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Game-Theory Basics
Instructor: Thomas Kesselheim

Example 1.1 (Prisoner’s Dilemma). Two criminals are interrogated separately. Each of them
has two possible strategies: (C)onfess, remain (S)ilent. Confessing yields a smaller sentence if
the other one is silent. If both confess, the sentence is larger for both (4 years) compared to when
they both remain silent (2 years).
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• If both players remain (S)ilent, the total cost is smallest.

• If both players (C)onfess, the cost is larger for both of them.

• Still, for each player confessing is always the preference!

Definition 1.2. A (normal form, cost minimization) game is a triple (N , (Si)i∈N , (ci)i∈N ) where
• N is the set of players, n = |N |,

• Si is the set of (pure) strategies of player i,

• S =
∏

i∈N Si is the set of states,

• ci : S → R is the cost function of player i ∈ N . In state s ∈ S, player i has a cost of ci(s).
We denote by s−i = (s1, ..., si−1, si+1, ..., sn) a state s without the strategy si. This notation

allows us to concisely define a unilateral deviation of a player. For i ∈ N , let s ∈ S and s′i ∈ Si,
then (s′i, s−i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn).

Definition 1.3. A pure strategy si is called a dominant strategy for player i ∈ N if ci(si, s−i) ≤
ci(s′i, s−i) for every s′i ∈ Si and every s−i.
Definition 1.4. A state s ∈ S is called a dominant strategy equilibrium if for every player
i ∈ N strategy si ∈ Si is a dominant strategy.

Not every game has a dominant strategy equilibrium.
Example 1.5 (Battle of the Sexes). Suppose Angelina and Brad go to the movies. Angelina
prefers watching movie A, Brad prefers watching movie B. However, both prefer watching a
movie together to watching movies separately.
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There is no dominant strategy of either of the two player: In state (A,A) the preference for
both is A. In state (B,B) the preference for both is B.

What is a likely outcome in this situation?

Definition 1.6. A strategy si is called a best response for player i ∈ N against a collection of
strategies s−i if ci(si, s−i) ≤ ci(s′i, s−i) for all s′i ∈ Si.

Note: si dominant strategy if and only if si best response for all s−i.

Definition 1.7. A state s ∈ S is called a pure Nash equilibrium if si is a best response against
the other strategies s−i for every player i ∈ N .

So, a pure Nash equilibrium is stable against unilateral deviation. No player can reduce his
cost by only changing his only strategy.

Not every game has a pure Nash equilibrium.

Example 1.8 (Rock-Paper-Scissors). The well-known game rock-paper-scissors can be repre-
sented by the following cost matrix.

R P S
0 -1 1

R
0 1 -1

1 0 -1
P

-1 0 1
-1 1 0

S
1 -1 0

There is no pure Nash equilibrium: In each of the nine states, at least one of the two players
does not play a best response.

Definition 1.9. A mixed strategy σi for player i is a probability distribution over the set of
pure strategies Si.

We will only consider the case of finitely many pure strategies and finitely many players. In
this case, we can write a mixed strategy σi as (σi,si)si∈Si with

∑
si∈Si

σi,si . The cost of a mixed
state σ for player i is

ci(σ) =
∑
s∈S

p(s) · ci(s) ,

where p(s) =
∏

i∈N σi,si is the probability that the outcome is pure state s.

Definition 1.10. A mixed strategy σi is a (mixed) best-response strategy against a collection
of mixed strategies σ−i if c(σi, σ−i) ≤ ci(σ′i, σ−i) for all other mixed strategies σ′i.

Definition 1.11. A mixed state σ is called a mixed Nash equilibrium if σi is a best-response
strategy against σ−i for every player i ∈ N .

Note that every pure strategy is also a mixed strategy and every pure Nash equilibrium is
also a mixed Nash equilibrium.

It is enough to only consider deviations to pure strategies.
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Lemma 1.12. A mixed strategy σi is a best-response strategy against σ−i if and only if
ci(σi, σ−i) ≤ ci(s′i, σ−i) for all pure strategies s′i ∈ Si.

Proof. The “only if” part is trivial: Every pure strategy is also a mixed strategy.
For the “if” part, let σ−i be an arbitrary mixed strategy profile for all players except for i.

Furthermore, let σi be a mixed strategy for player i such that ci(σi, σ−i) ≤ ci(s′i, σ−i) for all
pure strategies s′i ∈ Si.

Observe that for any mixed strategy σ′i, we have ci(σ′i, σ−i) =
∑

s′
i∈Si

σi,s′
i
ci(s′i, σ−i) ≥

mins′
i∈Si

ci(s′i, σ−i). Using mins′
i∈Si

ci(s′i, σ−i) ≥ ci(σi, σ−i), we are done.

While dominant-strategy and pure Nash equilibria do not necessarily exist, mixed Nash
equilibria always exist if the number of players and the number of strategies is finite.

Theorem 1.13 (Nash Theorem). Every finite normal form game has a mixed Nash equilibrium.

We will use Brouwer’s fixed point theorem to prove it.

Theorem 1.14 (Brouwer Fixed Point Theorem). Every continuous function f : D → D mapping
a compact and convex nonempty subset D ⊆ Rm to itself has a fixed point x∗ ∈ D with f(x∗) = x∗.

As a reminder, these are the definitions of the terms used in Brouwer’s fixed point theorem.
Here, ‖ · ‖ denotes an arbitrary norm, for example, ‖x‖ = maxi|xi|.

• A set D ⊆ Rm is convex if for any x, y ∈ D and any λ ∈ [0, 1] we have λx+ (1− λ)y ∈ D.

x
y
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x y
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• A set D ⊆ Rm is compact if and only if it is closed and bounded.

• A set D ⊆ Rm is bounded if and only if there is some bound r ≥ 0 such that ‖x‖ ≤ r for
all x ∈ D.

• A set D ⊆ Rm is closed if it contains all its limit points. That is, consider any convergent
sequence (xn)n∈N within D, i.e., limn→∞ xn exists and xn ∈ D for all n ∈ N. Then
limn→∞ xn ∈ D.

[0, 1] is closed and bounded
(0, 1] is not closed but bounded

[0,∞) is closed and unbounded

• A function f : D → Rm is continuous at a point x ∈ D if for all ε > 0, there exists δ > 0,
such that for all y ∈ D: If ‖x− y‖ < δ then ‖f(x)− f(y)‖ < ε.
f is called continuous if it is continuous at every point x ∈ D.
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Equivalent formulation of Brouwer’s fixed point theorem in one dimension:
For all a, b ∈ R, a < b, every continuous function f : [a, b]→ [a, b] has a fixed point.

b

b

a

a

Proof of Theorem 1.13. Consider a finite normal form game. Without loss of generality let
N = {1, . . . , n}, Si = {1, . . . ,mi}. So the set of mixed states X can be considered a subset of
Rm with m =

∑n
i=1mi.

Exercise: Show that X is convex and compact.
We will define a function f : X → X that transforms a mixed strategy profile into another

mixed strategy profile. The fixed points of f are shown to be the mixed Nash equilibria of the
game.

For mixed state x and for i ∈ N and j ∈ Si, let

φi,j(x) = max{0, ci(x)− ci(j, x−i)} .

So, φi,j(x) is the amount by which player i’s cost would reduce when unilaterally moving from x
to j if this quantity is positive, otherwise it is 0.

Observe that by Lemma 1.12 a mixed state x is a Nash equilibrium if and only if φi,j(x) = 0
for all i = 1, . . . , n, j = 1, . . . ,mi.

Define f : X → X with f(x) = x′ = (x′1,1, ..., x
′
n,mn

) by

x′i,j = xi,j + φi,j(x)
1 +

∑mi
k=1 φi,k(x)

for all i = 1, . . . , n and j = 1, . . . ,mi.
Observe that x′ ∈ X. That means, f : X → X is well defined. Furthermore, f is continuous.

Therefore, by Theorem 1.14, f has a fixed point, i.e., there is a point x∗ ∈ X such that f(x∗) = x∗.
We only need to show that every fixed point x∗ of f is a mixed Nash equilibrium. So, in

other words, we need to show that f(x∗) = x∗ implies that φi,j(x∗) = 0 for all i = 1, . . . , n,
j = 1, . . . ,mi.

Fix some i ∈ N . Once we have shown that φi,j(x∗) = 0 for j = 1, . . . ,mi, we are done.
We observe that there is j′ with x∗i,j′ > 0 and ci(x∗) ≤ ci(j′, x∗−i) because ci(x∗) is defined
to be

∑mi
j=1 x

∗
i,j · ci(j, x∗−i). So, it is the weighted average of all costs and it is impossible

that every pure strategy has strictly smaller cost then the weighted average. For this j′,
φi,j′(x∗) = max{0, ci(x∗)− ci(j, x∗−i)} = 0.

We now use the fact that x∗ is a fixed point. Therefore, we have

x∗i,j′ =
x∗i,j′ + φi,j′(x∗)

1 +
∑mi

k=1 φi,k(x∗) =
x∗i,j′

1 +
∑mi

k=1 φi,k(x∗) .



Algorithmic Game Theory, Summer 2015 Lecture 1 (page 5 of 5)

As x∗i,j′ > 0, we also have

1 = 1
1 +

∑mi
k=1 φi,k(x∗) ,

and so
mi∑

k=1
φi,k(x∗) = 0 .

Since φi,k(x∗) ≥ 0 for all k, we have to have φi,k(x∗) = 0 for all k. This completes the proof.


