Beyond classical chip design
lecture 2

Self-stabilization (continued)
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What we had...

Algorithm:

... enabled = non-trivial transition
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What we wanted...

Algorithm:
3 states,
uniform,
very simple predicate and transition function




Generally...

Stable transition functions:
i can make a transitiontoc attimet &
i cannot make a transitiontocattimet + 1

| made a transition attime ¢ + 1
(and thusisincattime t + 1)




Generally...

“distributed schedule” s(t) C |n]

stable + distributed schedule ->
“linearizable to” schedule [later]
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Reliable designs




Reliable designs

Fault-tolerance.
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Robustness...
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Robustness...

0004_10000

... N0 Mmutex.




Self-stabilization

For all initial states, all executions from this
state: exists atime T:

T-postfix fulfils requirements.

Exists a time T: for all initial states, all executions
from this state:

T-postfix fulfils requirements.



Example problem

Token passing system.
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Example problem

Token passing system.
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Example problem

Token passing system.
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Example problem

Token passing system.
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Example problem

Token passing system.
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Self-stabilization

“equal speeds are bad”



Self-stabilization

“equal speeds are bad”

Solution 1. Randomness.
- implementation
- fault-free behavior



Self-stabilization

“equal speeds are bad”
Solution 1. Randomness.
- implementation

- fault-free behavior

But: ... no token case!



Self-stabilization

Uniform deterministic solutions for all ring sizes?



Self-stabilization

Uniform deterministic solutions for all ring sizes?
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Self-stabilization

Uniform deterministic solutions for all ring sizes?
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Self-stabilization

Uniform deterministic solutions for all ring sizes?

() >

Double -> contradiction



Self-stabilization

Solution 2. Dijkstra (det, non-uniform, uses size)

machine O:
if ;1 = x; then ), = x; +1 mod (N + 1)

all others (1..N):

if Li—1 ?é X, then .CC; — Ti—1



Self-stabilization

N “other” nodes
N+1 states fromV =[N + 1] ={0,..., N}

-> say, state N does not occur.



Self-stabilization

Obs 1. node O first one to have N.

Obs 2. from N(non-N)....(non-N) eventually
reach N...N.

Obs 3. from N...N only 1 execution with mutex &
weak fairness.



Self-stabilization

Prop 1. Show dt : z¢(t) = N

Assume not.

-> 0 makes bounded # non-trivial steps
-> |ast at time t’ with x(t') = a
->eventuallya...a

-> eventually O makes step

-> contr.



Self-stabilization

V = |N]|:“mod N” instead of “mod N+1”?
Not with distributed scheduler. [hw]




Self-stabilization

not stable, but:
- works with distributed scheduler
- for all ring sizes exists solution



Self-stabilization

Solution 3. [Brown, Gouda]

not stable <-> two neighbours try to make a step
at the same time



Self-stabilization

O—=O0—0O0—0—0~0

Prop 1. neighbour-mutex holds.



Self-stabilization

link-reversal e.g. full/partial reversal

O—=O0—0O0—0—0~0
O—0O—0—0O—0-0

O—O0—0O—~0—0-0



Self-stabilization

Ring cut...

Prop 2. No deadlock. [hw]

Prop 3. Weak fairness. [hw]



What we obtain...

... link reversal gives a neighbour-mutex, weak
fair scheduler.

potentially unstable algorithm

LR

distributed scheduler




Simulating scheduler

Distributed, weak-fair scheduler ->
Distributed, neighbour-mutex, weak fair scheduler.

Dijkstra‘s algorithm

02,0, 20, .0, .0, O

distributed scheduler




