
Algorithmic Game Theory, Summer 2015 Lecture 3 (4 pages)

Complexity of Equilibria in Congestion Games

Instructor: Thomas Kesselheim

We have seen that every finite game has a mixed Nash equilibrium. Every congestion game
even has a pure Nash equilibrium. However, no algorithm is known to efficiently compute these
equilibria. Therefore today’s question is: What is the computational complexity of finding an
equilibrium? How can one formally show hardness?

We know the respective equilibrium always exists. Therefore, we are not talking about
decision problems here but about search problems. This kind of problems is covered by a
complexity class called FNP, which extends NP. Stated informally, a search problem belongs
to FNP if, given an instance and a solution, one can verify in polynomial time whether this
solution is correct.

The mentioned equilibrium problems are contained in FNP. However, they are not FNP-
complete. Therefore, one has focused attention on subclasses of FNP, namely PLS and PPAD.
Both PLS and PPAD contain problems for which no polynomial time algorithm is known.
Therefore PLS- or PPAD-completeness gives strong evidence that a search problem is hard to
solve.

Finding a mixed Nash equilibrium in a finite game is PPAD-complete. Even understanding
the definition of PPAD and seeing that this problem is contained to PPAD is fairly complex.
Therefore, we will instead consider pure Nash equilibria in congestion games.

1 The Complexity Class PLS

Rosenthal’s potential function allows us to interpret congestion games as local search problems:
Nash equilibria are local optima with respect to potential function.

Therefore the question boils down to: How difficult is it to compute local optima?

Definition 3.1. The complexity class PLS (Polynomial Local Search) contains search problems
with an objective function and a specified neighborhood relationship Γ. It is required that there
are polynomial-time algorithms A, B, and C for the following tasks.

• Algorithm A computes an arbitrary feasible solution (the objective function value is irrel-
evant).

• Given any solution s, algorithm B computes its objective value.

• Given any solution s, algorithm C either

– computes a solution in Γ(s) with better objective value, or

– certifies that s is a local optimum.

Definition 3.2. The search problem Positive Not-All-Equal kSat (Pos-NAE-kSAT) is defined
as follows.

Input: Formula over n binary variables x1, . . . , xn described by m clauses c1, . . . , cm each
containing k positive literals, and m weights w1, . . . , wm.

Feasible Solutions: Any assignment s ∈ {0, 1}n

Objective Function: Clause ci is satisfied by an assignment s ∈ {0, 1}n if its literals are not
all assigned the same value. The value of an assignment is the weighted sum of satisfied
clauses.

Algorithmic Game Theory, Summer 2015 Lecture 3 (page 2 of 4)

Neighborhood Relationship: Assignments s and s′ are neighboring if they differ in exactly
one position.

Note that, as a local search problem, one has to only find a local optimum, i.e., an assignment
without neighboring assignment of higher value.

Example 3.3. Example instance of Pos-NAE-3SAT:

c1 = x1x2x3; c2 = x1x2x4; c3 = x1x2x5; c4 = x3x4x5

w1 = 100; w2 = 110; w3 = 120; w4 = 100

An example for a local optimum is the assignment

x1 = 0; x2 = 0; x3 = 1; x4 = 1; x5 = 1

of value 330. Each of the five neighboring assignments has a value of at most 330.

Definition 3.4 (Max-Cut). The search problem Max-Cut is defined as follows.

Input: Graph G = (V,E) with edge weights w : E → N.

Feasible Solutions: A cut, which partitions V into two sets Left and Right.

Objective Function: The value of a cut is the weighted number of edges with one endpoint
in Left and one endpoint in Right.

Neighborhood Relationship: Two cuts are neighboring if one can obtain one from the other
by moving only one node from Left to Right or vice versa.

Definition 3.5 (PLS-reduction). Given two PLS problems Π1 and Π2, there is a PLS-reduction
(written Π1 ≤PLS Π2) if there are two polynomial-algorithms A and B:

• Algorithm A maps every instance x of Π1 to an instances of Π2.

• Algorithm B maps every local optimum of A(x) to a local optimum of x.

As usual, one can read the symbol ≤PLS as “is not harder than”. The reduction Π1 ≤PLS Π2

gives us a way to derive an algorithm for Π1 from an algorithm for Π2.

Theorem 3.6. Pos-NAE-3Sat ≤PLS Pos-NAE-2Sat

Proof. For each 3-clause (x1, x2, x3) of weight w, Algorithm A introduces the three 2-clauses
(x1, x2), (x1, x3), (x2, x3) each of weight w/2.

The value of an assignment in the 2SAT instance is identical to its value in the 3SAT
instance as a 3-clause is satisfied if and only if exactly two of the three corresponding 2-clauses
are satisfied.

Hence, the local optima of both instances coincide (Algorithm B is trivial), and the condi-
tions of a PLS-reduction are fulfilled.

Theorem 3.7. Pos-NAE-2Sat ≤PLS Max-Cut

Proof. Each variable is represented by a node. Each clause and its weight is represented by a
weighted edge. Multi-edges are merged to single edges by adding their weight.

Given an assignment for the variables, 0 is interpreted as Left and 1 is interpreted as Right.
This way, the local optima of both instances coincide, and the conditions of a PLS-reduction
are fulfilled.

Algorithmic Game Theory, Summer 2015 Lecture 3 (page 3 of 4)

Definition 3.8 (PLS-completeness). A problem Π∗ in PLS is called PLS-complete if, for every
problem Π in PLS, it holds Π ≤PLS Π∗.

It is generally assumed that there are problems in PLS that cannot be solved in polynomial
time. (As PLS is only a subclass of FNP, this is a stronger statement than P 6= NP.) For this
reason, showing PLS-completeness effectively shows that presumably there is no polynomial-
time algorithm. One can show that POS-NAE-3SAT is PLS-complete in a similar way as one
shows that SAT is NP-complete. By transitivity of ≤PLS, we immediately get the following
corollary.

Corollary 3.9. POS-NAE-2SAT and Max-Cut are PLS-complete.

2 Complexity of Pure Nash Equilibria in Congestion Games

Let us now interpret the problem of finding a pure Nash equilibrium in a congestion game as a
search problem. In this case, the feasible solutions are strategy profiles. They are neighboring
if they differ in the choice of only a single player. We have seen before that in a unilateral
deviation step, the Rosenthal potential changes by the same amount as the respective player’s
cost. For this reason, pure Nash equilibria correspond to local minima of Rosenthal’s potential
function.

Observation 3.10. It is a PLS problem to find a pure Nash equilibrium in a congestion game.

For the problem of computing a pure Nash equilibrium in congestion games, Fabrikant,
Papadimitriou, and Talwar show the following results.

network games general games

symmetric ∃ poly-time algo PLS-complete

asymmetric PLS-complete PLS-complete

We present only one of these PLS-completeness proof, the one for general, asymmetric
congestion games (the simplest one).

Theorem 3.11. Max-Cut ≤PLS Pure Nash Equilibrium in Congestion Games

Proof. For this reduction, we have to map instances of Max-Cut to congestion games. Given
a graph G = (V,E) with edge weights w : E → N, this game is defined as follows. Players

correspond to the vertices V . For each edge e ∈ E, we add two resources rlefte and rrighte . The
delays are defined by

drlefte
(k) = d

rrighte
(k) =

{
0 for k = 1

we for k ≥ 2
.

Each player v ∈ V has two strategies, namely either to choose all the “left” resources for its
incident edges {rlefte | v ∈ e} or all the “right” resources for its incident edges {rrighte | v ∈ e}.

This way, cuts in the graphs are in one-to-one correspondence to strategy profiles of the
game. A cut of weight W is mapped to a strategy profile of Rosenthal potential

∑
e∈E we −W

and vice versa. To see this, consider an edge e ∈ E. If its endpoints are in different sets of the
cut, its resources contribute nothing to the potential; if its endpoints are in the same set, then
the contribution is 0 + we = we.

Consequently, local maxima of Max-Cut correspond to local minima of the Rosenthal po-
tential, which are exactly the pure Nash equilibria. Therefore, the second part of the reduction
is again trivial.

Algorithmic Game Theory, Summer 2015 Lecture 3 (page 4 of 4)

In a symmetric network congestion game, there is a directed graph G = (V,E) with delay
functions de : {1, . . . , n} → Z, e ∈ E with a source s ∈ V and a target t ∈ V , such that each
player wants to allocate a path of minimal delay between s and t. In more general asymmetric
network congestion games, different players might have different source-destination pairs.

It is known that there are instances of symmetric congestion games in which there are states
such that every improvement sequence from this state to a Nash equilibrium has exponential
length. Hence, applying improvement steps is not an efficient (i.e. polynomial time) algorithm
for computing Nash equilibria in these games. However, there is another algorithm which finds
Nash equilibria in polynomial time.

Recommended Literature

• Tim Roughgarden’s lecture notes http://theory.stanford.edu/~tim/f13/l/l19.pdf

and lecture video https://youtu.be/5xu8C0wj7UU

• M. Yannakakis. Computational complexity. Chapter 2 in E. Aarts and J. Lenstra (Eds),
“Local Search in Combinatorial Optimization”, pages 19–55, 1997. (Survey of the class
PLS)

• A. Fabrikant, C. Papadimitriou, K. Talwar. The complexity of pure Nash equilibria.
STOC 2004. (PLS-Completeness in Congestion Games)

• H. Ackermann, H. Röglin, B. Vöcking. On the impact of combinatorial structure on con-
gestion games. Journal of the ACM, 55(6), 2008. (Further Results on PLS-Completeness)

http://theory.stanford.edu/~tim/f13/l/l19.pdf
https://youtu.be/5xu8C0wj7UU

	The Complexity Class PLS
	Complexity of Pure Nash Equilibria in Congestion Games

