Beyond classical chip design
lecture 3

Self-stabilization (continued)
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What we had...

Distributed, weak-fair scheduler ->
Distributed, neighbour-mutex, weak fair scheduler.

Dijkstra’s algorithm

OPOCOOO»0O

distributed scheduler
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Self-stabilization

... link reversal almost solves the problem.

token merging

LR

distributed schedule
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Self-stabilization
stable algorithm
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Self-stabilization

adding direction
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Self-stabilization

tokens turn only at borders ->

Prop 1. Mutex holds.

Prop 2. Weak fairness holds.
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Self-stabilization

to left
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Self-stabilization

to right ...
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Self-stabilization
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requires simultaneity: two sided constraint!
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Self-stabilization
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Self-stabilization

... without timing?
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Self-stabilization
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violation since right node with state ,R ack” makes a step to ,R“ in response to left
one, not looking to left one. This could result in unstable change.
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Self-stabilization
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no violation workaround: right node with ,R ack” waits with removing ack until it
looks left again.
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Beyond classical circuit design
lecture 3.5

Circuit model

89




Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrom: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.
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Binary, event based model

here [Alain Martin]:
low-level: production rules.

high-level: communicating hardware processes.
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Low-level Specifications

Production rules
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Production rules

variable/port: from a finite alphabet V'
transition: variable + up/down
production rule: Boolean guard -> transition

cAy—z7T
“(@Ay) =zl
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Production rules

cAy—=z7T
“(xAy) =zl

typically rule-pairs

non-interference: per rule-pair ~(Bu A Bd)
no self-reference: per rule
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Gate

gate = rule-pair

combinational (NOT, 2AND, 20R, AQls, ...)
Bu < —Bd

xr
— )=
Yy

r ANy —z7T
~(zAy) = 2]

AOI = AND-OR-INVERT gate
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Gate

gate = rule-pair

state holding

set-reset latch s — z 7 _ I3
— Z
r—zl —
2C-Element zAy— 271 x
1=
Ay =z Y

set-reset latch: unspecified what happens if s=r=1. Is disallowed by non-interference.
When using this gate: Make sure that non-interference is valid in all
executions.
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Wire
= special gate

1, —C—3—0

1 —oT

-1 — 0l
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Production rules

circuit = algorithm = set of production rules

Au:z Ay — 2z 7T

Ad:—(z Ay) = 2 ] Rt N
Du:i— a7 Y
Dd:—i—x]

environment = set of production rules
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Execution

global state s : V — {0,1}
enabled rule, step
execution (Sn)n>0

constraints: (weak) fairness, partial order, timed
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Hardware design

Given basic building blocks, implement the
specification.
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Circuit A implements circuit B

observable variables O
trace inclusion
EpolOCERTO

xr

1= -2 U 2

if circuit A produces behavior that could be from circuit B as well, A implements B.
Typically B is a circuit specification. The executions of B are the allowed executions.
If A's executions all are in the set of the allowed executions we say A implements
(specification) B.
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Circuit A implements circuit B

itetilytzte
itilytzt

-> A does not implement B

A: B:
LT =Dt 2 LTt
Yy y
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Mind...

wire + wire “is” not a (long) wire

’L—:Ig:I—y ZTvi‘CTaZi’ayTax\Lay\L

I ———y

,is“ here means: implements in both directions: A is B if A implements B and B
implements A.

103




Mind...

wire + wire “is” not a (long) wire

o

oscillations?! [hw]

VS.

104




“implements”

Simulation.

A: B:
. £z .
Yy Yy
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“implements”

Simulation.
A: B:
. £z .
Yy Yy
v T 1T
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“implements”

Simulation.

A:

€T

== )
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“implements”

Simulation.
A:

€T

i—4:_—D_

i1l

108




“implements”

Simulation.

A:

€T

== )

i1l
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“implements”

Simulation.
A: B:

Yy Yy
itily? itidy?
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“implements”

Simulation.
A: B:
Yy Yy
itily?T itilyTit
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“implements”

Simulation.
A:

€T

i—4:_—D_

iTidyTit

LD

iTidyTiT
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“implements”

Simulation.
A:

€T

i—4:_—D_

iTidyTit

itilytitzt

113




“implements”

Simulation.
A:

€T

1= -

itilytitaotzt

itilytitzt
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“implements”

A can simulate B.

Game rules:
- B makes a sequence of steps:
non-observables with ending observable
- A makes a sequence of steps:

non-observables with same ending
observable
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“implements”

A can simulate B -> B implements A [hw]

€T

LTe=Dr - Dt >

itilytitatz? itilytitz1
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“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.
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“implements”

A can simulate B -> B implements A [hw]

Simulation is an efficient test for
implementation.

Is “can simulate” also necessary?
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“implements”

A can simulate B <- Bimplements A ?
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“implements”
O ={a,b,c,d}

T —=a7

L —al] : ¢t
a— b1 _>a,T—>bT/
bA—-d—ct "N
bA—-c—d7T

left side: circuit. right side: Petri-net-like graphical representation of the causal
structure (what event causes what event) of the circuit. the green dot

represents the initial event triggered. the dotted bar means that not both branchs
can be taken, but only one of them (mutually exclusive)
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O ={a,b,c,d}

“implements”

Note that again we could write the circuit for this graphical representation in our

circuit model notation.
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“implements”

Circuit A Circuit B

cact artT—bt—cT
!:vaT_J’bT/ !J’”T/

E\(m Nyt ht—sd?

Bimplements A and A implements B.

A can simulate B

A implements B and B implements A: we know this since the only 2 executions

projected to observable variables in both circuits are: a goes high, b goes high, c goes
high and

a goes high, b goes high, d goes high.
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“implements”

Circuit A Circuit B
sact Va:T—)bT—)cT

O, at—sp1d —> a1

?\dT ?\;i;T—zvbT—:»dT

Bimplements A and A implements B.

A cansimulate B but B cannot simulate A.

The problem is that circuit A may decide later than B which branch it takes.
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“implements”

-> other notions of “can simulate”

There are more powerfull notions where player A can reverse some of ist steps (e.g.,
it can reverse the last k steps). Still such simulation relations are not equivalent with
the implementation relation.
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