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communication: requires sequencing as sub-problem. 
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until now: communication only for sequencing but not for transmitting data. 
now: sequencing + data transfer 
1st communication paradigm: bundled data. most similar to clocked circuit design 
communication 
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4 phase handshake + data 
V = valid. 
data has to be valid and stay valid for some time when req arrives at reader P2 -> 
timing conditions 
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making REQ line slower than data to ensure timing condition: REQ arrives after data 
valid at reader: 
one sided constraint 
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instead of sending REQ directly, encode it in data. The receiver must be able to detect 
when the data is valid, i.e., v(data) = true 
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instead of removing the request and data, encode this in data with a neutral 
predicate n(data). 
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-> transformed code with valid and neutral 
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transformation not only for data but also for ack-line. However, here only for 
theoretical purposes, as we do not transfer data 
with ack. 
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until now: writer active, reader passive (push based communication). However, can 
be vice versa, too. Important: always match active with passive interface. 
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passive writer, active reader (pull based communication) 
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Our first code does not work: 
transition from valid 1 to neutral over valid 0. The receiver could take this 
intermediate state as a valid 0 
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this is why it does not work 
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Now a working code: dual-rail encoding 
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generalization to n bit data 
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Another code: 1-of-n code (also called on-hot code). 
There are also more general k-of-n codes, which are however seldomly used. 
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the most common codes are 1-of-4 and dual-rail if the data is more than 1 bit. In case 
of 1 bit data, 1-of-2 and dual-rail are the same codes. 
 
Important for codes are possibilities to split and join words of larger bitwidth. e.g. 
when building a decoding stage for a processor. Codes that do not allow easy split 
and joins are used seldom. 
 
1-of-4 splitting: spit word in 2bit chunks and encode each one 1-of-4. 
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trading layout (and thus timing) constraints versus timing robustness. 
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are aggressively timed circuits and synchronous circuits really fast & small? 
Depends: Problem of conservative layouts as in synchronous design, see last 
homework 
 
red border in expressiveness: 
below the border DI circuits: only 2-input gate that exists there is the C-element -> 
highly resitricted class of circuits 
that is not useful for many problems 
above: circuits are Turing complete. 
 
We will see what makes the difference. 

193 



from DI to QDI circuits: adding the isochronic fork assumption. 
= the fundamental condition in clockless designs. 
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ischronic fork :<-> 
all delays of the fork are (about) equal. [comment: Definition of „about equal“?! We 
will see later…] 
 
as such: 
two sided-constraint that is difficult to reach (depending on what is meant by 
„about“) 

195 



„about equal“ is a rule of thumb. What we really want is this: 
 
red: disabling path. 
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the fundamental condition in clockless designs. 
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transition propagates along the disabling path 
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transition disables initial enabling 
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the disabling should not happen before the other receiver did not receive the signal. 
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-> in fact it is a one-sided constraint that is far simpler to ensure. 
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isochronic fork as the fundamental condition: 
DI: no isochronic fork assumptions 
QDI: some forks are isochronic. 
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We will soon see isochronic forks in action. 
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The snythesis problem 
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We want to synthesize a 1-bit communiction channel between a sender and receiver 
(push based). 
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Start with the abstract channel CHP as we learned it. 
Our first choice, the encoding. -> modified CHP. 
insert valid and neutral predicates for the chosen code. 
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2nd CHP: the first predicate can be removed. It is redundant because the select is 
blocking anyway. 
 
We finally obtained low-level CHP for sender and receiver. We will see at another 
example of how to fully get to PRs from CHP. 
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Here: choice was for 4-phase handshaking as a sequencing protocol. 
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Synthesis process: 
start with first command and note the variable states for it. Variables are both set 
from the circuit and from the environment. 
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by circuit section: variable states derived from the CHP of the circuit alone 
by environment section: variable states derived from the environmental behavior + 
circuit. e.g. [not ri] at end of CHP. Before executing lo-up still ri=0 since environment 
does not rise lo without a lo-up transition. 
 
write a production rule from the state guarantees we get for the action. Here: 
predicate depending on *all* variables. 
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Problem: the action for ro-up needs the same predicate as lo-up. 
But [!]: lo-up and ro-up should be executed at different times according to the CHP. 
This cannot be expressed by the variables in the CHP! 
-> we need to add helper variables. 
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adding the helper variable x. 
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New PR with the helper variable. 

216 



opimizing. minimum guard sufficient to decide when to trigger lo up. neg ri & helper 
variable are sufficient. 
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now write the guard when it should go down. 
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implementation as combinational gate is favorable since small and fast. 
-> try to make gates combinational instead of state holding if possible. 
here: 2OR.  

219 



now for the ro signal. 
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this time it doesn‘t look like we can do with a combinational gate. 
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Writing it this way seems more favorable. 
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-> not combinational but a C-Element. 
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This is our result from synthesis. But can we simply put it together? 
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we accounted for delays with our PRs 
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But: we assumed during synthesis that the views are the same. once x is updated, it is 
viewed the same at all gate inputs. 
 
That is: we assumed *all* forks to have exactly the same delay. To be isochronic. 
Do we really need all the be isochronic. Lets check… 
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assume slow upper li teeth 
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An example execution. 
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violation to our CHP specification. 
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prevent this from happening by one-sided delay constraint 
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