

Universität des Saarlandes FR 6.2 Informatik

Prof. Dr. Kurt Mehlhorn, Dr. Martin Skutella

WS 2003/04

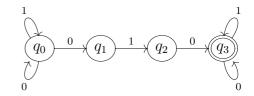
Übungen zu Theoretische Informatik

http://www.mpi-sb.mpg.de/units/ag1/teaching/theoinf-ws0304/index.html

Übung 8 Abgabe: Freitag, 9.01.2004

Aufgabe 1 (Reguläre Sprachen)

(6 Punkte)


Sind die folgenden Aussagen wahr oder falsch (Beweis oder Gegenbeispiel)?

- a) Jede endliche Sprache ist regulär.
- b) Jede Teilmenge einer regulären Sprache ist regulär.
- c) Sei Leine reguläre Sprache. Dann ist $\{uv \in \Sigma^* \,|\, u \in L, v \not\in L\}$ regulär.
- d) Die Sprache $\{w \in \mathbb{B}^* \mid |w|_0 = |w|_1\}$ ist regulär. (Mit $|w|_a, w \in \Sigma^*, a \in \Sigma$ wird die Anzahl des Vorkommens des Zeichens a in den Wort w bezeichnet.)

Aufgabe 2 (NFA und DFA)

 $(1+3+3+1=8 \ Punkte)$

Gegeben sei der folgende NFA mit Startzustand q_0 .

- a) Welche Sprache L wird von diesem Automat akzeptiert?
- b) Verwenden Sie einen der beiden vorgestellten Algorithmen, um einen DFA für L zu konstruieren. Entfernen Sie gegebenenfalls überflüssige Zustände.
- c) Konstruieren Sie den Äquivalenzklassenautomat zu dem Automaten aus Teil b).
- d) Geben Sie einen DFA für \overline{L} an.

Sei L eine reguläre Sprache und A ein NFA, der L akzeptiert.

- a) Sei $L^R = \{w^R \in \Sigma^* \mid w \in L\}$, wobei w^R das zu w gespiegelte Wort sei. Geben Sie (eine Konstruktionsvorschrift für) einen NFA A^R an, der L^R akzeptiert. Wie wählen Sie den Startzustand und die Endzustände?
- b) Sei $L_{PAL} = \{ w \in \Sigma^* \mid w \in L, w = w^R \}$ die Sprache der Palindrome. Zeigen Sie, dass L_{PAL} im Allgemeinen nicht regulär ist.
- c) Sei $L_{PAL/2} = \{w \in \Sigma^* \mid ww^R \in L\}$. Konstruieren Sie einen NFA $A_{PAL/2}$, der $L_{PAL/2}$ akzeptiert. *Hinweis:* Betrachten Sie $A \times A^R$. Wie wählen Sie den Startzustand und die Endzustände?
- d) Sei $L_k = \{u \in \Sigma^* \mid \exists w \in L : |w| = k \cdot |u|\}$, L_k besteht also aus allen Wörtern, für die irgendein k-mal so langes Wort in L liegt. Konstruieren Sie einen NFA A_k , der L_k akzeptiert. *Hinweis:* Konstruieren Sie zunächst A_1 und erweitern Sie die Konstruktion.