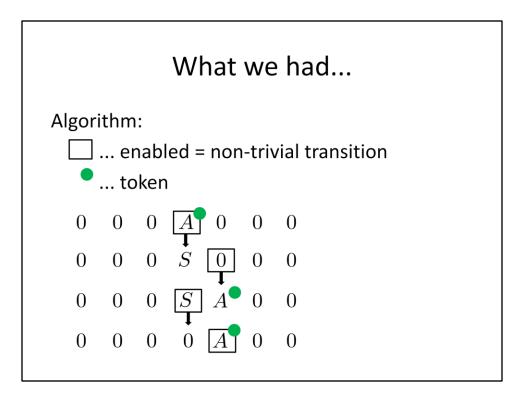
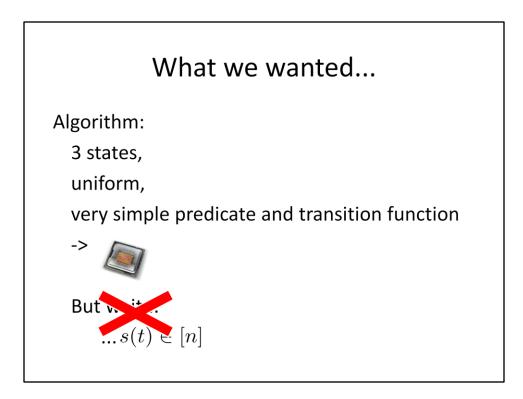


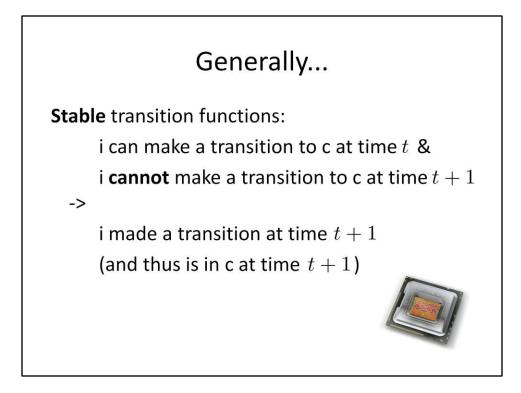
Further Reading

Dijkstra, Edsger W.: *Self-stabilization in spite of distributed control.* Selected writings on computing: a personal perspective. Springer New York, 1982. 41-46.

Brown, Geoffrey M., Mohamed G. Gouda, and Chuan-Lin Wu: *Token systems that self-stabilize.* Computers, IEEE Transactions on 38.6 (1989): 845-852.

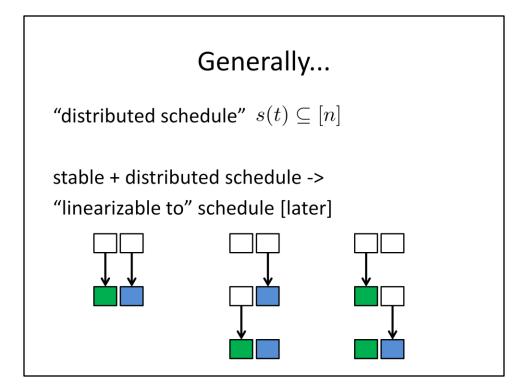


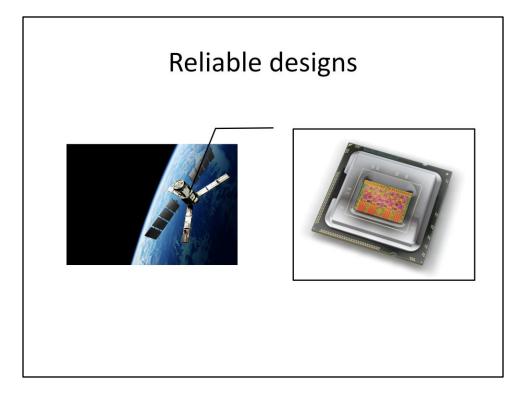


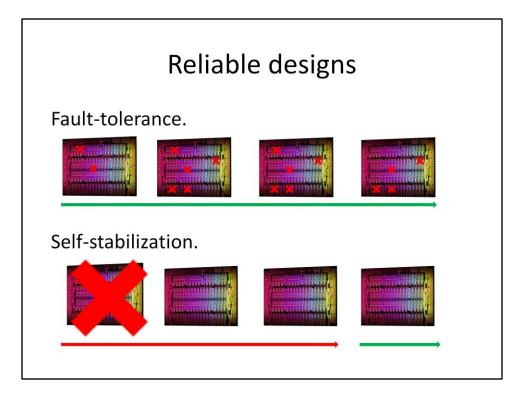


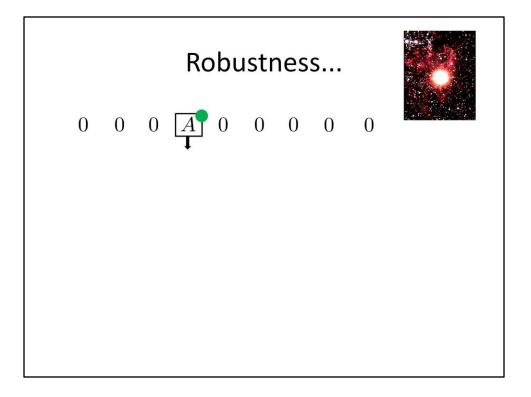
"i can make a transition to c at time t" defined as: i is not in state c at time t and delta_i(x_{i-1}(t) , x_i(t) , x_{i+1}(t)) = c

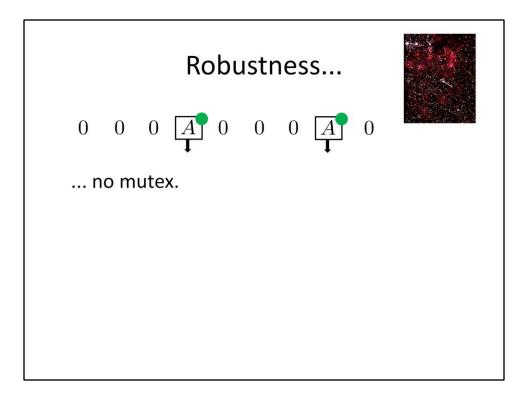
-> "i cannot make a transition to c at time t" defined as: i is either in state c at time t or delta_i(x_{i-1}(t) , x_i(t) , x_{i+1}(t)) \neq c











Fault -> state flip -> a new token

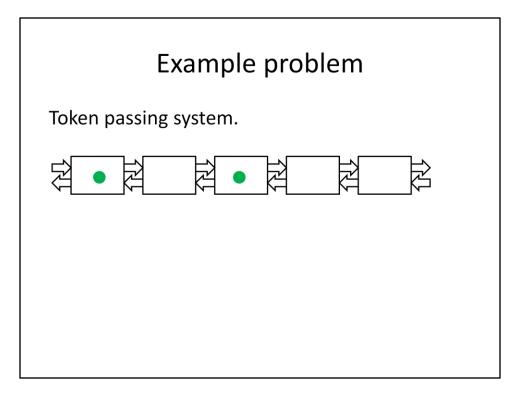
For all initial states, all executions from this state: exists a time T:

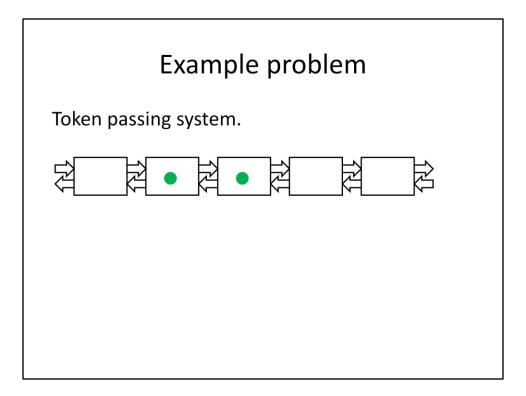
T-postfix fulfils requirements.

Exists a time T: for all initial states, all executions from this state:

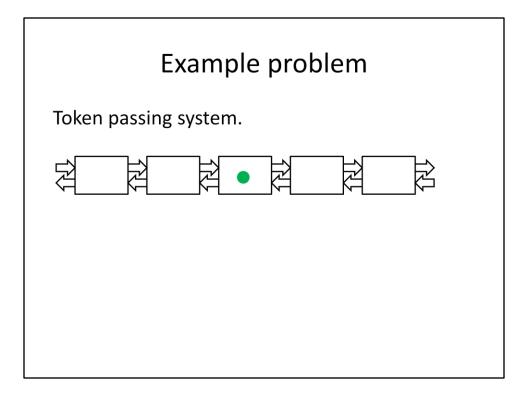
T-postfix fulfils requirements.

difference between self-stabilization and bounded self-stabilization T: only makes sense in stronger schedulers than weak-fair schedulers

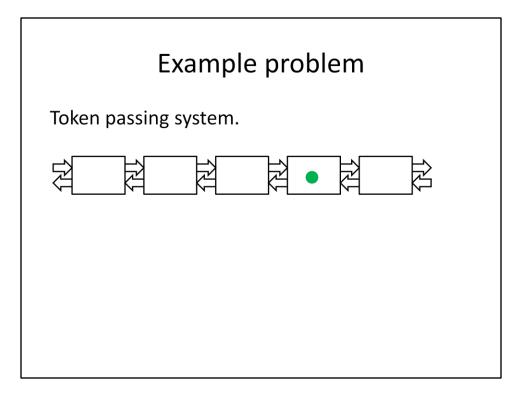


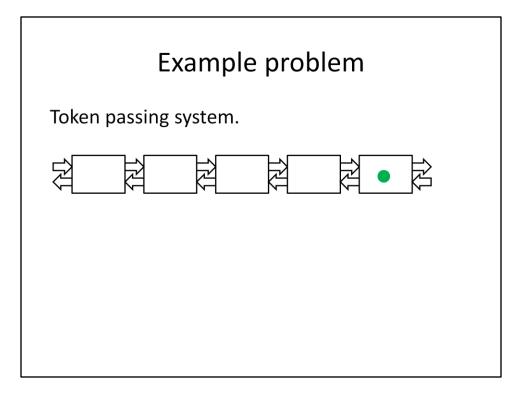


Tokens see each other.



Tokens merge.





"equal speeds are bad"

"equal speeds are bad"

Solution 1. Randomness.

- implementation
- fault-free behavior

random solution: e.g. in synchronous scheduler.

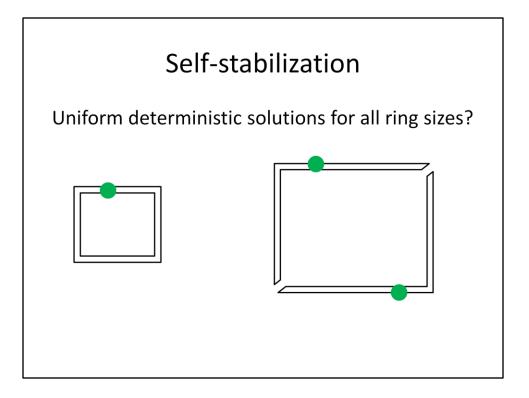
"equal speeds are bad"

Solution 1. Randomness.

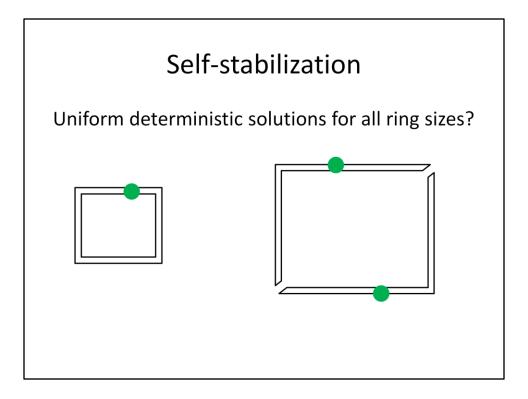
- implementation
- fault-free behavior

But: ... no token case!

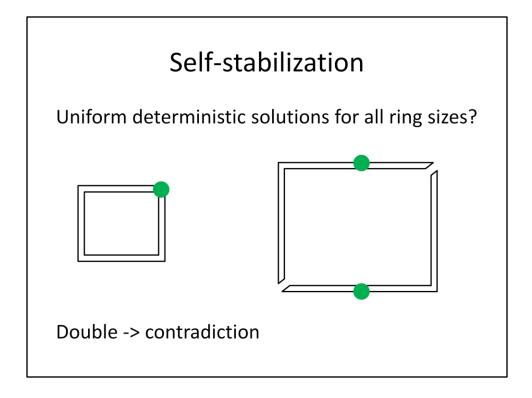
Uniform deterministic solutions for all ring sizes?



Proof that we cannot: duplicate ring. For a node i in the original ring there are corresponding nodes i' and i'' in the duplicated ring with the same initial state. Whenever i is scheduled, schedule i' and i''. Corresponding nodes i and i' and i'' will always have the same state (proof by induction). Thus there will be at least 2 tokens in the duplicated ring.



scheduling i' and i'' when i is scheduled.



Self-stabilization Solution 2. Dijkstra (det, non-uniform, uses size) machine 0: if $x_{i-1} = x_i$ then $x'_i = x_i + 1 \mod (N+1)$ all others (1..N): if $x_{i-1} \neq x_i$ then $x'_i = x_{i-1}$

N+1 nodes, node 0 with different code than others.

N "other" nodes N+1 states from $V = [N+1] = \{0, \dots, N\}$

-> say, state N does not occur.

Obs 1. node 0 first one to have N.

Obs 2. from N(non-N)....(non-N) eventually reach N...N.

Obs 3. from N...N only 1 execution with mutex & weak fairness.

Prop 1. Show $\exists t : x_0(t) = N$

Assume not.

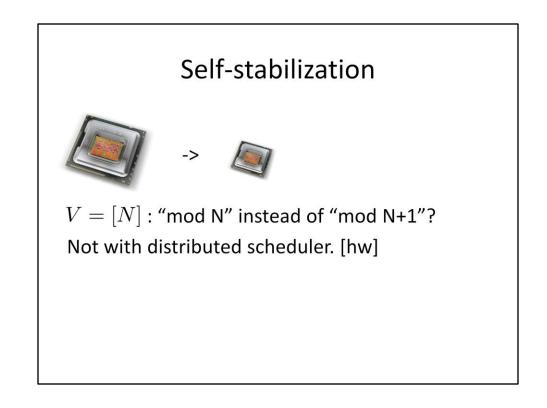
-> 0 makes bounded # non-trivial steps

-> last at time t' with $x_0(t') = a$

-> eventually $a \dots a$

-> eventually 0 makes step

-> contr.

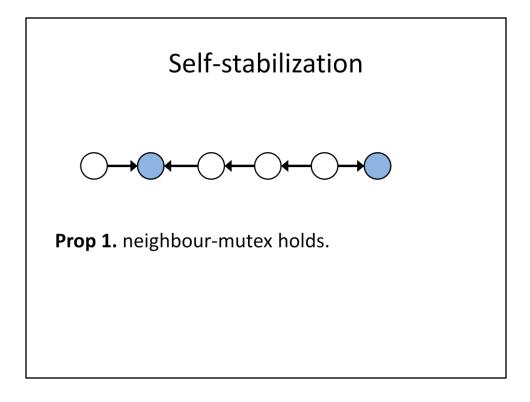


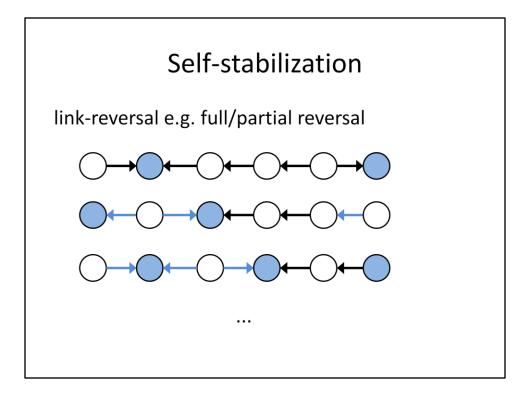
not stable, but:

- works with distributed scheduler
- for all ring sizes exists solution

Solution 3. [Brown, Gouda]

not stable <-> two neighbours try to make a step at the same time





Ring cut...

Prop 2. No deadlock. [hw]

Prop 3. Weak fairness. [hw]

