Beyond classical chip design lecture 2

Self-stabilization (continued)

Further Reading

Dijkstra, Edsger W.: *Self-stabilization in spite of distributed control.* Selected writings on computing: a personal perspective. Springer New York, 1982. 41-46.

Brown, Geoffrey M., Mohamed G. Gouda, and Chuan-Lin Wu: *Token systems that self-stabilize.* Computers, IEEE Transactions on 38.6 (1989): 845-852.

What we had...

What we wanted...

- Algorithm:
 - 3 states,
 - uniform,

very simple predicate and transition function

Generally...

Stable transition functions:

->

i can make a transition to c at time t &

i **cannot** make a transition to c at time t + 1

i made a transition at time t + 1(and thus is in c at time t + 1)

Generally...

"distributed schedule" $s(t) \subseteq [n]$

stable + distributed schedule ->

"linearizable to" schedule [later]

Reliable designs

Reliable designs

Fault-tolerance.

Self-stabilization.

Robustness...

Robustness...

... no mutex.

For all initial states, all executions from this state: exists a time T: T-postfix fulfils requirements.

Exists a time T: for all initial states, all executions from this state:

T-postfix fulfils requirements.

"equal speeds are bad"

"equal speeds are bad"

Solution 1. Randomness.

- implementation
- fault-free behavior

"equal speeds are bad"

Solution 1. Randomness.

- implementation
- fault-free behavior

But: ... no token case!

Uniform deterministic solutions for all ring sizes?

Uniform deterministic solutions for all ring sizes?

Uniform deterministic solutions for all ring sizes?

Uniform deterministic solutions for all ring sizes?

Double -> contradiction

Solution 2. Dijkstra (det, non-uniform, uses size)

machine 0: if $x_{i-1} = x_i$ then $x'_i = x_i + 1 \mod (N+1)$ all others (1...N): if $x_{i-1} \neq x_i$ then $x'_i = x_{i-1}$

N "other" nodes

N+1 states from $V = [N+1] = \{0, \ldots, N\}$

-> say, state N does not occur.

Obs 1. node 0 first one to have N.

Obs 2. from N(non-N)....(non-N) eventually reach N...N.

Obs 3. from N...N only 1 execution with mutex & weak fairness.

Prop 1. Show $\exists t : x_0(t) = N$

Assume not.

-> 0 makes bounded # non-trivial steps

- -> last at time t' with $x_0(t') = a$
- -> eventually $a \dots a$
- -> eventually 0 makes step

-> contr.

V = [N]: "mod N" instead of "mod N+1"? Not with distributed scheduler. [hw]

not stable, but:

- works with distributed scheduler
- for all ring sizes exists solution

Solution 3. [Brown, Gouda]

not stable <-> two neighbours try to make a step at the same time

Prop 1. neighbour-mutex holds.

link-reversal e.g. full/partial reversal

. . .

Ring cut...

Prop 2. No deadlock. [hw]

Prop 3. Weak fairness. [hw]

What we obtain...

... link reversal gives a neighbour-mutex, weak fair scheduler.

potentially unstable algorithm

LR

distributed scheduler

Simulating scheduler

Distributed, weak-fair scheduler ->

Distributed, neighbour-mutex, weak fair scheduler.

Dijkstra's algorithm

