Beyond classical circuit design
lecture 10

Clocked Design &
Pipelining (Clocked & Asynchronous)

358

Further Reading

Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic: Digital
Integrated Circuits. A Design Perspective. 2" edition. Prentice
Hall, 2003.

Ivan E. Sutherland: Micropipelines. Commun. ACM 32, 6 (June
1989), 720-738.

Steven M. Nowick, Montek Singh: High-Performance
Asynchronous Pipelines: An Overview. Design & Test of
Computers, IEEE , vol.28, no.5, pp.8,22, Sept.-Oct. 2011

359

Clocked Design

—|D Q

E
JAN
t
[k

o

D 0

A
[|

combinational function f

timed combinational gates with input Q and output D.
here: shown only 1-bit flip-flop. Of course, staggering to registers is possible.

360

clk

Clocked Design

D @

E

A

4

clk

D Q
o XXKKXX K aweim XXXX
stable A X stable f(A) X stable f(f(A))

computing f(f(...(initial state)..))

timing constraints to ensure setup-hold conditions

361

Clocked Design in Environment

D @ — output
E in
AN
1‘ in’
clk o
B R — input
next state logic Moore machine

implementing state machines.
next state depends on current state & input.
We assume here that the input is hold stable by the environment.

The output is part of the state.

362

Variants

D Q
E
JAN
t
[k

C

—p 0

next state logic

O

O I output

—— input

Moore machine

Sometimes more efficient to calculate output from state -> potentially smaller

register

363

Variants

s D Q
E
VAN

t
Lk

C

D Q

output+—

<+ input

next state logic

infout

in’fout’

Mealy machine

output directly depends on (current !) input -> potentially faster, but mind stability of

inputs again.

variations with latched inputs and/or outputs exist, also.

364

O in/out

in’/out’

Variants

versus

Mealy -> Moore: split states per output

transitions to same state with different outputs possible

365

Beyond classical circuit design
lecture 10.5

Dynamic CMOQOS

366

Dynamic CMQOS

Like in pseudo nMOS: remove slow pMOS stack.

But:
r"lEj clk—
Yy Yy

a -> a —
b n stack h stack

- clk —||:L

precharge during clk = 0 and potentially decharge during clk = 1.

367

Dynamic CMOS 4NAND

S
L
}j ;
S

P uUuuuu

mind charge sharing

368

Dynamic CMOS INV

1. Precharge output & apply input (here 1)
(I
clk \
Yy f
t

369

Dynamic CMOS INV

2. Evaluate at active clock transition

x /

a
L\

370

Dynamic CMOS INV

1. Precharge output & apply input (here 0)

)
e |

371

Dynamic CMOQOS INV

2. Evaluate at active clock transition

»

X

'
y / |

gate can only make a 1->0 transition or remain at 1.

372

Dynamic CMOS Properties

Glitches:
+ only transitions once from 1->0, or not at all

Speed:

+ very fast (only n stack & smaller load & 0
delay for 1 output)

373

Dynamic CMOS Properties

Power:
+ typically fewer transistors

+ only one transistor driven (n stack) instead
of 2 (n stack and p stack)

+ only transitions once from 1->0, or not at all
- potentially higher switching rate (!)
- clock transistor always switches

374

Charge Sharing

e

F
H

parasitic capacitance at intermediate points -> these can charge instead of the main
(output) capacitance -> “charge sharing”

375

1. evaluate

1

Charge Sharing

2. next charging

0—
T o4, T'
T oL o
T0 oL, o

376

Charge Sharing

3. evaluate 3’. at end of evaluation

1 1

014 T! 1C T 08
0 0 0 L 9
T T

1 T 0 1_|:|_IO

current from output capacitance to parasitic capacitance below
at end of evaluation phase: only a weak 1 at output! -> this can cause problems from
higher current in next gate to wrong values in next gate.

377

Charge Sharing Workaround

k=4 cik—

we also load the parasitic capacitance in between.

378

Charge Sharing Workaround

1. evaluate 2. next charging
1= 1 0—d[0
3—_1_—05‘1 _Olj—_l_—
0_|3 T 0 T
1L =
0‘|j T 0 o4C T
1 N
2 T 0_|:|_ TV

379

Charge Sharing Workaround

3. evaluate 3’. at end of evaluation
0—d4[o— 0—d4Co—
v y
o-p 4L T! 1L T
o f1 0 f1
oL =+ oL, To

:
E

380

clk —

=
clk—

clk \
vl —
yf -

Cascading Gates

clk—

Y |

|
clk—

precharging both y and y’ during the negative clock phase.

381

Cascading Gates

clk— clk —d
a —| Y I Y
clk clk—|
al / 1
Y m
Yy N\ weak 1

(possibly even less)!

y’ discharges until y has reached threshold voltage of nMQOS. The problem is that both
evaluate their input when the active clock edge comes,

but the output of the first INV needs time to travel to the input of the next INV.

-> 1. We could delay the clock of the second INV (which is not a good solution in
presence of lots of dependencies)

-> 2. Or, we make sure that all outputs and thus also next gate inputs are initially O
and only in case they are evaluated to 1, they get 1.

->invert them

382

Cascading Gates: Domino Logic

k=L clk —d
o Y
clk clk—|

clkl” '\ /
T N~
N

@\ g

in the figure: the INV in the middle is a standard CMOS inverter.

during precharge -> all next gate inputs are charged to 0 -> no problem.

But mind: this is now not an identity gate anymore since we invert in-between.
Domino-logic makes only allows to directly implement non-inverting gates.

If we need negated outputs, we need to negate after the domino circuit with a
standard CMOS inverter.

383

Beyond classical circuit design
lecture 10.75

Pipelining

384

Pipelining

* In clocked/synchronous designs

* In clockless/asynchronous designs
— static logic
— dynamic logic

385

Synchronous Pipelining
D Q Dl Q!
A x A
1 f
clk / clk!
versus
D Q Dl Ql D/I Q!!
clk fi clk’ f2 clk”

pipelining: split up computation into intermediate steps.
Here f(x) = f_2(f_1(x)).

386

Balancing

D Q D Q D" Q"
clk < 3ns clk! < 10ns clk"
versus
D Q D.’ Ql DH QH
JAN N JAN N B JAN
t t t

ck =Tns gy =8ns

balancing/pipelining if

- some computations have high latency, others not -> split up into equal parts and get

smaller balanced latency
- reusing hardware components

-clock skew = maximum difference in time, corresponding active transitions occur at

any two clk ports. Ideally O skew. Challenges due
to layout and delay variations.

387

Clockless Pipelining

... With static logic

388

Local handshaking instead of
global clock

x;) Li+1

389

Capture-pass latch

|]

C Py

—D Q|—

Cq P

b

C =P — pass D to @}
C # P — hold Q

390

Sutherland’s Micropipeline
req —
y O v
Q Q
C Pd f C Pd
data —{D Q > [Q —
Cd P Cd P
ack < 1 —

initially all C-element states 0.
C_d (= capture done) is a delayed C (= capture).
P_d (= pass done) is a delayed P (= pass)

intiallyP=C=P_d=C_d=0.

loop:

when C makes a 0-1 transition -> captures data on D and holds it on Q.
when P makes a 0-1 transition -> pass data from D to Q.

when C makes a 1-0 transition -> captures data on D and holds it on Q.
when P makes a 1-0 transition -> pass data from D to Q.

end loop.

391

Sutherland’s Micropipeline

2-phase handshaking (here)
Bundled data (here)
Initially all latches transparent (= pass mode)

Constraints:

— delays from Cto Cp and from P to Pd need to be
long enough for latch hold times

— bundled data constraint

392

Control structure
req —
y O v
\T) I
ack « —

only the control structure

393

req —

o |G

Control structure

[[

ack <

only the control structure

394

Control structure

395

Control structure

396

Control structure

01 req req 01

01 ack: < ack 0

assume we do not ack at right interface. -> ack right remains 0.

397

Control structure

398

Control structure

010 req

req 01

010 ack < . ack 0

0

0 0

1

399

Control structure

req 01

0101 7eq

0101ack= < OLCk 0
1 1 £ 0 £ 1 #

3 different consecutive C-states -> 3 “items” stored

+ one more req...

remember: different P(ass) and C(apture) -> latch is in capture mode.
-> 3 consecutive different C-element states -> 3 latches that would sit in between

would be in capture mode.

400

Mousetrap pipeline

ack«l e e
E E
req —| R Rd—n—bR Rd—h
data —{D Q > [Q—»
f

latches here with positive enable.
“=" gate is implemented by XNOR

401

Mousetrap pipeline

2-phase handshaking
Bundled data
Initially all latches transparent (= pass mode)

Constraints:

— ack delay needs to be long enough for latch hold
time
— bundled data constraint

402

Clockless Pipelining

... with dynamic logic

403

Completion dedection

data —{ CD —— out

[v(data); out T;n(data); out ||

v, n... valid/neutral.

data... possibly several bit, requires proper coding of data, e.g., dual-rail encoding

(see lecture on encodings)

out... single bit.

404

|

Dynamic function block

data —

eval

— Out

eval = 0 -> evaluate out = f(data)
eval = 1 -> precharge out (here to all 0)

data and out can be several bit each.

Both data and out need to be in a Delay-insensitive code (here: dual-rail encoding).

dynamic function with precharge & evaluate phase.

405

PSO pipeline

data —

T [
CD CD
eval eval
J1 f2

CD

eval

fs

by Williams and Horowitz

see Wiliams: Self-timed rings and their application to division. PhD thesis, 1991.

406

PSO pipeline
7 [
CD CD
O" 0]
eval eval
data — n > n
J1 fo
eval eval

eval

fs

eval

initially:

all data neutral (= all 0)

-> CDs output 0.

-> all dynamic function blocks in evaluate mode.

407

PSO pipeline

| !

CD CD CD

O" 0] 0
eval eval eval

data — nv| nv n

J1 fa Uk

eval eval eval

408

PSO pipeline

! [

CD CD CD
01] 0] 0]
eval eval eval

data np nv n

f1 f2 J3

pre eval eval

409

do not fall back
to n since
dynamic logic!

PSO pipeline

data —

CD

1} [
CD CD
01" 0]
eval eval
nvh nv
J1 fa
pre eval

eval

fs

eval

410

PSO pipeline

! [

CD CD CD

01] 01 0]

eval eval eval

data np v nv

f1 f2 J3

pre eval eval

411

nv,

CD

PSO pipeline
i [
CD CD
01‘, 01
eval eval
data — i >
J1 fo
pre pre

eval

fs

nv

eval

now fall back to n(eutral) by precharging

412

CD

PSO pipeline

! [

CD CD
010) 01}

eval eval

data np nvp

J1 f2

eval pre

eval

fs

nv

eval

trigger first stage to evaluate again.

413

e PSO pipeline
between two
data items
1} ‘ [
CD CD
010] 01
eval eval
nv nv
data — >
J1 \ fa
eval pre

CD

eval

fs

nv

eval

414

PSO pipeline

* Dl encoded data (here)

* Initially all latches transparent (= pass mode)

* Constraint:

— CD delay needs to be long enough for latch hold

time

415

PSO pipeline

+ pros of dynamic logic

- handshake delays between 3 stages for
“freeing” storage again after data wave

- spacers between data items
-> can use only half the pipeline

416

Clockless pipelines

+ balancing not necessary (although can
improve)

+ automatic “clock gating” (low energy)
+ very fast initial wave

Other static/dynamic pipeline designs exist that
improve shown designs.

417

