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VCG Mechanisms
Instructor: Thomas Kesselheim

In previous lectures we introduced the mechanism design problem, and used the revelation
principle to show that every social choice function that can be implemented in dominant strategies
also has an incentive compatible implementation. Next we proved the Gobbard-Sutterthwarte
theorem which tells us that if we do not have any restrictions on the environment, only dictatorial
choice functions can be implemented in dominant strategies. Hence people turn to look at special
classes of utility functions.

A particular class that we considered is the quasilinear environment, which intuitively can
also be viewed as mechanisms with money. In this setting the mechanism needs to decide on an
outcome as well as the payment that each agent needs to pay. And the goal is to implement an
efficient social choice function that gives an outcome to maximize the social welfare. In previous
lectures we looked at a very simple example: the single-item auction, and showed that there
does exist an incentive compatible mechanism for this problem: the second-price auction. It
turns out that this is not only a coincidence. In this lecture we will talk about a cornerstone
result of mechanism design theory, saying that for every efficient social choice function in the
quasilinear environment, there is always an incentive compatible implementation.

1 Model
Recall that a quasilinear environment is defined as following:

• the set of outcomes has form O = S ×Rn, where S is the set of possible solutions, and Rn

represents the payments that agents have to pay (or receive) for a given solution,

• all possible utility functions are of form ui(s, (p1, . . . , pn)) = vi(s)−pi for any (s, (p1, . . . , pn)) ∈
O, where vi(s) is the value of solution s to agent i, and pi is the amount of money that
agent i needs to pay (or receive if pi is negative).

• the social choice function C(u) = (s, (p1, . . . , pn)) maps utility functions u to the solution
s that maximize

∑
i vi(s). Such social choice functions are called efficient.

We simplify notation a bit. As we consider direct mechanisms, each agent effectively reports
a valuation function. To make the distinction clear, we denote this reported valuation by bi,
whereas the true (only privately known) valuation is denoted by vi. Both belong to Vi, the set
of possible valuation functions for agent i. The cartesian product of all Vi, we denote by V; the
cartesian product of all Vj except Vi by V−i.

Slightly abusing notation, we will denote a mechanism in quasilinear environments as
(f, p1, . . . , pn), where f : V→ S is a social choice function and pi : V→ R indicates the amount
of money that player i needs to pay.

2 Groves Mechanisms
Next we show the main positive result in this setting.

Definition 10.1 (Groves Mechanism). A Groves mechanism is a mechanism (f, p1, . . . , pn)
in a quasilinear environment in which:
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• f(b) ∈ arg maxs∈S
∑

i bi(s), and

• for every i, pi(b) = hi(b−i)−
∑

j 6=i bj(f(b)), where hi : V−i → R is an arbitrary function
that does not depend on bi (let alone vi).

Theorem 10.2 (Vickrey-Clarke-Groves). Every Groves Mechanism is an incentive compatible
mechanism.
Proof. Observe that for all bi, b−i,

ui(bi,b−i) = vi(f(bi,b−i))− pi(bi,b−i) = vi(f(bi,b−i))− hi(b−i) +
∑
j 6=i

bj(f(bi,b−i)) .

On input (vi,b−i), the function f returns a solution s∗, which maximizes vi(s∗) +
∑

j 6=i bj(s∗).
That is, for any s ∈ S, we have vi(s∗) +

∑
j 6=i bj(s∗) ≥ vi(s) +

∑
j 6=i bj(s). In particular, this

holds for s = f(bi,b−i) for all possible bi.
Consequently,

vi(f(vi,b−i)) +
∑
j 6=i

bj(f(vi,b−i)) ≥ vi(f(bi,b−i)) +
∑
j 6=i

bj(f(bi,b−i))

and therefore
ui(vi,b−i) ≥ ui(bi,b−i) .

3 Clarke Pivot Rule
Next we look at how to find appropriate functions h1, . . . , hn. Although every function can
guarantee incentive compatibility of the mechanism, not all of them would make sense in other
aspects. For example, the most simple case is to assume that hi(u−i) ≡ 0 for all i. This
would result every agent receiving a large amount to money from the mechanism. But in many
quasilinear environment scenarios such as auctions, we would want agents to pay money to the
mechanism. Setting hi(u−i) to be an arbitrarily large value is also not good. In this case, agents
would probably receive negative net utilities, and in that case they would rather choose to not
participate in the mechanism. Fortunately, there is a sweet spot in between these two extremes,
given by the Clarke Pivot Rule.
Definition 10.3 (Clarke Pivot Rule). A Groves mechanism is said to have Clarke Pivot Rule
if each hi is of form

hi(b−i) = max
s∈S

∑
j 6=i

bj(s) .

A Groves mechanism with Clarke pivot payments is also called a Vickrey-Clarke-Groves(VCG)
mechanism.

Besides incentive compatibility, a VCG mechanism also enjoys the following nice properties:
• Individual Rationality. If vi(s) ≥ 0 for all s, then ui(vi, b−i) ≥ 0 for all b−i. The reason

is that

ui(vi, b−i) = vi(f(vi, b−i)) +
∑
j 6=i

bj(f(vi,b−i))−max
s∈S

∑
j 6=i

bj(s)

=

max
s∈S

vi(s) +
∑
j 6=i

bj(s)

−
max

s∈S

∑
j 6=i

bj(s)

 ≥ 0 .

The term is non-negative because vi(s) +
∑

j 6=i bj(s) ≥
∑

j 6=i bj(s) for all s. Therefore this
also holds for the maximum.
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• No Positive Transfer. For all b, we have

pi(b) =

max
s∈S

∑
j 6=i

bj(s)

−
∑

j 6=i

bj(f(b))

 ≥ 0 ,

because
∑

j 6=i bj(f(b)) ≤ maxs∈S
∑

j 6=i bj(s): The left-hand side is just one possible value
that this expression can take whereas it is maximized on the right-hand side.

4 Examples

4.1 Single-Item Auctions Revisited

As a first example for VCG, let us consider single-item auctions again. Remember that each
agent’s valuation function vi given by

vi(s) =
{
ti if agent i receives the item in s
0 otherwise .

Given the vector b, the function f selects the agent with the highest bid. Let this agent be
denoted by i∗. For i∗, we now have

pi∗(b) = hi∗(b−i∗)−
∑
j 6=i∗

bj(f(b)) .

For j 6= i∗, we have bj(f(b)) = 0 because agent j does not get the item. Furthermore

hi∗(b−i∗) = max
s∈S

∑
j 6=i∗

bj(s) .

For all agents i 6= i∗

hi(b−i) =
∑
j 6=i

bj(f(b)) = bi∗ .

That is, agent i∗ pays the second highest bid, the other agents pay nothing. This is exactly
the second-price auction.

4.2 Sponsored Search Auctions

In a sponsored search auction, we sell k < n ad slots on a search results page. The higher the
slot is displayed on the page, the more likely it will be clicked. For slots 1, . . . , k, we assume
click through rates of α1 ≥ α2 ≥ . . . ≥ αm. Agent i’s valuation is expressed in terms of a single
number vi such that vi(s) = viαj if agent i gets slot j in s.

If v1 ≥ v2 ≥ . . . ≥ vn, then the social-welfare optimize allocation gives slot j to bidder
j. This results in social welfare

∑k
j=1 vjαj . The optimal social welfare without agent i is∑i−1

j=1 vjαj +
∑k+1

j=i+1 vjαj−1. Consequently, given truthful reports, agent i’s VCG payment is

pi(v) =
i−1∑
j=1

vjαj +
k+1∑

j=i+1
vjαj−1 −

i−1∑
j=1

vjαj +
k∑

j=i+1
vjαj

 =
k+1∑

j=i+1
vj(αj−1 − αj) .

Interestingly, for mysterious reasons in practice this scheme is not applied. Instead a rule
called generalized second price is used: Agent i has to pay vi+1αi+1. This is generally not
incentive compatible.
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4.3 Procurement Auction

In a procurement auction, one buyers wants to buy an item that is offered by multiple sellers.
Each seller incurs a private cost ci for furnishing the item. Indeed, this setting can be modeled as
an ordinary single-item auction by assuming negative values for winning the item, i.e., ti = −ci.
The VCG mechanism therefore buys the item from the seller reporting the lowest cost. However,
with Clarke pivot rule, we end up with a weird payment scheme. Observe that the function hi

is always 0. Therefore, losers have to pay the highest cost. The winner does not have to pay
anything. This is not individually rational.

Choosing different functions hi, namely restricting the maximum to only go over solutions in
which agent i does not supply the item, we get a more reasonable payment rule. In this case,
the agent with the lowest reported cost is compensated the second lowest cost; the payments for
the other agents are 0. This way, we are again individually rational but have positive transfers.
We would have incentive compatibility for any choice of the hi functions.

4.4 Buying a Path in a Network

Consider a communication network, which is modeled by a directed graph G. There are two
specified vertices s and t, which we would like to connect by a path. Each agent owns one edge
e of the graph an incurs (private) cost ce if the path is routed along his edge. Consequently, the
mechanism has to compensate the agent for the cost by a payment. Using Clarke pivot rule, we
again end up with unnatural payments because it penalizes losers. However, it is possible to
generalize the functions from procurement auctions in precisely the same way.

Let P denote the set of all paths from s to t. We need to find the socially optimal solution p,
which minimizes

∑
e∈p ce. This can be done easily by computed the shortest path from s to t.

Consider the following example network. Numbers on the edges indicate the ce values.

s

a

b

t

1 3

2 4

If all agents report truthfully, the path via a is selected. The agent in charge of (s, a) receives
compensation 6− 3 = 3, the agent in charge of (a, t) receives 6− 1 = 5.

5 Limitations
We have seen that VCG mechanisms work well in many environments. However, it does this
now solve all questions regarding mechanism design with money. There are several limitations:
First of all, to build a VCG mechanism, we have to solve the welfare-maximization problem
optimally. In many cases, this problem is actually intractable. Below we will see that only
approximating social welfare is not enough. VCG also does not optimize the payments in any
sense. For example, it does not even try to maximize the revenue obtained by the payments.
Also, agents only have a limited budget, but we do not ensure that they only spend a certain
amount. Finally, it might be a problem that agents collude. Although each single agents cannot
benefit from false reports themselves, other agents can.

Probably the biggest limitation from an algorithmic aspect is the fact that VCG requires
a welfare-maximizing solution. It will be instructive to see that this is indeed necessary
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because there are approximation algorithms that cannot be turned into an incentive compatible
mechanism.

Theorem 10.4. There are functions f such that there is no incentive compatible mechanism
(f, p1, . . . , pn), even for

∑
i bi(f(b)) ≥ 1

2 maxs∈S
∑

i bi(s) for all b.

Proof. We consider the problem of selling m items to n agents. Each agent i has a separate
valuation vi,j for each of the items j. To run VCG, we would need to find the maximum-weight
matching of the bipartite allocation graph. This is possible in polynomial time. However, a fast
way to find a reasonable matching is the greedy algorithm: Always take the maximum-weight
edge whose both endpoints are still unmatched. It is easy to see that this algorithm is a
2-approximation. That is, we have

∑
i bi(f(b)) ≥ 1

2 maxs∈S
∑

i bi(s) for all b.
We consider this kind of instance to show that no payment scheme can render the mechanism

incentive compatible.

1

2

A

B

x

y

0

1

There are two items A and B. Bidder 1 has values x and y; bidder 2 has values 0 and 1.
From different values of x and y, we will conclude properties of the payments that an incentive
compatible mechanism would need to fulfill. We keep bidder 2’s valuation and report fixed at all
times.

Step 1: In every report that bidder 1 can make that gets him item A, bidder 1 pays the
same amount. Suppose there is a pair of reports b1, b′1 with different payments in which bidder
1 gets item A. Without loss of generality p1(b1, v2) < p1(b′1, v2). If player 1’s true valuation is b′1
then he would be better off by reporting b1 instead. The same argument also holds for item B;
call the respective prices pA and pB.

Step 2: We now claim that pA = pB. Consider an arbitrarily small ε > 0. If x = 1 + 2ε,
y = 1+ε, then bidder 1 could misreport values 0 and 1+ε. We then have u1(v1, v2) = 1+2ε−pA,
u1(b′1, v2) = 1 + ε− pB. As u1(v1, v2) ≥ u1(b′1, v2), we have pB ≥ pA− ε. Therefore pB ≥ pA. We
can show pB ≤ pA, by considering x = 1 + ε, y = 1 + 2ε.

Step 3: Consider x = 1
4 , y = 1

2 . Truthful reporting gives bidder 1 a utility of u1(v1, v2) =
1
4 − pA. Claiming instead values 0 and 2 would give utility 1

2 − pB = 1
2 − pA.
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