
9
Dealing with Non-Perfect Randomness

Great Ideas in Theoretical Computer Science
Saarland University, Summer 2014

In the last lecture we discussed pseudorandom generators, which are deterministic
polynomial-time algorithms that, given a truly random binary sequence of length n, output
a pseudorandom sequence of length `(n) > n, which is computationally indistinguishable by
any polynomial-time algorithm. However, in reality truly random sources are rare: in most
situations we do not know how to obtain such perfect random sequences, i.e. bits that are
unbiased and completely independent. Instead, we can obtain random sequences through
physical devices: These sequences are not perfect random, but have certain “randomness”
inside. Can we use these non-perfect random sequences in randomized algorithms? Can we
further bound the error probability of one randomized algorithm when using this non-perfect
random source? In today’s lecture we will address these questions, and introduce another
combinatorial object, called extractors. We will show how extractors can be used to deal with
non-perfect randomness in algorithm design.

9.1 Extractors

In Information Theory, entropy is a measure of uncertainty in a random variable. We look at
two definitions of entropy: Shannon entropy quantities the expected value of the information
contained in a message, and min-entropy quantities how far in the worst case the distribution
is from the uniform distribution.

Definition 9.1 (Entropy). Let X be a random variable. Then the entropy H(X) of X is
defined as

H(X) , E [− log (Pr[X = x ])] .

Definition 9.2 (min-Entropy). Let X be a random variable. Then the min-entropy H∞(X)
of X is defined by

H(X) , min {− log (Pr[X = x ])} .

It is not hard to see that if X is a random variable over {0, 1}n, then H∞(X) ≤ n with
H∞(X) = n if and only if X is distributed according to the uniform distribution Un. Hence,

1



2 Dealing with Non-Perfect Randomness

the bigger the value of H∞(X), the more randomness inside X.

Lemma 9.3. It holds that H∞(X) ≤ H(X) for any X.

For practical applications, randomness is from physical devices. These devices generate
random sequences with certain randomness. To measure the randomness of the sequence
generated by these devices, we introduce the notion of k-source.

Definition 9.4 (k-source). We call X a k-source if H∞(X) ≥ k.

Example 9.5. Here are some examples of k-sources:

• k random and independent bits, together with n − k fixed bits (in an arbitrary order).
They are called oblivious bit-fixing sources.

• k random and independent bits, and n− k bits that depend arbitrarily on the first k bits.
They are called adaptive bit-fixing sources.

• Uniform distribution on S ⊆ {0, 1}n with |S| = 2k. These are called flat k-sources.

Proposition 9.6. Every k-source is a convex combination of flat k-sources (provided that 2k ∈
N), i. e. X =

∑
i piXi with 0 ≤ pi ≤ 1,

∑
pi = 1 and all the Xi are flat k-sources.

Definition 9.7 (statistical difference). For random variables X and Y taking values in U ,
their statistical difference is defined by

∆(X,Y ) , max
T⊆U
|Pr [X ∈ T ]−Pr [Y ∈ T ]| .

We say that X and Y are ε-close if ∆(X,Y ) ≤ ε.

Lemma 9.8.
∆(X,Y ) = 1

2 ·
∑
z∈T

|Pr [X = z ]−Pr [Y = z ] |

After these preparations, we are ready to define extractors. Informally, extractors are func-
tions which extract random bits from any distribution which contains sufficient randomness.

Definition 9.9 (seeded extractors, [3]). A (k, ε)-extractor is a function Ext : {0, 1}n ×
{0, 1}d 7→ {0, 1}m such that, for every distribution X on {0, 1}n with H∞(X) ≥ k, the
distribution Ext(X,Ud) is ε-close to Um.

By definition, a (k, ε)-extractor has five parameters: (1) The length of the source n; (2)
the output length m; (3) the length of seeds d; (4) the min-entropy threshold k; (5) the error
of the extractor ε. Here, we refer to the ratio k/n as the entropy rate of the source X, and to
the ratio m/k as the fraction of randomness extracted by Ext. The goal of constructing good
extractors is to minimize d and maximize m. Notice that a trivial case is when d ≥ m, in
which case the extractor can simply ignore its first input and output the seed.

Extractors have various applications in Theoretical Computer Science, including random
sampling using few random bits; constructions of expanders that beat the eigenvalue bound;



9.2. Extractors as Hash Functions 3

explicit constructions of error-correcting codes. In designing randomized algorithms, extrac-
tors are used to simulate randomized algorithms with non-perfect random sequences.

The framework of using extractors to simulate randomized algorithms is as follows: As-
sume that algorithmA usesm random bits. Since we do not have truly random bits, algorithm
A uses the “almost random” strings to instead the perfect random ones. That is, the random
strings for A come from the output of Ext(X,Ud). Since the seed length d is small, we can
eliminate this part of randomness by running all the possible seeds and taking the majority
value. In particular, an explicit extractor with logarithmic seed length can be used to sim-
ulate any polynomial-time randomized algorithm given access to a weak random source of
sufficient high min-entropy.

Theorem 9.10. Let A(w; r) be a randomized algorithm such that A(w;Um) has error proba-
bility at most γ, and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Define

A′ = majy∈{0,1}d {A(w,Ext(x, y))} .

Then for every k-source X on {0, 1}n, A′(w;X) has error probability at most 2(γ + ε).

9.2 Extractors as Hash Functions

Throughout the rest of the note, capital variables are 2 raised to the power of the correspond-
ing lower variable, e.g. D = 2d. We first review the definition of pairwise independent hash
functions.

In this section we present one construction of the extractors by simply using hash func-
tions. This construction is also called the Leftover Hash Lemma by Impagliazzo.

Definition 9.11 (pairwise independent hash functions). A family of pairwise hash functions
is a set of functions h : D 7→ R such that for any distinct x1, x2 ∈ D and all (not necessarily
distinct) y1, y2 ∈ R, it holds that

Pr [h(x1) = y1 ∧ h(x2) = y2 ] = 1
|R|2

.

Theorem 9.12 (Leftover Hash Lemma,[1, 2]). Let H = {H | H : {0, 1}n → {0, 1}m} be a
family of pairwise independent hash functions, where m = k − 2 log(1/ε). Then Ext(X,H) =
(H,H(X)) is a (k, ε)-extractor.

Proof. Let X be an arbitrary k-source on {0, 1}n and d be the seed length of Ext. Choose H
randomly fromH. We show that (X,H(X)) is ε-close to Ud×Um in the following three steps:

- Step 1: We show that the collision probability of (H,H(X)) is close to that of Ud × Um.

- Step 2: We note that this is equivalent to saying that the `2-distance between (H,H(X))
and Ud × Um is small.

- Step 3: Then we deduce that the statistical difference is small, by recalling that the sta-
tistical difference equals half of the `1 distance, which can be (loosely) bounded



4 Dealing with Non-Perfect Randomness

by the `2 distance.

Step 1: By definition, the collision probability of (H,H(X)) is CP(H,H(X)) =
Pr [ (H,H(X)) = (H ′, H ′(X ′)) ], where (H ′, H ′(X ′)) is independent of and identically dis-
tributed to (H,H(X)). Because (H,H(X)) = (H ′, H ′(X ′)) if and only if H = H ′ and either
X = X ′ or X 6= X ′ but H(X) = H(X ′). Therefore

CP(H,H(X)) = CP(H) ·
(
CP(X) + Pr

[
H(X) = H(X ′)|X 6= X ′

])
≤ 1
D
·
( 1
K

+ 1
M

)
= 1 + ε2

DM
,

where the last equality uses the fact that m = k − 2 log(1/ε).
Step 2:

‖(H,H(X))− Ud × Um‖2 = CP(H,H(X))− CP(Ud × Um)

≤ 1 + ε2

DM
− 1
DM

= ε2

DM
Step 3:

∆((H,H(X)),Ud × Um) = 1
2 · ‖(H,H(X))− Ud × Um‖1

≤
√
DM

2 · ‖(H,H(X))− Ud × Um‖

≤
√
DM

2 ·

√
ε2

DM

= ε

2 .

Therefore, Ext(x, h(x)) is a (k, ε)-extractor.

9.3 Extractors versus Expanders

Extractors Ext : {0, 1}n × {0, 1}d → {0, 1}m can be considered as bipartite graphs G =
([N ], [M ], E) where the nodes of the left side are strings of length n and the nodes of the
right side are strings of length m. Every node x on the left side is connected to all 2d nodes
z for which there exists a y ∈ {0, 1}d such that Ext(x, y) = z. By the definition of extractors,
for every set S ⊆ {0, 1}n of size 2k on the left hand side and for every set T ⊆ {0, 1}m on
the right hand side, the number of edges between S and T is close to what one expects in a
random graph. More precisely, we have∣∣∣e(S, T )− |S| · |T | · 2d−m

∣∣∣ ≤ ε,
where e(S, T ) is the number of edges between set S and T .

Remark 9.13. Extractors correspond to unbalanced bipartite graphs, i.e., the sizes of the left-
and right-hand sets are different. Moreover, when we view extractors as graphs, then the degree
of every vertex from the left-hand side is not constant.



9.3. Extractors versus Expanders 5

From Extractors to Expanders. Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be an extractor. Then,
for any set S ⊆ [N ] of size K, we have that

∆(Ext(US ,Ud),Um) ≤ ε,

where US is the uniform distribution on S. Let µ(S) = |S|/N and µ(T ) = |T |/M . Then for
any set T ⊆ [M ], it holds that

|Pr [ Ext(US ,Ud) ∈ T ]− µ(T )| ≤ ε,

i.e., ∣∣∣∣∣e(S, T )
|S| ·D

− µ(T )
∣∣∣∣∣ ≤ ε.

We rewrite the inequality above as∣∣∣∣∣e(S, T )
ND

− µ(S)µ(T )
∣∣∣∣∣ ≤ εµ(S). (9.1)

Proposition 9.14. The function Ext is a (k, ε)-extractor if and only if the corresponding bipartite
graph G = ([N ], [M ], E) with left-degree D has the property that

∣∣∣ e(S,T )
ND − µ(S)µ(T )

∣∣∣ ≤ εµ(S)
for every S ⊆ [N ] of size K and every T ⊆ [M ].

From Expanders to Extractors. Comparing (9.1) with the Expander Mixing Lemma, which
states that for any graph G with spectral expansion λ and for any sets S, T ⊆ [N ], we have∣∣∣∣∣e(S, T )

N ·D
− µ(S)µ(T )

∣∣∣∣∣ ≤ λ√µ(S)µ(T ),

it suffices that G is an extractor if λ ·
√
µ(S)µ(T ) ≤ εµ(S) for all S ⊆ [N ] of size K and all

T ⊆ [N ]. So it suffices for λ ≤ ε
√
K/N .

For the constructions of such expanders, we take an appropriate power of a constant de-
gree expander. Specially, letG0 be aD0-regular expander onN vertices with bounded spectral
expansion. We take the t-th power of G0 and let G = Gt

0 where t = O(log((1/ε)
√
N/K)) =

O(n− k + log(1/ε)).

Theorem 9.15. For every n, k ∈ N and ε > 0, there is an explicit (k, ε)-extractor Ext :
{0, 1}n × {0, 1}d → {0, 1}n with d = O(n− k + log(1/ε)).

Comparison. To conclude this lecture, we compare expanders and extracts. Although
studying these two objects has different motivations and goals, expanders and extractors
share a lot of similarity. Noticing that these two objects can be expressed by a function
f : {0, 1}n × {0, 1}d 7→ {0, 1}m, constructions of expanders and extractors are to construct
functions of the same form, aiming at optimizing different parameters.



6 References

Expanders Extractors
Measured by vertex or spectral expansion Measured by min-entropy/statistical difference
Typically constant degree Typically logarithmic or poly-logarithmic degree
All sets of size at most K expand All sets of size exactly (or at least) K expand
Typically balanced Typically unbalanced, bipartite graphs

In addition to the close relationship between expanders and extractors, we can also relate
extractors to other combinatorial objects. It is well understood that the following objects are
very similar: pseudorandom generators, extractors, list-decodable error-correcting codes, and
expander graphs. Constructions of any of these objects often give constructions of the others,
see the survey by Vadhan [4].

References

[1] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public dis-
cussion. SIAM J. Comput., 17(2):210–229, 1988.

[2] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-
way functions (extended abstracts). In STOC, pages 12–24, 1989.

[3] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

[4] Salil P. Vadhan. The unified theory of pseudorandomness: guest column. SIGACT News, 38(3):39–
54, 2007.


	Dealing with Non-Perfect Randomness
	Extractors
	Extractors as Hash Functions
	Extractors versus Expanders

	References

