Motivation
We consider basic operations on polynomials such as root isolation and gcd computation.

GCD Computation
Let \(f \) be a polynomial with rational coefficients. Consider the following recursion: We initially start with \(f_0 := f \) and \(f_1 := f' \). For \(i \geq 0 \) let \(d_i := \deg f_i - \deg f_{i+1} \) and consider
\[
f_{i+2} := \lambda f_i + x^{d_i} f_{i+1}
\]
with rational \(\lambda \) such that \(f_{i+2} \) has lower degree then \(f_i \). Show:

- Let \(g \) be a rational polynomial that divides \(f \) and \(f' \), that is, there exists rational polynomials \(g_1 \) and \(g_2 \) with \(f = g_1 \cdot g \) and \(f' = g_2 \cdot g \). Then \(g \) divides each \(f_i \).
- Let \(i_0 \) be the first index \(i \) where \(f_i = 0 \). Then \(f_{i_0-1} \) divides \(f \) and \(f' \) and there exists no polynomial of larger degree with the same property. It follows that \(f_{i_0-1} = \gcd(f, f') \).
- If \(f \) is a rational polynomial with distinct complex roots \(\xi_1, \ldots, \xi_m \) then
\[
f^* := (x - \xi_1) \cdots (x - \xi_m)
\]
is rational as well and a scalar multiple of \(f / \gcd(f, f') \).
- \(\deg \gcd(f, f') = \deg f - m \) with \(m \) as above.

Real Root Isolation
Given a polynomial \(f = \sum_{i=0}^{n} a_i x^i \) with real coefficients we aim for a set of disjoint intervals \(I_1, \ldots, I_m \) such that their union \(\bigcup_{k=1}^{n} I_k \) contains all real roots of \(f \) and each \(I_k \) contains exactly one real root.

- Show that the modulus \(|\xi| \) of each root \(\xi \) of \(f \) is bounded by
\[
B := 1 + \max_i \frac{|a_i|}{|a_n|}.
\]
(Hint: Each root \(\xi \) of \(f \) fulfills the inequality \(|a_n||\xi|^n \leq \sum_{i=0}^{n} |a_i||\xi|^n \).)
Let $I = (a, b)$ be an interval with midpoint $m = \frac{a+b}{2}$ and g a polynomial of degree N with Taylor expansion

$$g(m + x) = \sum_{k=0}^{N} \frac{g^{(k)}(m)}{k!} x^k$$

at m. We consider the test

$$T(g, I) : |g(m)| > \sum_{k=1}^{N} \frac{|g^{(k)}(m)|}{k!} \left(\frac{b-a}{2} \right)^k.$$

Show that I contains no root of f if $T(f, I)$ succeeds!

Show: If $T(f', I)$ succeeds then f is monotone on I. How can you use this test to show that an interval I is isolating?

Formulate an algorithm to isolate all real roots of f and show exactness and termination.

(Hint: For the root isolation consider $f^* := f / \gcd(f, f')$ and use the fact that $(f^*)'(\xi) \neq 0$ at all roots ξ of f^*.)

Have fun with the solution!

2