Bitstream Descartes for multiple roots

We “extend” the Bitstream Descartes to polynomials with multiple roots: Let \(f \) be a polynomial with real coefficients and \(k \) denote the maximal multiplicity of a root of \(f \).

- Show that there exists a \(w_0 > 0 \) such that for all intervals of size \(w(I) < w_0 \) it holds that \(\text{var}(f, I) \leq k \). Give a bound on \(w_0 \) in terms of the separation of \(f \) (= minimal distance between two distinct roots).

- We call a polynomial generic iff it has a root of multiplicity \(k + 1 = \deg \gcd(f, f') + 1 \). Show that, for \(k > 0 \), each generic polynomial has exactly one multiple root \(z \). Furthermore, show that \(z \) is real and all remaining roots of \(f \) are simple.

- Now, \(f \) is a polynomial with bitstream coefficients. Furthermore, we assume that \(k := \deg \gcd(f, f') \) is known and that we can ask for an arbitrary good approximation \(\tilde{f}^* \) of the square-free part \(f^* := f / \gcd(f, f') \) of \(f \). Formulate an algorithm to
 1. determine isolating intervals \(I_1, \ldots, I_m \) for the real roots of \(f \).
 2. refine the intervals \(I_j \) to any specified size.
 3. determine whether \(f \) is generic or not.
 4. determine which of the intervals \(I_j \) contains the unique multiple root of \(f \).

Topology of a Planar Curve

Determine the topology of the planar curve \(C := V_{\mathbb{R}}(x^3 - 2xy + 2y^2 + x^2) \), that is, compute an isocomplex for \(C \).

Why is this argumentation wrong?

Let \(C \) be a planar algebraic curve. We are interested in a shearing of \(C \) such that the transformed curve \(C' \) is in general position, that is, no two critical points are co-vertical. We want to show that all but finitely many shearing directions induce a curve \(C' \) in general position:

It suffices to find a direction \(\phi \in [0, 2\pi) \) such that each line pointing toward the direction \(\phi \) does not pass two or more critical points of \(C \). There exists only finitely many critical points \(p_1, \ldots, p_m \) of \(C \). Let \(\phi_i, i = 1, \ldots, \binom{m}{2} \) denote the directions defined by each pair of
critical points, then, each direction $\phi \neq \phi_i$ defines a shearing which induces a curve in general position. This shows our claim.

Have fun with the solution!