Beyond classical chip design
lecture 5

Communication

170

Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nystrém: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.

171

What we had...

- Communicating Hardware Processes as
high-level spec.

- fundamental problem:
Sequencing: a;b

Multishot-sequencing: *[a;b]

... how look at communication

172

multishot-sequencing

communication:

a <-> write(x)

b <->y =read(x)

communication: requires sequencing as sub-problem.

173

Bundled Data

P1

ro
rd

)

REQ

=
Cad

—

&

<

ACK

[i
ld

lo

P2

until now: communication only for sequencing but not for transmitting data.

now: sequencing + data transfer

1%t communication paradigm: bundled data. most similar to clocked circuit design

communication

174

T (], e []
rij€———lo

P1:rd:=z;ro t{[ril{ro |

[—rd]
lo H[=ti]{lo |

ACK ~ cIREQ clACK

P2 : [li];y := ld;
REQ

ro £
REQ

-

4 phase handshake + data
V = valid.

data has to be valid and stay valid for some time when req arrives at reader P2 ->

timing conditions

175

REQ

P1

ro
rd

71

O 3y
—>(ld
A lo

P1:rd:=z;ro t{[ril{ro |
P2 : [li];y == ldijlo 1T [li]:

P2

ACK ~ cIREQ

-

[l
lo]

clACK

af
A

making REQ line slower than data to ensure timing condition: REQ arrives after data

valid at reader:
one sided constraint

176

Bundled Data

Pl T _J-li
1l U

T [€

lo

P2

... requires one-sided constraint

Can we do without?

177

Pl T _J-li
1l U

Bundled Data

T [€

lo

P2

-

instead of sending REQ directly, encode it in data. The receiver must be able to detect

when the data is valid, i.e., v(data) = true

178

Delay-Insensitive Codes

P1 e 31d P2
vy lo
rd [N % N
lo "¢ K
ld N Vv N

V(word), N(word)

instead of removing the request and data, encode this in data with a neutral
predicate n(data).

179

® P2

Pl g ld

rale la
ACK

YV

P1:rd:= x;[ral;rd := neutral; [-ral

P2: [v(ld)];y = ld;la 15 [n(ld)]; la |

-> transformed code with valid and neutral

180

P1
P2

P1
P2

@
PL g a2

YV

7ale — la

: rd := x; [ra];rd := neutral; [-ral

[v(ld)];y = ldsla 15 [n(ld)]; la |

crd = x; [v(ra)l;rd := neutral; [n(ra)]

[v(ld)];y = ld; la 15 [n(ld)]; la |

transformation not only for data but also for ack-line. However, here only for

theoretical purposes, as we do not transfer data

with ack.

181

Active vs Passive

active passive
1 1
1 1
L J I

PLo rib—a P

1 1
| 1

] v la
1 1

active Pl :rd:= :L‘;[U(?“a)]; rd = neutfr'a,l; [?’L(T(L)]
passive. P2 : [v(ld)];y := ld; la 15 [n(ld)]; la |

until now: writer active, reader passive (push based communication). However, can
be vice versa, too. Important: always match active with passive interface.

182

Active vs Passive

passive active
i i

Pl rd

rale la

ACK

1

1
~
>

L~

| Il

‘o

1

1

1

1

passve Pl : [n(ra)l;rd := x:[v(ra)|; rd := neutral
active P2 :la T;[n(ld)];la |;[v(ld)];y :=1d

passive writer, active reader (pull based communication)

183

2-rails
neutral:
0:

1:

First code

. b .
Pl do 3 di P2
T |€ — lo
00 valid: is “0“ or “1“
10
11

transition: 0 1

Ouir first code does not work:

transition from valid 1 to neutral over valid 0. The receiver could take this
intermediate state as a valid O

184

do

)

First code... hmm

P1
2-rails
neutral: 00
0: 10
1: 11

transition: 0 1

o
< ACK lO
11 11
VS. 10
v
00 00

this is why it does not work

185

Dual-Rail

rbit.0f2 > bit.0 P2
rbit.1 > [bit.1
T € — lo

P1
2-rails
neutral: 00
0: 10
1: 01

transition: 11

Now a working code: dual-rail encoding

186

Dual-Rail (n bit)

bit0.0 bit0.1 bit1.0 bit1.1 ...

2n rails for n bit

generalization to n bit data

187

1-of-n / one-hot

n-rails for Id(n) bit

neutral: 0000

0: 1000
1: 0100
2: 0010
3: 0001

transition: else

Another code: 1-of-n code (also called on-hot code).
There are also more general k-of-n codes, which are however seldomly used.

188

Which one to choose...

... depends on
- efficient #wires
- fast & small n(), v() tests
- split & join

-> 1-of-4 splitting, dual-rail

the most common codes are 1-of-4 and dual-rail if the data is more than 1 bit. In case
of 1 bit data, 1-of-2 and dual-rail are the same codes.

Important for codes are possibilities to split and join words of larger bitwidth. e.g.
when building a decoding stage for a processor. Codes that do not allow easy split

and joins are used seldom.

1-of-4 splitting: spit word in 2bit chunks and encode each one 1-of-4.

189

Beyond classical circuit design
lecture 5.5

Circuit types

190

Further Reading

Keller, S.; Katelman, M.; Martin, A.J.: A Necessary and Sufficient
Timing Assumption for Speed-Independent Circuits.
Asynchronous Circuits and Systems (ASYNC'09). 15th IEEE
Symposium on, pp. 65 - 76, 2009.

191

Circuit types

* Synchronous

* Clockless layout
— aggressively timed constraints

— Speed independent (Sl) T
— Quasi-delay insensitive (QDI) l
— Delay insensitive (Dl) timing robust

trading layout (and thus timing) constraints versus timing robustness.

192

Circuit types

* Synchronous

* Clockless fast & small (?)
— aggressively timed layout constraints

— Speed independent (Sl) T
— Quasi-delay insensitive (QDI) l
— Delay insensitive (Dl) timing robust

are aggressively timed circuits and synchronous circuits really fast & small?
Depends: Problem of conservative layouts as in synchronous design, see last
homework

red border in expressiveness:

below the border DI circuits: only 2-input gate that exists there is the C-element ->
highly resitricted class of circuits

that is not useful for many problems

above: circuits are Turing complete.

We will see what makes the difference.

193

Isochronic fork
di (k)

out inl

mn2

from DI to QDI circuits: adding the isochronic fork assumption.
= the fundamental condition in clockless designs.

194

Isochronic fork

dy (k)

out

da (k)

Vk : di(k) = da(k) ->

two-sided constraint [!]

inl

mn2

ischronic fork :<->

all delays of the fork are (about) equal. [comment: Definition of ,,about equal“?! We

will see later...]

as such:

two sided-constraint that is difficult to reach (depending on what is meant by

,about”)

195

What we really want...

— dd’i.s(k)
—J
‘ o di(k) :
! out inl disable out
da (k)
mn2

»about equal”is a rule of thumb. What we really want is this:

red: disabling path.

196

What we really want...

— dd’is(k)
—J
—— f 4k e
! out inl disable out
da (k)
mn2

197

What we really want...

— dd’is(k)
| W |
——f aR e
> out inl :
disable out
da (k)
mn2

the fundamental condition in clockless designs.

198

What we really want...

— dd’is(k)
e AL e
” out inl disable out
i u
da (k)
mn2

transition propagates along the disabling path

199

What we really want...

— dd’is(k)
—J
ap hk) e 1
” out inl disable out
da (k)
mn2

transition disables initial enabling

200

What we really want...

VEk : da(k) < dy(k) + dgis(k)

— dd’is(k)
e b))
” out inl disable out
da (k)
mn2
_f] _f

the disabling should not happen before the other receiver did not receive the signal.

201

What we really want...

adversarial path condition
-> one-sided constraint

— dd’is(k)
ip (k) e 1
’ out inl disable out
da (k)
mn2
_f] _f

->in fact it is a one-sided constraint that is far simpler to ensure.

202

Circuit types

* Synchronous

* Clockless
— aggressively timed (beyond isochronic condition)

— Speed independent (SI: all isochronic)
— Quasi-delay insensitive (QDI: some isochronic)
— Delay insensitive (Dl)

isochronic fork as the fundamental condition:
DI: no isochronic fork assumptions
QDI: some forks are isochronic.

203

Examples

... soon from synthesis.

We will soon see isochronic forks in action.

204

Beyond classical circuit design
lecture 5.75

Synthesis

205

In: CHP

Synthesis

Out: Circuit (= Production rules + constraints)

The snythesis problem

206

Example: 1-bit channel

Send x € {0, 1}
active send, T

R

passive receive

CHP:
sender: Ps:x[...Rlx...]

receiver: Pr:x[...L7x...]

L

X

active passive

We want to synthesize a 1-bit communiction channel between a sender and receiver

(push based).

207

Example: 1-bit channel

Choice: dual-rail encoding.

Rz rd:= x;[v(ra)]; rd := neutral; [n(ra)]

|

[z — rd.11 ||z = rd.0 1]; [ral;
(rd.1{ ||rd.0 });[ra]

Start with the abstract channel CHP as we learned it.
Our first choice, the encoding. -> modified CHP.
insert valid and neutral predicates for the chosen code.

208

Example: 1-bit channel
L?z [v(ld)];y :=ld;la 15 [n(ld)]; la |

|

1.1V 1d.0); [ld.1 — z 1 ||1d.0 — = |];la 7;
(~(d.1V 1d.0)); la |

|

ld.1— x1|[ld.0— z |];laT;
[=(ld.1V 1d.0)];la |

2nd CHP: the first predicate can be removed. It is redundant because the select is
blocking anyway.

We finally obtained low-level CHP for sender and receiver. We will see at another
example of how to fully get to PRs from CHP.

209

Example: active-active sequencer

two active interfaces L, R.
L R

CHP: P1: *[L; R] active active

210

Example: active-active sequencer

two active interfaces L, R. E E
Lo Ry
CHP: P1: *[LS R] active active
Choice: 4-ph hs —[; TO e,
&lo rile—

«[lo 1; [li]; lo |; [li); ro 15 [ri]; ro L; [r]]

Here: choice was for 4-phase handshaking as a sequencing protocol.

211

—slli Trol®s

For lo... &0 rile
CHP:)[li]; Lo L; [li];ro 15 [ri]; o |: [ri]]

lo=0

by circuit
Tro
rtT =

by environment
li =

Synthesis process:
start with first command and note the variable states for it. Variables are both set

from the circuit and from the environment.

212

For lo...
CHP:

lo=0

by circuit
TOo =
re =

by environment
l1 =

PR: loATOATIiANli— lo?

—> 7

PLIpP

70
1

T

)[li]; Lo L [li];ro 15 [rils ro s [rd]]

by circuit section: variable states derived from the CHP of the circuit alone

by environment section: variable states derived from the environmental behavior +
circuit. e.g. [not ri] at end of CHP. Before executing lo-up still ri=0 since environment

does not rise lo without a lo-up transition.

write a production rule from the state guarantees we get for the action. Here:

predicate depending on *all* variables.

213

CHP:)|li]; lo

PR: loAroATiAli —loT ... does not work!

—slli Trol®s

For lo... &0 rile

L [filo Dlril: ro L: [ril]

Problem: the action for ro-up needs the same predicate as lo-up.

But [!]: lo-up and ro-up should be executed at different times according to the CHP.

This cannot be expressed by the variables in the CHP!

-> we need to add helper variables.

214

70
1

adding the helper variable x.

215

PR: ZAloATOATINL — 10T

70
1

New PR with the helper variable.

216

—slli Trol®s

For lo... &0 rile

CHP: -l@ [li]; 2 1510 L [li]; ro 13 [ril; L ro ¢

PR: a:/\zb/\ro/\ﬁ/\l}
—>
:E/\’m'—)

opimizing. minimum guard sufficient to decide when to trigger lo up. neg ri & helper
variable are sufficient.

217

—ll; r0i%>
For lo... ® /0 rile—

L
CHP: [li] i];r0 15 [ri]; z Jsro i

PR: i:/\l_o/\r_o/\r_i/\l_i
—>
:i/\ri—>
zc\/m'—)

now write the guard when it should go down.

218

—>lz'
For lo... <&

ro

o,

PR: :I:Alo/\ro/\rz/\lz

C _
:1‘:/\7'2'—)

(D) =g
zc\/m—)

CHP: x?lz [13); 7o 1 [rd]; a:i,'roi.

implementation as combinational gate is favorable since small and fast.

-> try to make gates combinational instead of state holding if possible.
here: 20R.

219

—slli Trol®s
For ro... <&llo rile

CHP: #[lo 1: [li]@lo [rﬂ ['r'i]]

PR: a:/\lz'—> ,

l7

. x
a:/\lz—>

=D 10

now for the ro signal.

220

—)lg rof@s
For x... &lo rile—

CHP: *loJ, 7i]: o¢ 7]

221

—>lz’ rof@s
For x... i le—

CHP: *loJ, 7i]: o¢ 7]

.. What gate is this?

this time it doesn‘t look like we can do with a combinational gate.

222

PR: Fi/\li@
riAﬁ@

For x...

—>

li

<&lo

Tro
71—

'R

CHP: *[lo lo J,.ro To ¢.

Writing it this way seems more favorable.

223

ri Ali

ri Ali

For x...

—>

li

<&lo

Tro
71—

'R

71 —>

@}li_,

)

CHP: *[lo lo J,.ro To ¢.

-> not combinational but a C-Element.

224

Putting it together

Circuit: I

—slli Trol®s

«—lo Tile—

CHP: «[lo 1 [lil; = 1510 |3 [li]:ro 13 [ril; 2 Lyro L [ri]

o

o

This is our result from synthesis. But can we simply put it together?

225

Mind wires...

Circuit: I

—>
<&

li Troles

lo 71ilee—

D

o

CHP: «[lo 1 [lil; = 1510 |3 [li]:ro 13 [ril; 2 Lyro L [ri]

T0

we accounted for delays with our PRs

226

Mind forks...

Circuit: l7

— /7
PLIpP

rof@s

717 le—

CHP: «[lo 1 [lil; = 1510 |3 [li]:ro 13 [ril; 2 Lyro L [ri]

T0

But: we assumed during synthesis that the views are the same. once x is updated, it is

viewed the same at all gate inputs.

That is: we assumed *all* forks to have exactly the same delay. To be isochronic.

Do we really need all the be isochronic. Lets check...

227

. _ —slli rol®s
Checking fork “li” (1) <®{;, rile—

CHP: il @ 1310 4; [l ro 13 [rils @ biro 4s [ri]]
Circuit: l1 Cb @i O_(%O_)m
0
jc@o—x 1
1

@l)é_OG‘f ri 1

assume slow upper li teeth

228

Checking fork “li” (1) <®{;, rile—

CHP: 1@1@9 t5lo L [li);ro 13 [ril; z 470 Ls [ri]]

L & °
Circuit:) Y, _C%o—)fro
0 | 0
C@o—:ﬁl
|

4 1
l<——0(:'|_1| i 1

An example execution.

229

Checking fork “li” (1) <®;, ,ile—

cHp: o Y[l 1Yo 4; [lEl; ro 15 [ril; = 570 4[]

s,
"
?o

Circuit: l2
0 |
S8
1
ri 1

230

Checking fork “li” (1) <®;, ,ile—

CHP: 1@o®o® ol;[l z], sz Lsro l; [ri]]
0

Circuit: li @i _C%)o—wro

violation to our CHP specification.

231

. _ —{l; rof®>
+ one-sided Constraint _e;, il

CHP: «[lo 1 [lil; = 1510 |3 [li]:ro 13 [ril; 2 Lyro L [ri]

Circuit: 11—
0

... correct.

lo—o(_|= -

prevent this from happening by one-sided delay constraint

232

. _ —{l; rof®>
+ one-sided Constraint _e;, il

CHP: «[lo 1 [lil; = 1510 |3 [li]:ro 13 [ril; 2 Lyro L [ri]

Proving correct:
e.g. by induction.

base case: start with initial states and prove
ordering of events from there for the first loop

233

. _ —{l; rof®>
+ one-sided Constraint _e;, il

CHP: :L‘ T5lo L [li];ro 1 [ril; @ L ro Ls [r]]

proof:

examine ordering in time “<”.

1) lo-up < [li]: guaranteed by environment:
Initially li = 0. Can be set to li = 1 only by
environment. Environment does this only after lo
=1.

234

. _ —{l; rof®>
+ one-sided Constraint _e;, il

CHP: x[lo lo L[l ro 15 [rils z L ro L [rd]]

proof:

2) [li] < x-up: x = 1 can happen only after both C-
Element inputs are 1. This can happen only after
li = 1 for the first time.

235

—slli Trol®s

+ one-sided Constraint _e;, il

CHP: x[lo 1 1)z o DIlili ro 1 [rils = Liro J:]

proof:

3) x-up < lo-down: this can happen only if one of
the NAND inputs becomes 0 for the first time.

We first show that lo-down cannot happen
because of the input connected to not ri
becoming O:

[hw]

236

