
358 



359 



timed combinational gates with input Q and output D. 
here: shown only 1-bit flip-flop. Of course, staggering to registers is possible. 

360 



computing f(f(...(initial state)..)) 
 
timing constraints to ensure setup-hold conditions 

361 



implementing state machines. 
next state depends on current state & input. 
We assume here that the input is hold stable by the environment. 
The output is part of the state. 

362 



Sometimes more efficient to calculate output from state -> potentially smaller 
register 

363 



output directly depends on (current !) input -> potentially faster, but mind stability of 
inputs again. 
variations with latched inputs and/or outputs exist, also. 

364 



transitions to same state with different outputs possible 

365 



366 



precharge during clk = 0 and potentially decharge during clk = 1. 

367 



mind charge sharing 

368 



369 



370 



371 



gate can only make a 1->0 transition or remain at 1. 

372 



373 



374 



parasitic capacitance at intermediate points -> these can charge instead of the main 
(output) capacitance -> “charge sharing” 

375 



376 



current from output capacitance to parasitic capacitance below 
at end of evaluation phase: only a weak 1 at output! -> this can cause problems from 
higher current in next gate to wrong values in next gate. 

377 



we also load the parasitic capacitance in between. 

378 



379 



380 



precharging both y and y’ during the negative clock phase. 

381 



y’ discharges until y has reached threshold voltage of nMOS. The problem is that both 
evaluate their input when the active clock edge comes, 
but the output of the first INV needs time to travel to the input of the next INV. 
-> 1. We could delay the clock of the second INV (which is not a good solution in 
presence of lots of dependencies) 
-> 2. Or, we make sure that all outputs and thus also next gate inputs are initially 0 
and only in case they are evaluated to 1, they get 1. 
-> invert them 

382 



in the figure: the INV in the middle is a standard CMOS inverter. 
 
during precharge -> all next gate inputs are charged to 0 -> no problem. 
 
But mind: this is now not an identity gate anymore since we invert in-between. 
Domino-logic makes only allows to directly implement non-inverting gates. 
If we need negated outputs, we need to negate after the domino circuit with a 
standard CMOS inverter. 

383 



384 



385 



pipelining: split up computation into intermediate steps. 
Here f(x) = f_2(f_1(x)). 
 

386 



balancing/pipelining if 
- some computations have high latency, others not -> split up into equal parts and get 
smaller balanced latency 
- reusing hardware components 
 

-clock skew = maximum difference in time, corresponding active transitions occur at 
any two clk ports. Ideally 0 skew. Challenges due 
to layout and delay variations. 

387 



388 



389 



390 



initially all C-element states 0. 
C_d (= capture done) is a delayed C (= capture). 
P_d (= pass done) is a delayed P (= pass) 
 
intially P = C = P_d = C_d = 0. 
loop: 
when C makes a 0-1 transition -> captures data on D and holds it on Q. 
when P makes a 0-1 transition -> pass data from D to Q. 
when C makes a 1-0 transition -> captures data on D and holds it on Q. 
when P makes a 1-0 transition -> pass data from D to Q. 
end loop. 

391 



392 



only the control structure 

393 



only the control structure 

394 



395 



396 



assume we do not ack at right interface. -> ack right remains 0. 

397 



398 



399 



+ one more req... 
 
remember: different P(ass) and C(apture) -> latch is in capture mode. 
-> 3 consecutive different C-element states -> 3 latches that would sit in between 
would be in capture mode. 

400 



latches here with positive enable. 
“=“ gate is implemented by XNOR 

401 



402 



403 



v, n... valid/neutral. 
data... possibly several bit, requires proper coding of data, e.g., dual-rail encoding 
(see lecture on encodings) 
out... single bit. 

404 



data and out can be several bit each. 
Both data and out need to be in a Delay-insensitive code (here: dual-rail encoding). 
dynamic function with precharge & evaluate phase. 

405 



by Williams and Horowitz 
see Wiliams: Self-timed rings and their application to division. PhD thesis, 1991. 

406 



initially: 
all data neutral (= all 0) 
-> CDs output 0. 
-> all dynamic function blocks in evaluate mode. 

407 



408 



409 



410 



411 



now fall back to n(eutral) by precharging 

412 



trigger first stage to evaluate again. 

413 



414 



415 



416 



417 


