
8
Pseudorandom Generators

Great Ideas in Theoretical Computer Science
Saarland University, Summer 2014

Randomness is one of the fundamental computational resources and appears everywhere.
In computer science, we study randomness due to the following reasons: First, computers are
used to simulate various random processes in Physics, Chemistry and Biology. Second, ran-
domness is widely used in Cryptography, and a few techniques of algorithm design (e.g.
sampling, random walks) rely on randomness. Third, even though efficient deterministic al-
gorithms are unknown for many problems, simple, elegant and fast randomized algorithms
are known and easy to analyze. For many problems (e.g. primality testing), usually we have
efficient randomized algorithms at first before we obtain deterministic polynomial-time algo-
rithms eventually. This leads the question of derandomization, i.e., if we have a general way
to derandomize randomized algorithms without significantly increasing their runtime.

The answer to these questions have lead to the study of pseudorandomness. In today’s
lecture, we will address the following three questions: (1) What is randomness? What are
the possible ways to define randomness? (2) How do computer programs generate random
numbers? Are these numbers truly random? (3) What the relationship between randomness
and other disciplines of Computer Science and Mathematics?

8.1 What is Randomness?

What are random binary strings? The best way to think about perfect randomness is as an
arbitrary long sequence of binary strings, where every 0 or 1 appears equally, i.e. every 0/1-
bit appears with the same probability (50%) in a random order. For instance, the string

00000000010000000001000010000

is not random as the number of 0s is much more than the number of 1s.
How about this sequence?

00000000001111111111
This sequence contains the same number of 0s and 1s. However most people think that it is
not random, as the occurrences of 0s and 1s are in a very unbalanced way. These intuitions
can be formalized in several seemingly different ways to define randomness.

1

2 Pseudorandom Generators

The first formulation is to use the notion of the entropy, which is due to Shannon’s In-
formation Theory [6]. Information theory focuses on the distributions that are not perfect
random, and use entropy to evaluate the amount of information contained in a distribution.
In this setting, perfect randomness is an extreme case, and it corresponds to the distribution
with the maximum entropy.

Definition 8.1 (Entropy). Let X be a random variable. Then the entropy H(X) of X is
defined as

H(X) , E [− log (Pr[X = x])] .

The second theory is due to A. N. Kolmogorov [4]. Kolmogorov complexity theory mea-
sures the complexity of objects in terms of the shortest program (for a fixed universal pro-
gram) that generates the object. Here perfect randomness appears as an extreme case since
no shorter program can generate the perfect random string. In contrast to the information
theory in which the entropy measures the randomness of a distribution, following the Kol-
mogorov complexity theory one can study randomness of a single string.

Definition 8.2 (Kolmogorov Complexity). Let `(x) be the length of string x. The Kolmogorov
Complexity KU (x) of a string x with respect to a universal computer U is defined as

KU (x) , min
p:U(p)=x

`(p),

the minimum length over all programs that print x and halts. Thus KU (x) is the shortest
description length of x over all descriptions interpreted by computer U .

The third theory is due to M. Blum and S. Micali [1] in 1982, and independent by A.
Yao [7] in the same year. They define randomness with respect to observers (computational
models), and suggest to view distributions as equal if they cannot be distinguished by efficient
observers. To motivate this definition, let us look at one example.

Example 8.3. 1 Alice and Bob play “head or tail” in one of the following four ways. In all of
them Alice flips a coin high in the air, and Bob is asked to guess its outcome before the coin hits
the floor. The alternative ways differ by the knowledge Bob has before making his guess. In the
first alternative, Bob has to announce his guess before Alice flips the coin. Clearly, in this case Bob
wins with probability 1/2. In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle by the motion of the coin,
Bob does not have accurate information on the motion and thus we believe that also in this case
Bob wins with probability 1/2 . The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate information on the coin’s
motion as well as on the environment effecting the outcome. However, Bob cannot process this
information in time to improve his guess. In the fourth alternative, Bob’s recording equipment is
directly connected to a powerful computer programmed to solve the motion equations and output
a prediction. It is conceivable that in such a case Bob can improve substantially his guess of the
outcome of the coin.

This example indicates that proper definitions of randomness depend on the power of
1This example is from “A Primer on Pseudorandom Generators” by Oded Goldreich, 2010.

8.2. Pseudorandom Generators 3

observers: One string that looks random for one observer may be not random for more pow-
erful observers. In Computer Science, observers with different powers correspond to algo-
rithms under different time/space constraints (e.g., polynomial-time, exponential-time, or
polynomial-space). To capture this intuition, we define the notion of the computational indis-
tinguishable which refers to pairs of the distributions which cannot be distinguished by any
polynomial-time algorithm.

Definition 8.4 (probability ensembles). A probability ensemble X is a family X = {Xn}n≥1
such that Xn is a probability distribution on some finite domain.

Definition 8.5 (Computational Indistinguishability, [2]). Let D and E be probability en-
sembles. The success probability of a randomized algorithm A for distinguishing D and E
is

spn(A) =
∣∣∣Pr[A(X) = 1]−Pr[A(Y) = 1]

∣∣∣,
where X has distribution D and Y has distribution E . Distributions D and E are called
computationally indistinguishable, if for any probabilistic polynomial-time algorithm A, for
any positive polynomial p : N 7→ N, and for all sufficiently large n’s, it holds that spn(A) <
1/p(n).

We use D ∼c E to express that D and E are computationally indistinguishable.

8.2 Pseudorandom Generators

Pseudorandom generators are deterministic polynomial-time algorithms which stretch short
random seeds into longer sequences which “look” random. When we design a pseudorandom
generator, there are a few factors taken into account:

The first is the efficiency: The generator should be efficient, i.e. the pseudorandom gen-
erators should produce the output (pseudorandom sequences) in polynomial-time. The main
reason for the efficiency requirement is that, for many practical applications, pseudorandom
generators are used as subroutines of other algorithms, and the use of pseudorandom gener-
ators should significantly increase the runtime of the original algorithm.

The second aspect is the stretching, i.e., a PRG is required to stretch its input seed to
a longer output sequence. Specifically, a PRG stretches an n-bit input into an `(n)-bit long
output, where `(n) > n. The function ` is called the stretching function.

The third aspect is the pseudorandomness. A PRG’s output has to look random to any
efficient observer, i.e., any procedure fails to distinguish the output of a PRG (on a random
seed) from a truly random sequence of the same length in polynomial-time. For instance,
a procedure could count the number of 0s and 1s and any pseudorandom generator need
output almost the same number of 0s and 1s.

Now we give a formal definition of pseudorandom generators.

Definition 8.6 (Pseudorandom Generators). A deterministic polynomial-time algorithm G

is called a pseudorandom generator if there exists a stretching function ` : N 7→ N, such that
the following two probability ensembles, denoted {Gn}n∈N and {Un}n∈N, are computationally
indistinguishable:

4 Pseudorandom Generators

1. Distribution Gn is defined as the output of G whose length is `(n) on a uniformly selected
seed in {0, 1}n.

2. Distribution U`(n) is defined as the uniform distribution on {0, 1}`(n), where `(n) > n.

That is, we require that for any probabilistic polynomial-time algorithm A, for any positive
polynomial p : N 7→ N, and for all sufficiently large n’s, it holds that∣∣∣∣Pr[A(G(Un)) = 1]−Pr[A

(
U`(n)

)
= 1]

∣∣∣∣ < 1
p(n) .

By Definition 8.6, pseudorandomness is defined in terms of its observer. It is the distri-
bution which cannot be told apart from the uniform distribution by any polynomial-time
observer. We remark that this pseudorandom sequence may be distinguishable from truly
random ones by one observe with more (or even unbounded) computational power. For in-
stance, the pseudorandom sequence that cannot be distinguished from truly random ones
by any polynomial-time algorithm could be distinguished from truly random ones by an
exponential-time algorithm. Hence, pseudorandomness is subjective to the abilities of the
observer.

The next very interesting result shows that, once we have a PRG to generate a simple
pseudorandom bit, we can use the same PRG to generate pseudorandom bits with arbitrary
length.

Theorem 8.7 (amplification of stretch function). Suppose we have a PRG G with a stretch
function `(n) = n + 1, then for every polynomial `(n) > n there exists a PRG with stretch
function `(n).

Proof. Let G be a PRG with a stretching function n+1. We construct a PRG Gi with stretching
function `(n) = n+ i. Define

Gi(Un) =
{
G (Un) i = 1
Gi−1 (G (Un)1···n

)
◦G (Un)n+1 i > 1

where G(Un)i is the ibit of G(Xn), G(Un)i···j is the substring of G(Un) from the ith bit up to
the jth bit, and ◦ represents the concatenation operator between two strings.

We define a sequence of the distributions as follows:

D0 : Un ◦ Um, D1 : G(Un) ◦ Um−1, · · · , Dm : Gm(Un).

Our goal is prove that Gm is a PRG, i.e., there is no efficient algorithm to distinguish
Gm(Un) = Dm from Um+n = D0. Assume for contradiction that there is an algorithm A

and polynomial p, such that

|Pr[A(Dm) = 1]−Pr[A(D0) = 1]| ≥ 1
p(n) .

8.3. Pseudorandom Generators versus One-Way Functions 5

Because∣∣∣∣Pr[A(Dm) = 1]−Pr[A(D0) = 1]
∣∣∣∣ =

∣∣∣∣∣∣
m∑

i=1
(Pr[A(Di) = 1]−Pr[A(Di−1) = 1])

∣∣∣∣∣∣
≤

m∑
i=1

∣∣∣∣Pr[A(Di) = 1]−Pr[A(Di−1) = 1]
∣∣∣∣,

there is at least one index i (1 ≤ i ≤ m) such that∣∣∣∣Pr[A(Di) = 1]−Pr[A(Di−1) = 1]
∣∣∣∣ > 1

m · p(n) ,

which contradicts to the assumption that Di ∼c Di+1.

8.3 Pseudorandom Generators versus One-Way Functions

Randomness and hardness seem to be very difficult aspects in computation. In this section
we will show that they are strongly related. To formalize the notion of the computational
difficulty, we introduce one-way functions. One-way functions are a family of functions which
are easy to compute and hard to compute the inverted. The formal definition is as follows:

Definition 8.8 (One-way Functions). A function f : {0, 1}? 7→ {0, 1}? is one-way if f
satisfies the following two conditions:

1. There exists a polynomial-time algorithm A to compute f , i.e. ∀x : A(x) = f(x).
2. For all probabilistic polynomial-time algorithms A′, polynomials p(·) and sufficiently

large n’s, it holds that

Pr[A′(f(Un)) = f−1 ◦ f(Un)] < 1
p(n) ,

i.e., there is no probabilistic polynomial-time algorithm A′ such that, give g(x) with a
random x, A′ obtains x with non-negligible probability.

Håstad, Impagliazzo, Levin and Luby [3] in 1993 proved the following definitive theorem:
Starting with any one-way function, one can construct a pseudorandom generator.

Theorem 8.9 ([3]). Pseudorandom generators exist if and only if one-way functions exist.

Proof. We only show that the existence of PRGs implies the existence of one-way functions,
and the proof of the other direction is more complicated.

Let G : {0, 1}n 7→ {0, 1}2n be a PRG. Consider f(x, y) , G(x), where |x| = |y|. We assume
for contradiction that f is not a one-way function, i.e., there is a probabilistic polynomial-
time algorithmA′ to invert f with probability greater than 1/p(n) for some polynomial p. Now
we design an algorithm D to distinguish the distribution G(Un) from U2n. The algorithm is
described in Algorithm 8.1.

6 Pseudorandom Generators

Algorithm 8.1 Distinguisher D

1: Input: α, α ∈ {0, 1}2n

2: xy ← A′(α)
3: if f(xy) = α then return 1
4: else return 0

It is easy to see that

Pr [D(G(Un)) = 1] = Pr [D(f(Un)) = 1]
= Pr

[
f(A′(f(Un))) = f(Un)

]
= Pr

[
A′(f(Un)) = f−1 ◦ f(Un)

]
>

1
p(n) ,

where the second equality is by the algorithm description, and the last inequality is by the
contradiction hypothesis. On the other hand, there are at most 2n strings of length 2n which
have a preimage under G (and so under f). Hence, a uniformly selected random string of
length 2n has a preimage under f with probability at most 2n/22n. This implies that

Pr [D(U2n) = 1] = Pr
[
f(A′(U2n)) = U2n

]
≤ Pr [U2n is in the image of f]

≤ 2n

22n
= 2−n.

Therefore, we have that

Pr [D(G(Un)) = 1]−Pr [D(U2n) = 1] > 1
p(n) −

1
2n
≥ 1
q(n)

for some polynomial q. This contradicts to the assumption that G is a PRG.

There are a few problems that seem to be one-way in practice and are conjectured to be
one-way. The following are two typical candidates.

Problem 8.10 (Factoring Problem). Let f(p, q) = pq. There is no known polynomial-time
algorithm that on input pq can produce p and q on average for randomly chosen pairs of
primes p and q.

Problem 8.11 (Discrete Logarithm Problem). Given a prime modulus p and a generator
g ∈ Z∗p, for y = gx mod p find the index x.

8.4 PRGs for Space-Bounded Computation

So far we discussed the PRGs for polynomial-time algorithms, and constructing such PRGs
relies on existence of one-way functions. In this section we show that, if we weaken the

8.4. PRGs for Space-Bounded Computation 7

abilities of the algorithms that PRGs need to fool, e.g. algorithms with bounded-space, then
such PRGs can be constructed without assuming existence of one-way functions. The goal of
this section is to prove the following theorem:

Theorem 8.12 ([5]). For any R and S there exists an (explicitly given) pseudorandom gen-
erator which converts a random seed of length O(S logR) to R bits which look random to any
algorithm running in space S.

Definition 8.13. Let M be a randomized algorithm that on input w requires `(|w|) random
bits. The family {Gn}∞n=1 of functions (Gn : {0, 1}s(n) → {0, 1}`(n)) is an ε−PRG for M if
for any w ∈ {0, 1}∗, it holds that∣∣∣Prr∈{0,1}`(|w|) [M(w, r) = 1]−Prz∈{0,1}s(|w|)

[
M
(
w,G|w|(z)

)
= 1

]∣∣∣ < ε.

Randomized Logspace TM. For any randomized Turing machine/algorithm M , we can
write the execution of M as a table, and every row in the table corresponds a step, and
consists of the configuration in that step. We call such a table the computation tableau of M
on a specific input. For any Turing machine M that runs in S space, the runtime of M is upper
bounded by 2S (otherwise the same configuration will appear in the computation tableau at
least twice, and M goes into a loop). Figure 8.1 shows one example of the computation
tableau of a Turing machine whose space is bounded by S.

Random Bits

S

2S

Figure 8.1: The computation tableau of a space S-bounded TM. Since the space is M , the runtime of this machine
is upper bounded by 2S . If the machine is randomized, then there is a random bit associated with each step.

8 Pseudorandom Generators

Using Non-Perfect Random Bits. When M is a randomized machine, then M need at
most one random bit every step, and the number of random bits required for M is at most
2S . For simplicity we assume that the runtime of M is exactly 2S . We divide the tableau into
two halves with each half requiring random strings r1 and r2 respectively, each of length
r = 2S/2. If r1 and r2 are chosen independently, then by definition M outputs the correct
answer with high probability. Now we study the performance of M if we choose r1 and r2 in
a manner that their behavior is not significantly different from the case when they are chosen
independently.

Formally, we assume that A1 and A2 are the upper and lower halves of the computa-
tion tableau of M , and x1 and x2 are independently chosen random strings, see Figure 8.2.
Moreover, algorithms A1 and A2 are of the following form:

• Algorithm A1 takes an input x1 of length r, and outputs a string b1 of length c.

• Algorithm A2 takes as input the output b1 of A1 and another string x2 of length r, and
outputs a string b2 of length c.

b2

A2

A1

b1

x1

x2

Figure 8.2: Algorithms A1, A2 with inputs from the generator.

What we are in search of is a generator that supplies strings x1 and x2 in a fashion better
than choosing them independently. For simplicity, given a function g, we use g`(z) and gr(z)
to express the left half and the right half of the string g(z), i.e., g(z) = g`(z) ◦ gr(z) and
|g`(z)| = |gr(z)|. We are interested in the performance of M when r1 and r2 are replaced by
g`(z) and gr(z), see Figure 8.3.

The following definition summarizes the PRGs that we need:

Definition 8.14. A function g : {0, 1}t → {0, 1}r × {0, 1}r is defined to be a ε-generator
for communication c if for all functions A1 : {0, 1}r 7→ {0, 1}c and A2 : {0, 1}c × {0, 1}r 7→
{0, 1}c, it holds for all b ∈ {0, 1}c that

∀b
∣∣∣Prx1,x2∈{0,1}r [A2(A1(x1), x2) = b]−Prz∈{0,1}t

[
A2(A1(g`(z)), gr(z)) = b

]∣∣∣ < ε.

For simplicity, we call a 2−c-generator for communication c a c-generator.

We assume the existence of a c-generator of the following form, and we will give a con-
struction of c-generators at the end of the lecture.

8.4. PRGs for Space-Bounded Computation 9

b2

A2

A1

b1

g`(z)

gr(z)

Figure 8.3: Algorithms A1, A2 with inputs from the generator.

Lemma 8.15. There exists a constant k > 0 such that for all r, c, there exists a polynomial-
time computable c-generator g of the form g : {0, 1}r+kc 7→ {0, 1}r × {0, 1}r.

Construction of Space-Bounded PRGs. Now we break the tableau into several compo-
nents, called A1, A2, · · · , A2S , and let the output of g be the random strings for every pair of
consecutive components (A2i−1 and A2i) such that their behavior is not significantly different
from using truly random bits, see Figure 8.4. Moreover, we expect that every application of
g causes error at most 1/22S . Because we invoke g at most 2S−1 times, so the total error is at
most 2S−1 · 1/22S .

g

g

g

A1

A2

A3

A4

R+ kS

R+ kS

R+ kS

R

R

R

R

R

R

A2S−1

A2S

Figure 8.4: The first level of the recursive construction.

Notice that there are 2S−1 components in the framework above, each requiring R + kS

random bits. We use the same approach to reduce the number of random bits required by
every pair of components from R + kS each to R + 2kS total. We perform this operation
recursively till there is only one component left, see Figure 8.5.

Formally let gi : {0, 1}R+ikS → {0, 1}R+(i−1)kS × {0, 1}R+(i−1)kS be an S-generator for

10 Pseudorandom Generators

g1

g1

g1

A1

A2

A3

A4

R

R

R

R

R

R

A2S−1

A2S

g2

g2

gS R+ S2

R+ kS

R+ kS

R+ kS

R+ kS

Figure 8.5: Recursive construction of GS .

1 ≤ i ≤ S. Define Gi : {0, 1}R+ikS → {0, 1}2i·R inductively as follows:

Gi(z) =

 z i = 0
Gi−1

(
g`

i (z)
)
◦Gi−1 (gr

i (z)) i > 0

Lemma 8.16. The PRG GS runs in space O
(
R+ kS2

)
.

Lemma 8.17. For all space S-bounded TM M , GS is a 2−S-generator for M .

Proof. Since each application of gi incurs an error of at most 1/22S , and there are 2S−1 +
2S−2 + · · · + 2 + 1 = 2S − 1 applications of gi, therefore by the union bound the error
probability is at most (2S − 1)/22S ≤ 1/2S .

Proof of Lemma 8.15. Now we start to prove Lemma 8.15. The following result will be
used.

Lemma 8.18. Let G = (V,E) be a d-regular graph with spectral expansion λ. Then for any
subsets S, T ⊆ V we have∣∣∣∣∣ |E(S, T)|

|E|
− |S|
|V |
· |T |
|V |

∣∣∣∣∣ ≤ λ ·
√
|S|
|V |
· |T |
|V |

.

Proof. We first define the double cover of graph G. For any non-bipartite graph G = (V,E)
with V = {1, . . . , n}, the double cover H = (L ∪ R,E′) of G is an bipartite graph with
L = {`1, . . . , `n} and R = {r1, . . . , rn}, such that {i, j} ∈ E if and only if {`i, rj} ∈ E′ and
{`j , ri} ∈ E′.

The statement of the lemma holds by applying the Expander Mixing Lemma on the double
covering of G.

8.4. PRGs for Space-Bounded Computation 11

Proof of Lemma 8.15. Let G = (V,E) be a d = 26c-regular Ramanujan expander on |V | = 2r

vertices. The generator g : {0, 1}r+6c → {0, 1}r × {0, 1}r works as follows: On input z =
(x, i) ∈ {0, 1}r × {0, 1}d, output

(
g`(z), gr(z)

)
= (x, y) where y is the vertex reached by

taking the ith edge out of x.
Let b be any output of the algorithms (A1, A2). Fix b. For any b′ ∈ {0, 1}c, define

Sb′ =
{
x ∈ {0, 1}r|A1(x) = b′

}
,

Tb′ =
{
x ∈ {0, 1}r|A2(b′, x) = b

}
.

Thus for truly random strings x1 and x2, the probability that algorithms (A1, A2) outputs b is
expressed by

Prx1,x2 [A2(A1(x1), x2) = b] =
∑

b′∈{0,1}c

Pr [x1 ∈ Sb′ ∧ x2 ∈ Tb′]

=
∑

b′∈{0,1}c

|Sb′ |
|V |
· |Tb′ |
|V |

.

On the other hand, when using the output of g to instead truly random bits, the probability
that (A1, A2) outputs b is

Prz∈{0,1}r+d

[
A2(A1(g`(z)), gr(z)) = b

]
=

∑
b′∈{0,1}c

Prx,i [x ∈ Sb′ ∧ ith edge out of x leads to Tb′]

=
∑

b′∈{0,1}c

|E(Sb′ , Tb′)|
|E|

.

Therefore

∣∣∣Prx1,x2 [A2(A1(x1), x2) = b]−Prz∈{0,1}r+d

[
A2(A1(g`(z)), gr(z)) = b

]∣∣∣
=

∣∣∣∣∣∣
∑

b′∈{0,1}c

(
|Sb′ |
|V |
· |Tb′ |
|V |
− |E(Sb′ , Tb′)|

|E|

)∣∣∣∣∣∣
≤

∑
b′∈{0,1}c

∣∣∣∣∣ |Sb′ |
|V |
· |Tb′ |
|V |
− |E(Sb′ , Tb′)|

|E|

∣∣∣∣∣ .
Because Sb′ and Tb′ are subsets of V , by Lemma 8.18 we know that

∣∣∣∣∣ |Sb′ |
|V |
· |Tb′ |
|V |
− |E(Sb′ , Tb′)|

|E|

∣∣∣∣∣ ≤ λ
√
|Sb′ |
|V |
· |Tb′ |
|V |
≤ λ,

12 References

where λ is the spectral expansion of G and satisfies λ ≤ 2 ·
√
d− 1/d. Therefore∣∣∣Prx1,x2 [A2(A1(x1), x2) = b]−Prz∈{0,1}r+d

[
A2(A1(g`(z)), gr(z)) = b

]∣∣∣
≤

∑
b′∈{0,1}c

λ

≤
∑

b′∈{0,1}c

2 ·
√
d− 1
d

<2c · 2
23c

≤ 1
2c
,

which implies that g is a c-generator.

References

[1] M. Blum and S. Micali. How to generate cryptographically strong sequence of pseudo-random
bits. SIAM Journal on Computing, 13:850–864, 1984.

[2] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[3] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom gener-
ator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[4] A. N. Kolmogorov. Three approaches to the definition of the concept ‘quantity of information’.
Problemy Peredachi Informatsii, 1:3–11, 1965. In Russian.

[5] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[6] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(3):379–423, 1948.

[7] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23th Annual
Symposium on Foundations of Computer Science (FOCS ’82), pages 80–91, Los Alamitos, Ca., USA,
November 1982. IEEE Computer Society Press.

	Pseudorandom Generators
	What is Randomness?
	Pseudorandom Generators
	Pseudorandom Generators versus One-Way Functions
	PRGs for Space-Bounded Computation

	References

