Beyond classical chip design
lecture 4

Circuit model (continued)

125

Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrém: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.

126

What we had...

- Production rules
- Gate, circuit

- Aimplements B
- B can simulate A

127

Remember...

Stable transition functions:
i can make a transition to c at timet &
i cannot make a transitiontocattimet + 1
->
i made a transition at time ¢ + 1
(and thusisincattime ¢t + 1)

128

Remember...

“distributed schedule” s(t) C [n]

stable + distributed schedule ->
“linearizable to” schedule [later]

“ gk

129

Now...

Stable production rules:
Rule (i) can make a transition to c at time ¢ &

Rule (i) cannot make a transition to c at timet + 1
->

Rule (i) made a transition at time ¢t + 1

130

Stability

Stable production rules:
Rule (i) is enabled at timet &
Rule (i) is disabled at time ¢ + 1
-5

Rule (i) made a transition at time ¢t + 1

canbe evensimplifiedmore from the lastslide, sincearule (i) canmakeonly a non
trivial transitionto the samenext state x-up, e.g.

enabled:<->guardistrue andthe transitionis non-trivial
disabled:<-> notenabled

131

Linearizable

Linearizable:
Given initial state x and
distributed schedule prefix s(0)
let state y = x with enabled rules in s(0)
make a step;

then exists schedule prefix s'(0), s'(1), ..., s (k)

of rules in s(0) such that

y = x with enabled nodes ins’(0), s'(1), ..., s (k)
make a step.

linearizableintuitively: possibleto transforminto a purelysequentialschedulewhich
hasthe same finaresult

what we want: all prefixesof distributedscheduledinearizable

this follows from the givendefinition. we simplyapplythe definition for eachset of
the distributedscheduleand generatea purelysequentialschedule

with intermediatestates

132

Linearizable

“distributed schedule” s(t) C [n]

stable -> linearizable [hw]
Wb b
b

133

Top-level Specifications

Communicating hardware processes

134

Communicating hardware processes

a la CSP [Hoare, 78]
local variables x, v, ...
ports A, B, ...

- assignmenty :=x

135

Communicating hardware processes

Composition:

- parallelcl || c2
- serial c1; c2
- loop *[c1]

136

Communicating hardware processes

- blocking communication primitives
Alx A?y

137

Communicating hardware processes

- selection
[P1->cl || P2->c2|]..]

[P1 -> skip] = [P1]

selectionw Xbécksonly until one of P1, P2gtcistrue andthen executeshe
respectiveactionscl, c2, etc.

138

Communicating hardware processes

- selection
[P1->cl || P2->c2|]..]

[P1 -> skip] = [P1]

- arbitrated selection = choice
[P1->cl|P2->c2]..]

arbitratedselection exactlyoneofthe Om = Weepmesexecuted

139

Execution

global state
enabled rule
execution

constraints: fairness, partial order constraints,
timed constraints

definedanalogouslyo PRs

140

Example: the C-Element

C1: CHP from production rules.
«[[(aAD) = 2 1 [(ma A =b) = 2z]

C2: sequential CHP. [hw]
«[[a A b]; 2z T3 [na A —b]; 2 |]

141

Sequencing

Problem. Implement a;b.

one of the mostfundamentalproblems

142

Sequencing

Problem. Implement a;b.
... almost all circuits

\ 4
~+

\ 4
~+

143

Sequencing

Problem. Implement a;b.
... almost all circuits

b
> 1
LT —Dt > yT S
y >
10
> ¢

144

Sequencing

Problem. Implement a;b.
... almost all circuits

b
> ¢
LT —Dt > yT a
y ' > 1
i
' > ¢

145

Sequencing

Problem. Implement a;b.
... almost all circuits

-> executions are just distorted in time

146

Sequencing

Problem. Implement a;b.
... almost all circuits

order + worst-case upper bounds.

147

Sequencing

here exacttiming playsa crucialrule, not justordering FFTof a signal

148

Sequencing

149

Sequencing

Two fundamental solutions.
1. Externally triggered.

2. Trigger themselves.

150

151

