

Further Reading

Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic: *Digital Integrated Circuits. A Design Perspective.* 2nd edition. Prentice Hall, 2003.

CMOS inverter + ideal characteristics

n-stack CMOS inverter

n-stack CMOS inverter

high a & b -> high DS current!

n-stack CMOS inverter

now this is possible

from the characteristics from the slide before we see that the nFET, in presence of a high input a, is in the ohmic region -> it behaves like a resistor

we can approximate nMOSFET as a switch here.

open & ohmic region

p-stack CMOS inverter

p-stack CMOS inverter

steady state (static) model: CMOS as switches in this model: exactly one open and one closed at a time. -> low static power consumption

W... width of channel L... length of channel

reduced swing

CMOS

nMOS:

drives strong 0, weak 1

-> used for pull-down

pMOS:

drives strong 1, weak 0

-> used for pull-up

CMOS inverter + ideal characteristics

V_th ... threshold voltage

red line: realistic inverter characteristics

assume: no output current in steady state -> n-channel current = p-channel current

for dependency of gate/drain/source voltages and channel currents see characteristics

[hw]: match via current

combinational logic design

combinational logic design

We have to double the width of the pFET but we can keep the width of the nFET here.

State holding logic?

 $\begin{array}{c} G_{\rm down} \rightarrow y \downarrow \\ G_{\rm up} \rightarrow y \uparrow \end{array}$

-> statesizer!

load C sometimes enough if refreshrate is high enough -> in this case no need for extra logic.

w: weak inverter that is overdriven by the p/n stack output.

WL: word line, to select the cell BL: bit line, read and write data port

WL: word line, to select the cell BL: bit line, read and write data port

first step: Boolean rewriting

second step: resolve the problem that it is forbidden for y to occur in the premise (see lecture on PRs)