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Revenue-Maximizing Auctions
Instructor: Xiaohui Bei

So far all mechanisms we studied focus on optimizing a specific objective function: the social
welfare objective, which is defined as the sum of valuations of all agents. In practice, there
are a number of other important objectives that people are interested in besides social welfare.
Revenue, defined as the total amount of money that the auctioneer collects from the mechanism,
is one obvious example. In this lecture we discuss auctions that are explicitly designed to
maximize revenue.

1 Difficulties in Prior-Free Setting
As an example to illustrate the difficulties that one might encounter when the objective is
maximizing revenue. Let us consider the simplest case in auctions, where there is only one item
and one bidder with private valuation v for the item. According to the incentive compatibility
characterization for the single-parameter environment, every incentive compatible mechanism
has to be “posted price” mechanisms. That is, the auctioneer posts a fixed price of r. If the
bidder has valuation v ≥ r, the auction sells the item and generates a revenue of r. If v < r, the
item is not sold and the revenue is 0.

Maximizing social welfare in this case is trivial: just set the price r = 0. Note that this is an
optimal strategy independent of the value v. However, when comes to the revenue objective,
one can immediately realize that there does not exist a mechanism that can even approximately
optimize the revenue for all v. For example, a mechanism with posted price r will do terribly if
on inputs smaller than r or much bigger than r. Therefore, in order to have any meaningful
solutions to this problem, one has to be provided with some additional information about the
private valuation v.

2 Bayesian Analysis
To deal with this issue, in this lecture we introduce the most classical and well-studied setting:
the Bayesian analysis. We again focus on the domain of single-parameter settings. In a Bayesian
setting, we assume the following additional information:

• Each bidder i’s valuation vi is independently drawn from a distribution Fi with density
function fi and support within the interval [0, vmax]. Recall that Fi(x) denotes the
probability that a random variable drawn from F has value at most x.

• The distributions F1, . . . , Fn are known in advance to the auctioneer. The realizations
v1, . . . , vn of bidders are private information as before.

• The goal for the auctioneer is to design an incentive compatible and individual rational
auction that maximizes his expected revenue, where the expectation is with respect to the
given distribution F1 × F2 × · · · × Fn. Such auction is also called an optimal auction.

Remark. It is worth noting that for the analysis in this lecture, we assume that distributions
F1, . . . , Fn are unknown information to each bidder. Hence we focus on incentive compatibility
in expectation where the expectation is over the randomness of the mechanism, but not the
distributions F1, . . . , Fn. Although the main results in today’s lecture also apply more generally
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to “Bayes-Nash incentive compatible” auctions, in which case the bidders must know the
distributions F1, . . . , Fn.

2.1 One Buyer One Item Revisited

With these additional information, now let us reconsider the problem of selling one item to one
buyer. This time, we further assume that the bidder’s valuation v is drawn from distribution
F . Again one considers mechanisms with posted price r. Now the expected revenue is simply
r · [1− F (r)]. With different F , one can compute the optimal price r that maximize this term.
The resulting auction will be the optimal auction for this setting. For example, if F is the
uniform distribution on [0, 1], the optimal price is 1/2, and in turn the optimal expected revenue
will be 1/4.

One can further generalize this example to two bidders. For example, if both v1 and v2 are
uniformly distributed on [0, 1]. The Vickrey auction has the revenue equals to the expected
value of the smaller bid, which is 1/3. Then we could also supplement the Vickrey auction with
a reserved price: a Vickrey auction with reserved price r gives the item to the highest bidder,
unless all bids are less than r. And the payment is the higher value between r and the second
highest bid. One can do the computation and derive that with two bidders, the optimal reserved
price is 1/2, and the resulting auction has an expected revenue of 5/12, which is better than
the original Vickrey auction. But we are not sure if this is the optimal auction in this setting.
There might be other formats of incentive compatible auctions that have better revenues. The
analysis becomes much more complicated due to the increase of space of incentive compatible
mechanisms. In the rest of this lecture, we will talk about Myerson’s theorem, which provides a
complete solution to this problem in the single-parameter setting.

3 Virtual Welfare
Recall that in general single-parameter setting with n bidders and one item, a mechanism consists
of an allocation function xi(b) and a payment function pi(b) for each bidder. The expected
revenue of this mechanism is

Eb

[∑
i

pi(b)
]

=
∑

i

[∫
b−i

f−i(b−i)
(∫

bi

fi(bi)pi(b) dbi

)
db−i

]

Right now we do not know how to analyze this objective. But one thing we do know how to
analyze is the social welfare:

Eb

[∑
i

vi(b)
]

=
∑

i

[∫
b−i

f−i(b−i)
(∫

bi
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]

These two formulas look very much alike. Hence we wonder: can we reduce expected revenue
maximization to expected social welfare maximization in some “virtual” space?

That is, we hope to find some virtual valuation function φi(bi) for each bidder i. Such that
the expected revenue of a mechanism E[

∑
i pi(b)] is always equal to the expected “virtual social

welfare” E[
∑

i φi(bi) · xi(b)].
In order for this to hold, it suffices for the virtual valuations to satisfy∫ vmax

0
fi(bi)pi(bi) dbi =

∫ vmax

0
fi(bi)φi(bi)xi(bi) dbi

for every i and b−i.
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By Myerson’s Lemma, we can replace the payment function pi(bi) by bixi(bi)−
∫ bi

0 xi(t) dt.
Then the expected payment of bidder i becomes

E[pi(bi)] =
∫ vmax

0
fi(bi)pi(bi) dbi

=
∫ vmax

0
fi(bi)

(
bixi(bi)−

∫ bi

0
xi(t) dt

)
dbi

=
∫ vmax

0
bixi(bi)fi(bi) dbi −

∫
bi

∫ bi

0
xi(t)fi(bi) dtdbi

Next we switch the order of integration in the second term, and then rename t to bi to get

E[pi(bi)] =
∫ vmax

0
bixi(bi)fi(bi) dbi −

∫ vmax

0
xi(t)

∫ vmax

t
fi(bi) dbi dt

=
∫ vmax

0
bixi(bi)fi(bi) dbi −

∫ vmax

0
xi(t) (1− Fi(t)) dt

=
∫ vmax

0
bixi(bi)fi(bi) dbi −

∫ vmax

0
xi(bi) (1− Fi(bi)) dbi

=
∫ vmax

0

[
bi −

1− Fi(bi)
fi(bi)

]
xi(bi)fi(bi) dbi

Hence in order to let E[pi(bi)] =
∫ vmax

0 fi(bi)φi(bi)xi(bi) dbi, we can just let

φi(vi) = vi −
1− Fi(vi)
fi(vi)

.

Such definition of φi(vi) is called the virtual valuation of bidder i with valuation vi. Note that
this virtual valuation depends on bidder i’s own valuation and his distribution, and not on those
of others. And we have just showed that in every auction,

Theorem 11.1. The expected revenue of any incentive compatible mechanism, is equal to its
expected virtual welfare, i.e., E[

∑
i pi(b)] = E[

∑
i φi(bi) · xi(b)].

Hence we can now reduce the problem of revenue maximization to the problem of welfare
maximization.

4 Bayesian Optimal Auctions
The above theorem allows us to describe the following Myerson’s optimal mechanism:

(1) Given bids b and distributions F1, . . . , Fn, compute “virtual bids” b′i = φi(bi) for each
bidder i.

(2) Run VCG mechanism on the virtual bids b′ to get the allocation rule x′ and payments p′.

(3) Output (x, p)← (x′, φ−1(pi)).

It seems that Myerson’s optimal mechanism can help us maximize the virtual welfare, hence
revenue, of the mechanism. However, there is still one issue left: is this mechanism incentive
compatible? By the incentive compatibility characterization theorem, this depends on whether or
not we have a monotone allocation rule. Hence our question is: is this virtual welfare-maximizing
rule monotone? The answer to this question depends on the distribution F . In fact, if we
virtual valuation function φ is monotone increasing, it can be easily seen that the virtual
welfare-maximizing allocation rule must also be monotone.
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Definition 11.2. A distribution F is regular if the corresponding virtual valuation function
φ(v) = v − 1−F (v)

f(v) is monotone increasing.

Lemma 11.3. Myerson’s optimal mechanism is incentive compatible if and only if for every
bidder i, distribution Fi is regular.

Myerson’s work can also be extend to accommodate the case where φ is not monotone. But
we do not cover it here.

4.1 Examples Revisited

Now let us return to the single-item auction with n i.i.d. bidders. We further assume that for
each bidder the distribution is regular. Hence the optimal auction allocates the item to the
bidder with the highest virtual valuation. Except that there is a catch: in general we assume
the valuation of a bidder is always nonnegative, but even so the virtual valuation could still
be negative. When the highest virtual valuation is negative, the virtual welfare-maximizing
allocation should not allocate this item to any bidder.

When bidders are all i.i.d, they have the same virtual valuation. This allocation rule is
equivalent to the Vickrey auction with a reserved price of φ−1(0).

Corollary 11.4. When bidders are i.i.d with regular distributions, the optimal auction is Vickrey
auction with reserved price φ−1(0).

For example, if every bidder i has an uniform distribution on [0, 1], his virtual valuation
function becomes φ(vi) = 2vi − 1. In this case, the optimal auction is just the Vickrey auction
with reserved price 1/2.
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