
7
Public Key Cryptography

Great Ideas in Theoretical Computer Science
Saarland University, Summer 2014

Cryptography studies techniques for secure communication in the presence of third par-
ties. A typical cryptography consists of two schemes: the encryption scheme and the decryption
scheme. The sender uses encryption scheme to encode the plaintext, and the encrypted mes-
sage, called ciphertext, looks nonsense to a third person. Upon receiving a ciphertext, the
receiver applies the decryption scheme to decrypt the ciphertext, and receive the plaintext.
Cryptography has a long history, and design of modern cryptographic protocols are based on
computational complexity theory.

We first look at some simple encryption/decrpytion schemes. Assume that Alice wants
to send the plaintext s ∈ Σn to Bob, where Σ = {A,B, . . . , Z} . Instead of sending the
string s to Bob directly, Alice could create a random permutation π : Σ 7→ Σ, and send
π(s1), π(s2), . . . , π(sn) to Bob. After Bob receives the ciphertext, he can use the same permu-
tation to recover the plain text. This is one of the cryptography systems widely used before
the computer era. The drawback of this system is the security: Although any person without
knowing the permutation π couldn’t get the plaintext directly, the encryption scheme does
not change the frequency of the letters in Σ, and letters in a meaningful text follow certain
frequency rules. Hence a third person could recover partial (or even complete) information
of the plaintext after receiving enough encrypted text.

To overcome this, we can use another way for the encryption. Instead of creating a ran-
dom permutation over Σ, Alice uses a dictionary of length the same as the plaintext to encrypt
the plaintext: take module operation between the ith letter of the plaintext and the ith letter
of the dictionary to obtain the ciphertext. The receiver uses the same dictionary to take the
inverse operation and get the plaintext from the ciphertext. Through this way, the same letter
in Σ maps to different letters, and it becomes more difficult for an adversary to decrypt the
ciphertext. However, certain problems remain: the dictionary, the key of the cryptography
system, has the same size as the plaintext, and sharing the key in a secure way may be as
difficult as sharing the plaintext in a secure way.

In these two examples above, Alice and Bob use the same key to encrypt and decrypt the
text. This kind of systems is the oldest cryptography techniques, and called the Symmetric
Encryption. One general problem of Symmetric Encryption is the secure exchanging of the

1



2 Public Key Cryptography

key over the Internet or large networks is difficult: Anyone who get the key can decrypt the
ciphertext.

In 1976, Whitfield Diffe and Martin Hellman created public key cryptography. Instead of
a single shared, secrete key, they propose to used two separate key in a cryptography system.
One key is called the private key, and is held by only on party. The second key is called the
public key, and is not a secret and can be shared widely. These two keys form a pair, and
can be used together in encryption and decryption operations. Moreover, a public key and its
corresponding private key are paired together and are related to no other keys.

This pairing is possible because of a special mathematical relationship between the algo-
rithms for the public keys and private keys. The key pairs are mathematically related to one
another such that using the key pair together achieves the same result as using a symmetrical
key twice. The keys must be used together: each individual key cannot be used to undo its
own operation. This means that the operation of each individual key is a one-way operation:
a key cannot be used to reverse its operation. In addition, the algorithms used by both keys
are designed so that a key cannot be used to determine the opposite key in the pair. Thus,
the private key cannot be determined from the public key.

7.1 Background Knowledge

7.1.1 Modular Arithmetic

Definition 7.1. The number a is equivalent (congruent) to the number b modulo n, expressed
by a ≡ b (mod n), if a differs from b by an exact multiple of n.

Lemma 7.2. The following statements hold:

• If a ≡ b (mod n) and c ≡ d (mod n), then a+ c ≡ b+ d (mod n).
• If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

Example 7.3. 321× 741 ≡ 1× 1 ≡ 1 (mod 5).

Example 7.4. 71510000 ≡ 1 (mod 7).

Example 7.5. 3213 ≡ 63 (mod 7) = 36× 6 (mod 7) ≡ 6 (mod 7).

Example 7.6. 320984 ≡ 1 (mod 7)

Proof. We first write down the binary expression of 984, i.e.

984 = 512 + 256 + 128 + 64 + 16 + 8
= 29 + 28 + 27 + 26 + 24 + 23.

Note that 320984 ≡ 5984 (mod 7). Moreover, we have the following:

• 52 = 25 ≡ 4 (mod 7)

• 54 = 4× 4 (mod 7) ≡ 2 (mod 7)



7.2. The Euclidean Algorithm 3

• 58 = 2× 2 (mod 7) ≡ 4 (mod 7)

• 516 = 4× 4 (mod 7) = 2 (mod 7)

• 532 ≡ 4 (mod 7)

• 564 ≡ 2 (mod 7)

• 5128 ≡ 4 (mod 7)

• 5256 ≡ 2 (mod 7)

• 5512 ≡ 4 (mod 7)

Hence

5984 = 5512+256+128+64+16+8 (mod 7)
≡ 4× 2× 4× 2× 2× 2× 4 (mod 7)
≡ 2 (mod 7)

7.1.2 Fermat’s Little Theorem

We call that n is divisible by m if n = km.

Theorem 7.7 (Fermat’s Little Theorem). If p is a prime number, then ap ≡ a (mod p) for all
a.

Theorem 7.8 (Fermat’s Little Theorem, Alternative Form). If p is a prime number and a is
any integer not divisible by p, then ap−1 ≡ 1 (mod p).

7.2 The Euclidean Algorithm

Given two integers r0 and r1, the Euclidean Algorithm finds the greatest common divisor of
r0 and r1, denoted by gcd(r0, r1).

Before present the algorithm, we first look at the following lemma.

Lemma 7.9. gcd(r0, r1) = gcd(r1, r0 mod r1)

Proof. Let x = gcd(r0, r1). Then we can write r0 = cx and r1 = dx, where c, d ∈ Z. Without
loss of generality we assume that r0 ≥ r1, otherwise the statement holds trivially. Then we
can write r0 = pr1 + q, where q ∈ {0, 1, . . . , r1 − 1}. Hence,

gcd(r0, r1) = gcd(cx, dx) = gcd(pdx+ q, dx) = gcd(q, dx)
= gcd(r0 mod r1, r1).



4 Public Key Cryptography

Algorithm 7.1 Euclidean Algorithm
1: write a as a = bq1 + r1, for r1 ∈ {1, 2, . . . , b− 1};
2: write b as b = r1q2 + r2, for r2 ∈ {0, . . . , r1 − 1}
3: Let j = 0
4: while rj+2 6= 0 do
5: j ← j + 1;
6: write rj as rj = rj+1qj+2 + rj+2, where rj+1 ∈ {0, . . . , rj+1 − 1};
7: return rj+1 . rj+1 = gcd(a, b)

Now we show that the Euclidean Algorithm can be used to compute a multiplicative
inverse.

Definition 7.10. If ab ≡ 1 (mod p), then b is called the multiplicative inverse of a module p.

Theorem 7.11 (Multiplicative Inverse Algorithm). Given two integers 0 < b < a, consider
the Euclidean Algorithm equations which yield gcd(a, b) = rj . Rewrite all of these equations
except the last one, by solving for the remainders:

r1 = a− bq1

r2 = b− r1q2

r3 = r1 − r2q3

· · ·
rj−1 = rj−3 − rj−2qj−1

rj = rj−2 − rj−1qj

Then, in the last of these equations, rj = rj−2−rj−1qj , replace rj−1 with its expression in terms
of rj−3 and rj−2 from the equation immediately above it. Continue this process successively,
replacing rj−2, rj−3, · · · , until we obtain the final equation

rj = ax+ by,

where x and y are integers. In the special case that gcd(a, b) = 1, the integer equation reads

1 = ax+ by.

Therefore we deduce
1 ≡ by(mod a)

so that the residue of y is the multiplicative inverse of b, mod a.



7.3. The RSA Algorithm 5

7.3 The RSA Algorithm

In the initialization step, we choose two prime numbers p, q, and let n = p · q. We further pick
a positive integer r that has no common factor with (p− 1) · (q− 1), and find a multiplicative
inverse of r modulo (p−1)·(q−1), i.e. we find a number s such that rs ≡ 1 (mod (p−1)·(q−1)).

Encryption. The pair of values n, r are called the public encryption key, and these two
numbers are publicly available. Given the private key, any plaintext x ≤ n is encrypted by

y , xr (mod n).

Decryption. The pair of values n, s are called the private decryption key. With these two
numbers, we can compute

z , ys (mod n).

That is, you need to know s to decrypt. Now s is the multiplicative inverse of r modulo
(p − 1)(q − 1). The outsiders know r, and if they knew (p − 1)(q − 1), then it would be easy
(with the Euclidean Algorithm) to compute s. But they do not know (p−1)(q−1). They know
n, which is equal to pq, but they do not have n factored into p and q. To find (p − 1)(q − 1),
they need to know the prime factors p and q of n, and factoring large numbers is difficult.

Theorem 7.12. The decrypted message z = x.

Proof. By definition, we have that

z = ys (mod n) = xrs (mod n) = xrs (mod pq).

Since rs ≡ 1 (mod (p− 1) · (q − 1)), we have that rs = c · (p− 1)(q − 1) + 1 for an integer c,
and

z = xc(p−1)(q−1)+1 (mod pq).

It suffices to show that xc(p−1)(q−1)+1 ≡ 1 (mod p) and xc(p−1)(q−1)+1 ≡ 1 (mod q). We only
look at the first case, and the second case can be proven in the same way.

(1) If x is divisible by p, then xc(p−1)(q−1)+1 ≡ 0 (mod p) ≡ x (mod p) holds trivially. (2)
If x is not divisible by p, then by Fermat’s Little Theorem we know that z = xc(p−1)(q−1) · x ≡
x (mod p) and z = xc(p−1)(q−1) · x ≡ x (mod q).

Therefore, we have that z = xc(p−1)(q−1) · x ≡ x (mod pq).


	Public Key Cryptography
	Background Knowledge
	The Euclidean Algorithm
	The RSA Algorithm


