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The snythesis problem 
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We want to synthesize a 1-bit communiction channel between a sender and receiver 
(push based). 
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Start with the abstract channel CHP as we learned it. 
Our first choice, the encoding. -> modified CHP. 
insert valid and neutral predicates for the chosen code. 
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2nd CHP: the first predicate can be removed. It is redundant because the select is 
blocking anyway. 
 
We finally obtained low-level CHP for sender and receiver. We will see at another 
example of how to fully get to PRs from CHP. 
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Here: choice was for 4-phase handshaking as a sequencing protocol. 
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Synthesis process: 
start with first command and note the variable states for it. Variables are both set 
from the circuit and from the environment. 
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by circuit section: variable states derived from the CHP of the circuit alone 
by environment section: variable states derived from the environmental behavior + 
circuit. e.g. [not ri] at end of CHP. Before executing lo-up still ri=0 since environment 
does not rise lo without a lo-up transition. 
 
write a production rule from the state guarantees we get for the action. Here: 
predicate depending on *all* variables. 
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Problem: the action for ro-up needs the same predicate as lo-up. 
But [!]: lo-up and ro-up should be executed at different times according to the CHP. 
This cannot be expressed by the variables in the CHP! 
-> we need to add helper variables. 
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adding the helper variable x. 
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New PR with the helper variable. 

218 



opimizing. minimum guard sufficient to decide when to trigger lo up. neg ri & helper 
variable are sufficient. 
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now write the guard when it should go down. 
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implementation as combinational gate is favorable since small and fast. 
-> try to make gates combinational instead of state holding if possible. 
here: 2OR.  
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now for the ro signal 
again a combinational gate 
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this time it doesn‘t look like we can do with a combinational gate. 
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Writing it this way seems more favorable. 

225 



-> not combinational but a C-Element. 
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This is our result from synthesis. But can we simply put it together? 
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we accounted for delays with our PRs 
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But: we assumed during synthesis that the views are the same. once x is updated, it is 
viewed the same at all gate inputs. 
 
That is: we assumed *all* forks to have exactly the same delay. To be isochronic. 
Do we really need all the be isochronic. Lets check… 
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assume slow upper li teeth 
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An example execution. 
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violation to our CHP specification. 
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prevent this from happening by one-sided delay constraint 
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