Algorithmic Game Theory

Summer 2015

Exercise Set 3

Exercise 1:

Consider the game defined by this cost matrix:

	А		В	
A		1		0
	1		1	
В		1		1000
	0		1000	

- (a) List all pure Nash equilibria.
- (b) Give a mixed Nash equilibrium that is not a pure Nash equilibrium.
- (c) Give a coarse correlated equilibrium that is not a mixed Nash equilibrium.

Exercise 2:

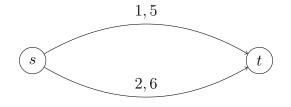
Give an example of a sequence of cost vectors ℓ^t and strategy choices p^t such that the external regret is negative.

Exercise 3:

The no-regret algorithm analyzed in class was stated such that the overall length of the sequence T is given as a fixed parameter. Give a no-regret algorithm that works without such a parameter for all possible T. Use the algorithm from class as a subroutine (you do not need to analyze it again). Start with T = 1 as a guess and run the subroutine. Once the subroutine ends, restart it but double your guess.

Exercise 4:

Consider this symmetric network congestion game with two players:



(a) What are the price of anarchy and the price of stability for pure Nash equilibria?

(1+1+1 Points)

(1+2+1 Points)

(3 Points)

(4 Points)

- (b) What are the price of anarchy and the price of stability for mixed Nash equilibria? **Hint:** Start by listing all mixed Nash equilibria. To obtain these start with a sentence like, "Let σ be a mixed Nash equilibrium with $\sigma_1 = (\lambda_1, 1 - \lambda_1)$, $\sigma_2 = (\lambda_2, 1 - \lambda_2)$," and continue by deriving properties of λ_1 and λ_2 .
- (c) What is the best price-of-anarchy bound that can be shown via smoothness?

Exercise 5:

(3 Points)

(3 Points)

For every $M \ge 1$, give an example of a two-player network congestion game whose price of anarchy for pure Nash equilibria is at least M.

Exercise 6:

Fair cost sharing games are congestion games with delays $d_r(x) = c_r/x$ for some constant c_r for all $r \in \mathcal{R}$.

- (a) Show that fair cost sharing games with n players are (n, 0)-smooth.
- (b) For every n, give an example of an n-player fair cost sharing game whose price of anarchy for pure Nash equilibria is at least n.