
205

206

207

The snythesis problem

208

We want to synthesize a 1-bit communiction channel between a sender and receiver
(push based).

209

Start with the abstract channel CHP as we learned it.
Our first choice, the encoding. -> modified CHP.
insert valid and neutral predicates for the chosen code.

210

2nd CHP: the first predicate can be removed. It is redundant because the select is
blocking anyway.

We finally obtained low-level CHP for sender and receiver. We will see at another
example of how to fully get to PRs from CHP.

211

212

Here: choice was for 4-phase handshaking as a sequencing protocol.

213

Synthesis process:
start with first command and note the variable states for it. Variables are both set
from the circuit and from the environment.

214

by circuit section: variable states derived from the CHP of the circuit alone
by environment section: variable states derived from the environmental behavior +
circuit. e.g. [not ri] at end of CHP. Before executing lo-up still ri=0 since environment
does not rise lo without a lo-up transition.

write a production rule from the state guarantees we get for the action. Here:
predicate depending on *all* variables.

215

Problem: the action for ro-up needs the same predicate as lo-up.
But [!]: lo-up and ro-up should be executed at different times according to the CHP.
This cannot be expressed by the variables in the CHP!
-> we need to add helper variables.

216

adding the helper variable x.

217

New PR with the helper variable.

218

opimizing. minimum guard sufficient to decide when to trigger lo up. neg ri & helper
variable are sufficient.

219

now write the guard when it should go down.

220

implementation as combinational gate is favorable since small and fast.
-> try to make gates combinational instead of state holding if possible.
here: 2OR.

221

now for the ro signal
again a combinational gate

222

223

this time it doesn‘t look like we can do with a combinational gate.

224

Writing it this way seems more favorable.

225

-> not combinational but a C-Element.

226

This is our result from synthesis. But can we simply put it together?

227

we accounted for delays with our PRs

228

But: we assumed during synthesis that the views are the same. once x is updated, it is
viewed the same at all gate inputs.

That is: we assumed *all* forks to have exactly the same delay. To be isochronic.
Do we really need all the be isochronic. Lets check…

229

assume slow upper li teeth

230

An example execution.

231

232

violation to our CHP specification.

233

prevent this from happening by one-sided delay constraint

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

