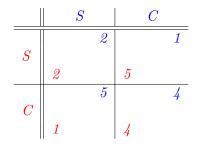
Algorithmic Game Theory, Summer 2015

Lecture 1 (5 pages)

Game-Theory Basics

Instructor: Thomas Kesselheim

Example 1.1 (Prisoner's Dilemma). Two criminals are interrogated separately. Each of them has two possible strategies: (C)onfess, remain (S)ilent. Confessing yields a smaller sentence if the other one is silent. If both confess, the sentence is larger for both (4 years) compared to when they both remain silent (2 years).



- If both players remain (S)ilent, the total cost is smallest.
- If both players (C)onfess, the cost is larger for both of them.
- Still, for each player confessing is always the preference!

Definition 1.2. A (normal form, cost minimization) game is a triple $(\mathcal{N}, (S_i)_{i \in N}, (c_i)_{i \in N})$ where

- \mathcal{N} is the set of players, $n = |\mathcal{N}|$,
- S_i is the set of (pure) strategies of player i,
- $S = \prod_{i \in \mathcal{N}} S_i$ is the set of states,
- $c_i: S \to \mathbb{R}$ is the cost function of player $i \in \mathcal{N}$. In state $s \in S$, player i has a cost of $c_i(s)$.

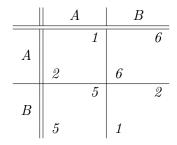
We denote by $s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$ a state s without the strategy s_i . This notation allows us to concisely define a unilateral deviation of a player. For $i \in \mathcal{N}$, let $s \in S$ and $s'_i \in S_i$, then $(s'_i, s_{-i}) = (s_1, ..., s_{i-1}, s'_i, s_{i+1}, ..., s_n)$.

Definition 1.3. A pure strategy s_i is called a dominant strategy for player $i \in \mathcal{N}$ if $c_i(s_i, s_{-i}) \leq c_i(s'_i, s_{-i})$ for every $s'_i \in S_i$ and every s_{-i} .

Definition 1.4. A state $s \in S$ is called a dominant strategy equilibrium if for every player $i \in \mathcal{N}$ strategy $s_i \in S_i$ is a dominant strategy.

Not every game has a dominant strategy equilibrium.

Example 1.5 (Battle of the Sexes). Suppose Angelina and Brad go to the movies. Angelina prefers watching movie A, Brad prefers watching movie B. However, both prefer watching a movie together to watching movies separately.



There is no dominant strategy of either of the two player: In state (A,A) the preference for both is A. In state (B,B) the preference for both is B.

What is a likely outcome in this situation?

Definition 1.6. A strategy s_i is called a best response for player $i \in \mathcal{N}$ against a collection of strategies s_{-i} if $c_i(s_i, s_{-i}) \leq c_i(s'_i, s_{-i})$ for all $s'_i \in S_i$.

Note: s_i dominant strategy if and only if s_i best response for all s_{-i} .

Definition 1.7. A state $s \in S$ is called a pure Nash equilibrium if s_i is a best response against the other strategies s_{-i} for every player $i \in \mathcal{N}$.

So, a pure Nash equilibrium is stable against unilateral deviation. No player can reduce his cost by only changing his only strategy.

Not every game has a pure Nash equilibrium.

Example 1.8 (Rock-Paper-Scissors). The well-known game rock-paper-scissors can be represented by the following cost matrix.

		R		Р		S
		0		-1		1
R	0		1		-1	
		1		0		-1
P						
	-1		0		1	
		-1		1		0
S						
	1		-1		0	

There is no pure Nash equilibrium: In each of the nine states, at least one of the two players does not play a best response.

Definition 1.9. A mixed strategy σ_i for player *i* is a probability distribution over the set of pure strategies S_i .

We will only consider the case of finitely many pure strategies and finitely many players. In this case, we can write a mixed strategy σ_i as $(\sigma_{i,s_i})_{s_i \in S_i}$ with $\sum_{s_i \in S_i} \sigma_{i,s_i}$. The cost of a mixed state σ for player *i* is

$$c_i(\sigma) = \sum_{s \in S} p(s) \cdot c_i(s) \quad .$$

where $p(s) = \prod_{i \in \mathcal{N}} \sigma_{i,s_i}$ is the probability that the outcome is pure state s.

Definition 1.10. A mixed strategy σ_i is a (mixed) best-response strategy against a collection of mixed strategies σ_{-i} if $c(\sigma_i, \sigma_{-i}) \leq c_i(\sigma'_i, \sigma_{-i})$ for all other mixed strategies σ'_i .

Definition 1.11. A mixed state σ is called a mixed Nash equilibrium if σ_i is a best-response strategy against σ_{-i} for every player $i \in \mathcal{N}$.

Note that every pure strategy is also a mixed strategy and every pure Nash equilibrium is also a mixed Nash equilibrium.

It is enough to only consider deviations to pure strategies.

Lemma 1.12. A mixed strategy σ_i is a best-response strategy against σ_{-i} if and only if $c_i(\sigma_i, \sigma_{-i}) \leq c_i(s'_i, \sigma_{-i})$ for all pure strategies $s'_i \in S_i$.

Proof. The "only if" part is trivial: Every pure strategy is also a mixed strategy.

For the "if" part, let σ_{-i} be an arbitrary mixed strategy profile for all players except for *i*. Furthermore, let σ_i be a mixed strategy for player *i* such that $c_i(\sigma_i, \sigma_{-i}) \leq c_i(s'_i, \sigma_{-i})$ for all pure strategies $s'_i \in S_i$.

Observe that for any mixed strategy σ'_i , we have $c_i(\sigma'_i, \sigma_{-i}) = \sum_{s'_i \in S_i} \sigma_{i,s'_i} c_i(s'_i, \sigma_{-i}) \ge \min_{s'_i \in S_i} c_i(s'_i, \sigma_{-i})$. Using $\min_{s'_i \in S_i} c_i(s'_i, \sigma_{-i}) \ge c_i(\sigma_i, \sigma_{-i})$, we are done.

While dominant-strategy and pure Nash equilibria do not necessarily exist, mixed Nash equilibria always exist if the number of players and the number of strategies is finite.

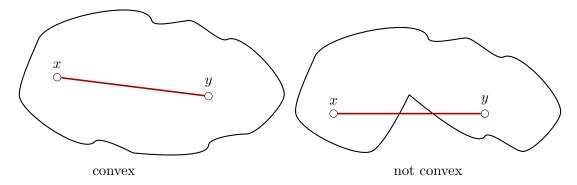
Theorem 1.13 (Nash Theorem). Every finite normal form game has a mixed Nash equilibrium.

We will use Brouwer's fixed point theorem to prove it.

Theorem 1.14 (Brouwer Fixed Point Theorem). Every continuous function $f: D \to D$ mapping a compact and convex nonempty subset $D \subseteq \mathbb{R}^m$ to itself has a fixed point $x^* \in D$ with $f(x^*) = x^*$.

As a reminder, these are the definitions of the terms used in Brouwer's fixed point theorem. Here, $\|\cdot\|$ denotes an arbitrary norm, for example, $\|x\| = \max_i |x_i|$.

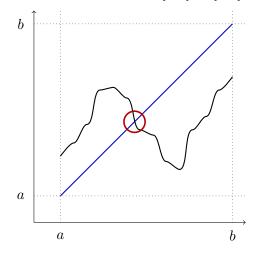
• A set $D \subseteq \mathbb{R}^m$ is *convex* if for any $x, y \in D$ and any $\lambda \in [0, 1]$ we have $\lambda x + (1 - \lambda)y \in D$.



- A set $D \subseteq \mathbb{R}^m$ is *compact* if and only if it is closed and bounded.
- A set $D \subseteq \mathbb{R}^m$ is *bounded* if and only if there is some bound $r \ge 0$ such that $||x|| \le r$ for all $x \in D$.
- A set $D \subseteq \mathbb{R}^m$ is *closed* if it contains all its limit points. That is, consider any convergent sequence $(x_n)_{n\in\mathbb{N}}$ within D, i.e., $\lim_{n\to\infty} x_n$ exists and $x_n \in D$ for all $n \in \mathbb{N}$. Then $\lim_{n\to\infty} x_n \in D$.
 - [0, 1] is closed and bounded (0, 1] is not closed but bounded

 - $[0,\infty)$ is closed and unbounded
- A function $f: D \to \mathbb{R}^m$ is continuous at a point $x \in D$ if for all $\epsilon > 0$, there exists $\delta > 0$, such that for all $y \in D$: If $||x - y|| < \delta$ then $||f(x) - f(y)|| < \epsilon$. f is called continuous if it is continuous at every point $x \in D$.

Equivalent formulation of Brouwer's fixed point theorem in one dimension: For all $a, b \in \mathbb{R}$, a < b, every continuous function $f: [a, b] \to [a, b]$ has a fixed point.



Proof of Theorem 1.13. Consider a finite normal form game. Without loss of generality let $\mathcal{N} = \{1, \ldots, n\}, S_i = \{1, \ldots, m_i\}$. So the set of mixed states X can be considered a subset of \mathbb{R}^m with $m = \sum_{i=1}^n m_i$.

Exercise: Show that X is convex and compact.

We will define a function $f: X \to X$ that transforms a mixed strategy profile into another mixed strategy profile. The fixed points of f are shown to be the mixed Nash equilibria of the game.

For mixed state x and for $i \in \mathcal{N}$ and $j \in S_i$, let

$$\phi_{i,j}(x) = \max\{0, c_i(x) - c_i(j, x_{-i})\} .$$

So, $\phi_{i,j}(x)$ is the amount by which player *i*'s cost would reduce when unilaterally moving from x to *j* if this quantity is positive, otherwise it is 0.

Observe that by Lemma 1.12 a mixed state x is a Nash equilibrium if and only if $\phi_{i,j}(x) = 0$ for all $i = 1, ..., n, j = 1, ..., m_i$.

Define $f: X \to X$ with $f(x) = x' = (x'_{1,1}, ..., x'_{n,m_n})$ by

$$x'_{i,j} = \frac{x_{i,j} + \phi_{i,j}(x)}{1 + \sum_{k=1}^{m_i} \phi_{i,k}(x)}$$

for all i = 1, ..., n and $j = 1, ..., m_i$.

Observe that $x' \in X$. That means, $f: X \to X$ is well defined. Furthermore, f is continuous. Therefore, by Theorem 1.14, f has a fixed point, i.e., there is a point $x^* \in X$ such that $f(x^*) = x^*$.

We only need to show that every fixed point x^* of f is a mixed Nash equilibrium. So, in other words, we need to show that $f(x^*) = x^*$ implies that $\phi_{i,j}(x^*) = 0$ for all i = 1, ..., n, $j = 1, ..., m_i$.

Fix some $i \in \mathcal{N}$. Once we have shown that $\phi_{i,j}(x^*) = 0$ for $j = 1, \ldots, m_i$, we are done. We observe that there is j' with $x_{i,j'}^* > 0$ and $c_i(x^*) \leq c_i(j', x_{-i}^*)$ because $c_i(x^*)$ is defined to be $\sum_{j=1}^{m_i} x_{i,j}^* \cdot c_i(j, x_{-i}^*)$. So, it is the weighted average of all costs and it is impossible that every pure strategy has strictly smaller cost then the weighted average. For this j', $\phi_{i,j'}(x^*) = \max\{0, c_i(x^*) - c_i(j, x_{-i}^*)\} = 0.$

We now use the fact that x^* is a fixed point. Therefore, we have

$$x_{i,j'}^* = \frac{x_{i,j'}^* + \phi_{i,j'}(x^*)}{1 + \sum_{k=1}^{m_i} \phi_{i,k}(x^*)} = \frac{x_{i,j'}^*}{1 + \sum_{k=1}^{m_i} \phi_{i,k}(x^*)}$$

As $x_{i,j'}^* > 0$, we also have

and so

$$1 = \frac{1}{1 + \sum_{k=1}^{m_i} \phi_{i,k}(x^*)} ,$$
$$\sum_{k=1}^{m_i} \phi_{i,k}(x^*) = 0 .$$

Since $\phi_{i,k}(x^*) \ge 0$ for all k, we have to have $\phi_{i,k}(x^*) = 0$ for all k. This completes the proof. \Box