeman, 93.

[Sch03] A. Schrijver. Combinatorial Optimization (3 Volumes). Springer Verlag, 2003.

[Vaz03] V. Vazirani. Approximation Algorithms. Springer, 2003.

19

http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/TSP-curve-full.ps
http://www.mpi-sb.mpg.de/~{}mehlhorn/ftp/TSP-curve-full.ps

	Introduction
	History
	Expressiveness
	Duality
	Algorithms
	Fourier-Motzkin Elimination
	The Simplex Algorithm
	Seidel's Randomized Algorithm
	The Ellipsoid Method
	Using the Ellipsoid Method to Put Problems into P
	Interior Point Methods
	Optimality and Feasibility

	Integer Linear Programs
	Some LPs are guaranteed to have integral optimal solutions
	ILPs can be solved by repeatedly solving LP-Relaxations
	LP-relaxations are the basis for approximation algorithms

