
Beyond classical chip design
lecture 5

Communication

Further Reading

Alain J. Martin: Synthesis of Asynchronous VLSI Circuits. Tech
report California Institute of Technology, 1991.

Alain J. Martin and Mika Nyström: Asynchronous techniques for
system-on-chip design. Proceedings of the IEEE Volume 94,
Issue 6:1089 - 1120, June 2006.

- Communicating Hardware Processes as
high-level spec.

- fundamental problem:

 Sequencing: a;b

 Multishot-sequencing: *[a;b]

... now look at communication

What we had...

multishot-sequencing

communication:

a <-> write(x)

b <-> y = read(x)

Bundled Data

REQ

ACK

REQ

ACK

REQ ACK clREQ clACK

REQ

V

REQ

ACK

REQ ACK clREQ clACK

REQ

V

Bundled Data

ACK

… requires one-sided constraint

Can we do without?

REQ

Bundled Data

ACK

REQ

REQ

V

Delay-Insensitive Codes

ACK

REQ

V

N V N

N N

V(word), N(word)

ACK

ACK

ACK

Active vs Passive
active

active

passive

passive

ACK

Active vs Passive
passive

passive

active

active

First code

ACK

2-rails

neutral: 0 0 valid: is “0“ or “1“

0: 1 0

1: 1 1

transition: 0 1

First code... hmm

ACK

2-rails

neutral: 0 0

0: 1 0

1: 1 1

transition: 0 1

1 1

1 0

0 0

1 1

0 0

vs.

Dual-Rail

2-rails

neutral: 0 0

0: 1 0

1: 0 1

transition: 1 1

ACK

Dual-Rail (n bit)

bit0.0 bit0.1 bit1.0 bit1.1 …

2n rails for n bit

1-of-n / one-hot

n-rails for ld(n) bit

neutral: 0 0 0 0

0: 1 0 0 0

1: 0 1 0 0

2: 0 0 1 0

3: 0 0 0 1

transition: else

Which one to choose...

… depends on

 - efficient #wires

 - fast & small n(), v() tests

 - split & join

-> 1-of-4 splitting, dual-rail

Beyond classical circuit design
lecture 5.5

Circuit types

Further Reading

Keller, S.; Katelman, M.; Martin, A.J.: A Necessary and Sufficient
Timing Assumption for Speed-Independent Circuits.
Asynchronous Circuits and Systems (ASYNC'09). 15th IEEE
Symposium on, pp. 65 - 76, 2009.

Circuit types

• Synchronous

• Clockless

– aggressively timed

…

– Speed independent (SI)

– Quasi-delay insensitive (QDI)

– Delay insensitive (DI) timing robust

layout
constraints

Circuit types

• Synchronous

• Clockless

– aggressively timed

…

– Speed independent (SI)

– Quasi-delay insensitive (QDI)

– Delay insensitive (DI) timing robust

fast & small (?)
layout constraints

Isochronic fork

 ->

 two-sided constraint [!]

Isochronic fork

What we really want...

disable out

What we really want...

disable out

What we really want...

disable out

What we really want...

disable out

What we really want...

disable out

What we really want...

disable out

What we really want...

disable out

adversarial path condition

-> one-sided constraint

Circuit types

• Synchronous

• Clockless

– aggressively timed (beyond isochronic condition)

…

– Speed independent (SI: all isochronic)

– Quasi-delay insensitive (QDI: some isochronic)

– Delay insensitive (DI)

Examples

… soon from synthesis.

Beyond classical circuit design
lecture 5.75

Synthesis

Synthesis

In: CHP

Out: Circuit (= Production rules + constraints)

Example: 1-bit channel

Send

active send,

passive receive

CHP:

sender:

receiver:

active passive

Example: 1-bit channel

Choice: dual-rail encoding.

Example: 1-bit channel

Example: active-active sequencer

two active interfaces L, R.

CHP: active active

Example: active-active sequencer

two active interfaces L, R.

CHP: active active

Choice: 4-ph hs

CHP:

by circuit

by environment

For lo...

CHP:

PR:

by circuit

by environment

For lo...

CHP:

PR: …. does not work!

For lo...

CHP:

CHP:

PR:

CHP:

PR:

For lo...

CHP:

PR:

For lo...

CHP:

PR:

For lo...

CHP:

PR:

For ro...

CHP:

For x...

CHP:

… What gate is this?

For x...

CHP:

PR:

For x...

CHP:

PR:

For x...

CHP:

Circuit:

Putting it together

Mind wires...

CHP:

Circuit:

Mind forks...

CHP:

Circuit:

Checking fork “li” (1)

CHP:

Circuit:

0

0

0

1 0

1

1

0

1

1

1

Checking fork “li” (1)

CHP:

Circuit:

0

0

01

0

1

1

0

1

1

1

1

Checking fork “li” (1)

CHP:

Circuit:

0

01

01

0

1

1

0

1

10

1

1

Checking fork “li” (1)

CHP:

Circuit:

 … wrong!

0

01

01

01

1

1

0

10

10

1

1

+ one-sided Constraint

CHP:

Circuit:

 … correct.

+ one-sided Constraint

CHP:

Proving correct:

 e.g. by induction.

 base case: start with initial states and prove
ordering of events from there for the first loop

+ one-sided Constraint

CHP:

proof:

 examine ordering in time “<”.

 1) lo-up < [li]: guaranteed by environment:
Initially li = 0. Can be set to li = 1 only by
environment. Environment does this only after lo
= 1.

+ one-sided Constraint

CHP:

proof:

 2) [li] < x-up: x = 1 can happen only after both C-
Element inputs are 1. This can happen only after
li = 1 for the first time.

+ one-sided Constraint

CHP:

proof:

 3) x-up < lo-down: this can happen only if one of
the NAND inputs becomes 0 for the first time.

 We first show that lo-down cannot happen
because of the input connected to not ri
becoming 0:

 [hw]

