
170

171

172

communication: requires sequencing as sub-problem.

173

until now: communication only for sequencing but not for transmitting data.
now: sequencing + data transfer
1st communication paradigm: bundled data. most similar to clocked circuit design
communication

174

4 phase handshake + data
V = valid.
data has to be valid and stay valid for some time when req arrives at reader P2 ->
timing conditions

175

making REQ line slower than data to ensure timing condition: REQ arrives after data
valid at reader:
one sided constraint

176

177

instead of sending REQ directly, encode it in data. The receiver must be able to detect
when the data is valid, i.e., v(data) = true

178

instead of removing the request and data, encode this in data with a neutral
predicate n(data).

179

-> transformed code with valid and neutral

180

transformation not only for data but also for ack-line. However, here only for
theoretical purposes, as we do not transfer data
with ack.

181

until now: writer active, reader passive (push based communication). However, can
be vice versa, too. Important: always match active with passive interface.

182

passive writer, active reader (pull based communication)

183

Our first code does not work:
transition from valid 1 to neutral over valid 0. The receiver could take this
intermediate state as a valid 0

184

this is why it does not work

185

Now a working code: dual-rail encoding

186

generalization to n bit data

187

Another code: 1-of-n code (also called on-hot code).
There are also more general k-of-n codes, which are however seldomly used.

188

the most common codes are 1-of-4 and dual-rail if the data is more than 1 bit. In case
of 1 bit data, 1-of-2 and dual-rail are the same codes.

Important for codes are possibilities to split and join words of larger bitwidth. e.g.
when building a decoding stage for a processor. Codes that do not allow easy split
and joins are used seldom.

1-of-4 splitting: spit word in 2bit chunks and encode each one 1-of-4.

189

190

191

trading layout (and thus timing) constraints versus timing robustness.

192

are aggressively timed circuits and synchronous circuits really fast & small?
Depends: Problem of conservative layouts as in synchronous design, see last
homework

red border in expressiveness:
below the border DI circuits: only 2-input gate that exists there is the C-element ->
highly resitricted class of circuits
that is not useful for many problems
above: circuits are Turing complete.

We will see what makes the difference.

193

from DI to QDI circuits: adding the isochronic fork assumption.
= the fundamental condition in clockless designs.

194

ischronic fork :<->
all delays of the fork are (about) equal. [comment: Definition of „about equal“?! We
will see later…]

as such:
two sided-constraint that is difficult to reach (depending on what is meant by
„about“)

195

„about equal“ is a rule of thumb. What we really want is this:

red: disabling path.

196

197

the fundamental condition in clockless designs.

198

transition propagates along the disabling path

199

transition disables initial enabling

200

the disabling should not happen before the other receiver did not receive the signal.

201

-> in fact it is a one-sided constraint that is far simpler to ensure.

202

isochronic fork as the fundamental condition:
DI: no isochronic fork assumptions
QDI: some forks are isochronic.

203

We will soon see isochronic forks in action.

204

205

The snythesis problem

206

We want to synthesize a 1-bit communiction channel between a sender and receiver
(push based).

207

Start with the abstract channel CHP as we learned it.
Our first choice, the encoding. -> modified CHP.
insert valid and neutral predicates for the chosen code.

208

2nd CHP: the first predicate can be removed. It is redundant because the select is
blocking anyway.

We finally obtained low-level CHP for sender and receiver. We will see at another
example of how to fully get to PRs from CHP.

209

210

Here: choice was for 4-phase handshaking as a sequencing protocol.

211

Synthesis process:
start with first command and note the variable states for it. Variables are both set
from the circuit and from the environment.

212

by circuit section: variable states derived from the CHP of the circuit alone
by environment section: variable states derived from the environmental behavior +
circuit. e.g. [not ri] at end of CHP. Before executing lo-up still ri=0 since environment
does not rise lo without a lo-up transition.

write a production rule from the state guarantees we get for the action. Here:
predicate depending on *all* variables.

213

Problem: the action for ro-up needs the same predicate as lo-up.
But [!]: lo-up and ro-up should be executed at different times according to the CHP.
This cannot be expressed by the variables in the CHP!
-> we need to add helper variables.

214

adding the helper variable x.

215

New PR with the helper variable.

216

opimizing. minimum guard sufficient to decide when to trigger lo up. neg ri & helper
variable are sufficient.

217

now write the guard when it should go down.

218

implementation as combinational gate is favorable since small and fast.
-> try to make gates combinational instead of state holding if possible.
here: 2OR.

219

now for the ro signal.

220

221

this time it doesn‘t look like we can do with a combinational gate.

222

Writing it this way seems more favorable.

223

-> not combinational but a C-Element.

224

This is our result from synthesis. But can we simply put it together?

225

we accounted for delays with our PRs

226

But: we assumed during synthesis that the views are the same. once x is updated, it is
viewed the same at all gate inputs.

That is: we assumed *all* forks to have exactly the same delay. To be isochronic.
Do we really need all the be isochronic. Lets check…

227

assume slow upper li teeth

228

An example execution.

229

230

violation to our CHP specification.

231

prevent this from happening by one-sided delay constraint

232

233

234

235

236

