
Chapter 1

Line Segment Intersection

(with material from [1], [3], and [5], pictures are missing)

1.1 Interval case

We first think of having n intervals (e.g., the x-range of horizontal line seg-
ments) and want to know whether any two of them intersect. Intersection
means to have a common endpoint or to overlap. It is obvious that this
can be done in time O(n2) by inspecting all pairs of intervals Ia = [la, ra],
Ib = [lb, rb] being disjoint, that is, whether lr < lb and ra < lb.1

A much better solution is possible, if we first sort the all endpoints and
mark the 2n points a left or right endpoint of an interval. In sorting we
already detect intersections at endpoints only. If no endpoints match, we
eventually have a sequence of characters ’L’ and ’R’. The intervals are dis-
joint iff the characters appear in alternating order in the sequence. Sorting
requires O(n log n) time, the alternating check is O(n), so in total we need
time O(n log n) to decide the problem.

1.2 Line segments

Let us introduce another motivation: Given two maps, e.g., for streets and
rivers, compute all the points were bridges are required. We assume for sim-
plicity that the streets and rivers are approximated by (connected) line seg-
ments (polygonal chains). Actually, in this setting we are interested whether
the chains intersect in their interior, that is, to decide whether the line seg-
ments are considered as open or closed. Usually segments are interpreted as
closed, that is, they can also intersect at their endpoints, or if an endpoint
lies on another segment.

1Assuming the real-RAM, that is, ignoring bit-lengths of actual representations of
interval boundaries.

1



2 CHAPTER 1. LINE SEGMENT INTERSECTION

In some sense, the distinction into two sets is not needed. One could
consider a set of labelled (colored) segments. To simplify our discussion, we
assume first that we only consider a single set of segments, but later, when
discussing overlays of arrangements and boolean operations in more detail.
So, we next discuss efficient solutions for the following problems:

Problem 1. Given n line segments in the plane S := {s1, . . . , sn}, determine
whether they intersect.

Problem 2. Compute the intersections of n given line segments in the plane.

A very naively approach would be: Check for any pair of segments (si, sj),
1 ≤ i, j ≤ n, i 6= j whether si ∩ sj 6= ∅. And if so, report the single point (or
the overlapping part) if also the constructive problem is to be solved. This
algorithm has running time O(n2) — which is (even) optimal if each pair
has an intersection, that is, the number of intersection is Ω(n2). Though this
situation is possible in real situations, it is not very likely for most cases.

Usually, practical applications have a number of intersections that is less
than quadratic. A segment intersects only a few (neighboring) segments, if
at all. It would be nice to have an algorithm that takes this into account, an
algorithm that is output-sensitive. That is, the running time depends on the
number of actual intersections. The less intersections exists, the less time is
spent (mainly in geometric operations, as we will learn later). Note that it
also means, that if the segments do not intersect at all, no time is spent to
try to construct intersections.

A crucial observation for line segments is that they are more likely to
intersect if they are close together. We next see an algorithm that benefits
from the special geometry. But what is the intuition? We want to check
which segments are far apart? However, obtaining a full order of segment
distances requires O(n2 log n2) time, which is even worse than the previous
naive approach. So pairwise-distances do not lead to improvements. A
interesting idea is to reduce the dimension, and to only check for segments
intersecting, if they already share a common x-range.2 We have already
seen that it takes O(n log n) time to decide whether x-ranges intersect. An
extension to really compute the intersections is not complicated. The crucial
observation is that after determining the x-range intersection, we only have to
check segments for a real intersection for which already the x-ranges intersect
— and even more: We only have to search in the intersected x-range of two
segments.

1.3 Sweep line algorithm

Let us try formalize this idea more algorithmically. Suppose we sweep with a
line ` from left to right over all segments. We assume that we start to the left

2Considering the y-range instead leads to a symmetric discussion of what follows.



1.3. SWEEP LINE ALGORITHM 3

of the leftmost endpoint of a segment, and end to the right of each segment’s
right endpoint. While we move the line, we always store which segments are
currently intersecting the line. This allows us to find pairs of segments that
possibly intersect, that is, that we can check for a real intersection. The
line ` is called the sweep line, and so we call the algorithm. The careful
reader already observes that the move is not needed to be continuous, as
only at a some points structural changes happen. What do we mean with
a structural change? In this example, the set of segments intersected by `
changes. Either we add a segment si, namely, when the sweep line moves
over si’s left endpoint, or we remove si from this list, namely when ` moves
over si’s right endpoint. We call these (x-)positions events.

The first crucial observation for this kind of algorithm is, that instead
of really moving the line continuously, we maintain a sorted set of events
and process it in increasing order. In this situation, we initialize the set
with a all segment’s endpoints. This requires to sort them (time O(n log n)).
Sweeping reduces to pick the next event, and to update the maintenance
structure. Here the set of segments that intersect `. Adding a segment,
if the event is a left endpoint, deleting a segment if the event is a right
segment. After changing the structure, we check the segments in the set
for possible intersections. This way we ensure to only check segments that
have a common x-range. There is already a subtlety here: Namely to check
whether there are intersections at the events itself. That is, whether two
segments only intersect at their endpoints, or whether the endpoint of a
segment lies in the interior of another segment. But these degenerate cases
are solvable.

Exercise 3. Sketch modifications of the algorithm, how to handle the degen-
erate cases.

The major problem with this algorithm is that it is not yet output-
sensitive. There are still configurations, where a quadratic number of seg-
ments must be checked for intersection, namely: All share a common x-range.
However, if they are all disjoint (e.g., parallel), not even a single intersection
will be found.

So far we only considered proximity in x-direction. How about intro-
ducing proximity in y-direction as well? More precisely, let us order the
segments intersecting the sweep line from bottom to top. It is easy to see,
that at some position of the sweep line, only segments that have the same
y-coordinate intersect at this x-coordinate. But there is more to see: Before
a segment intersects with a non-neighbor, it either has to cross a neighbor
(which means to intersect with the neighbor), or the “blocking” neighbor
has to vanish. Vanishing means that the blocking segments ends, while the
sweep line has moved on to the right. To summarize: The idea is to only
check for intersection of segments that are currently neighbors in the sweep
line. This leads to three important insights/changes:



4 CHAPTER 1. LINE SEGMENT INTERSECTION

First, the structure is now a sorted list (compared to an unsorted list
before). That is, in order to correctly maintain structural changes, we have
to reconsider our events. Beyond the case that a segment starts or ends,
we now also have to consider the case when the order of segments already
intersecting the sweep line changes. And this exactly happens when two
segments intersect. If they are sorted s1 < s2 to the left of the intersection,
their sorting is s2 < s1 to the right of the intersection.3 Following, we
introduce another event namely one for an intersection of segments.

The second insight is to detect cases, when segments become adjacent
(neighbored) in the sorted sequence. There are three: A new segment is
added, and we have to check for its intersection with its possible two neigh-
bors above and below. That is, we check up to two pairs of segments for
an intersection. A segment is deleted, and the possible neighbor below (if
exists) can now intersect the neighbor above (if exists, too). Here we only
check at most one pair of segments for an intersection. And the third case is
that two segments intersected in a point. Following the neighboring segment
above the two (if existing) now has a new neighbor below, and similar for the
neighboring segment below the two (if existing) now also has a new neighbor.
In this case, we again check up to two pairs for intersections. Note that each
segment that is updated gets at most two new neighbors.

The third change is that now the event queue is not static after its ini-
tializing. Whenever we detect an intersection of two segments (see previous
case distinction) we add it to the event queue as an intersection event. That
is, the sweep now also stops at those events and processes them (as just de-
scribed). Or more general: When processing an event the following happens.
We first update the sorting, and then check for intersection. It is sufficient
to check only for intersection to the right of the sweep line, as intersections
to the left are already found and processed (and reported/stored).

The sweep line stops when the last event (usually the rightmost endpoint
of a segment) is processed. Then no more segments can start to the right of
this position, and we should see sweep line with an empty list of segments
intersecting it (as at the very beginning of the algorithm). For the entire run
we can guarantee the following invariant: All intersection points to the left
of the sweep line have correctly been computed.

We next show that we really reduced the number of pairs to be checked for
intersection, and that we still compute all intersections. The proof idea is to
show that for any pair of segments si, sj there is a position of the sweep line
where the two segments are neighboring, such that we check them for their
intersection (to be inserted in the queue). We assume some general position,
in particular, segments should not overlap, not being vertical, and no three
share a common point. Later we will “easily” remove these assumptions. The

3This follows from the segments being linear, and none of them to be considered vertical
so far.



1.3. SWEEP LINE ALGORITHM 5

special case where an intersection takes place at a segment’s endpoint is easy
to detect when the sweep line hits the corresponding event. So we are left
with proper intersections in the segments’ interior.

Theorem 4. Let si, sj be non-vertical segments that intersect in a single
point p and no third segments passes through p. Then, there is an event E
to the left of p (i.e., x(E) < p(x)) where si and sj become adjacent and are
tested for intersections.

Proof. Immediately to the left of p the two segments are adjacent in `. That
is, there is a position x = x0 for `. Consider the event smaller than x0. This
is the event we are searching for. This event must exist, as initially the two
segments are not adjacent as the sweep starts to the left of all segments and
the sweep line is empty. More: The event E’s x-coordinate is no smaller
than the larger of the leftmost x-coordinates of the two segments.

1.3.1 Algorithm and data structure

We next discuss the algorithm more in-depth and also try to discuss the
degenerate cases. First of all, it is questionable what to report as output.
We will see that the sweep line approach is a rather generic algorithm that
can produce different kind of output by just looking at how the algorithms
progresses. For example, whenever an intersection is found, we can simply
report it. But we can also postpone it and wait until we process the corre-
sponding event, which then allows us to report which segments start, end,
and intersect at that point. Reporting overlapping segments is also required
to be complete.

For the event queue that is required by the algorithm we need a data
structure that maintains events and supports the following operations: In-
sertions of a new event (which includes to check whether an event already
exists), update of an event (in case, an event refers, e.g., to a starting point
of a segment, and is also an intersection of two other segments – more cases
are easy to derive) and to remove the smallest event – with respect to the
chosen sorting. We somehow assumed that we sort events with increasing
x-coordinate. But if two events share their x-coordinate but have different y-
coordinate, we should still handle them separately, that is, to consider them
as two events. For that, the sorting of events is achieved by a lexicographical
order. Comparison is first done by x-coordinate, and only if equal, we com-
pare y-coordinates. Note that this way, we do not talk about a sweep “line”
anymore. Its more a sweep “point”. But there are two common views: Either
we consider the sweep line as slightly tilt to the right, or the sweep line has
a “step” of infinitesimal width at the sweep point. A good candidate is a
balanced search tree reflecting the lexicographic order of events. For each
event maintained in it, we store which segments start R(E) (are to the ’right’
of E), which segments end L(E) (are to the ’left’ of E), and which segments



6 CHAPTER 1. LINE SEGMENT INTERSECTION

continue through C(E). All operations require time O(logm) where m is
the number of events currently in the tree.

For the status structure we need a sorted sequence of segments currently
intersecting the sweep line. Note that the structure dynamically changes,
whenever we process an event. But also notice that we only change a certain
subset of the segments maintained. That is, it is not required to compute
the full order of the k segments currently maintained using a sorting by y-
coordinates. This would need O(k log k) time. Again we can use a balanced
search tree which perfectly supports dynamic additions, deletions and to
relocate subtrees. This is possible as for the current position we always have
a well-defined order of the segments.

Exercise 5. Describe how to maintain the segments in the leaves of the
search tree, and to use to interior nodes as guides for queries, such that to
easily locate the segment that is below a given point “on the sweep line” (not
necessarily an intersection of the sweep line with a segment in the tree).

It is clear that the operations requires time as most O(log n).
We next see the overview of the algorithm that gets a set of segments,

and returns a list of intersection points together with segments that meet in
that point.

Algorithm 1 Sweep line algorithm
Initialize an empty event queue Q, and add all segments’ leftmost and
rightmost points as starting and ending events (note that events know
which segments start or end). We see at most 2n events, but it can also
be less.
Initialize an empty status structure T
while Q is not empty do
determine lexicographically smallest event E in Q and delete it from Q

Process(E)
end while

The subfunction Process(E) is basically doing what we described be-
fore. If kE = |R(E)∪C(E)∪L(E)| > 1, we report the event as intersection
together with that set of segments. In addition, it checks newly adjacent
segments for “future” intersection and to updates Q accordingly. But this
step first requires to correctly maintain T . That is, to remove all segments
L(E)∪C(E) from it and to insert at that position all segments C(E)∪R(E).
We have to ensure that the order of inserted segments in T is identical to
the order of those segments immediately to the right of E (if one of them
is vertical, it will be inserted as last element). The order can be ensured
by sorting the kE segments in time O(kE log kE). But we can do better: If
we first remove L(E) from T , we next simply reverse the order of segments



1.3. SWEEP LINE ALGORITHM 7

C(E) in T , which only requires time O(kC) with kC = |C(E)|. It remains
to insert the missing segments R(E) to the now modified tree which can be
done in time O(kR log(kC + kR), with kR = |R(E)|.

Below we discuss which geometric operations are required for the sweep
line algorithm. The correctness of the algorithms follows from the fact that
endpoints are already inserted at the beginning, and that we can sort the
segments passing through a common vertex by angle and then apply The-
orem 4 to neighboring segments. We next proof the running time and see
that we have reached an output-sensitive algorithm:

Theorem 6. The sweep line algorithm runs in time O(n log n + k log n)
where k is the number of intersection points of segments.

Proof. The initializing of Q with start and end events takes time O(n log n).
Initializing of the status structure is constant. An event is deleted only once,
and for each deletion we can have up to 2 insertions. Each such operation
requires O(log n) time. In addition each operation on T can be executed in
time O(log n). For a single event, the number of such operations is bounded
by kE . Let m =

∑
all events E kE . That is, we have in total O(m log n) time

for operations on T . We can bound m = O(n + l), where l is the size of
the output. But, whenever kE > 1, all segments involved in E are reported,
and events that have at most one segment are events where this segments
starts or end. That is, it remains to show that m = O(n+ k). This is done
by interpreting S as a planar graph embedded in the plane (we will do so in
the next lecture anyhow). Vertices are given by end- and intersection points,
segments are defined by subsegments connecting vertices. Any event E is a
vertex of the graph, and kE denotes its degree. Consequently m is bounded
by the sum of all degrees of the graph. Every edge can contribute one at
most twice. Namely to the vertices of the graph. That is m ≤ 2ne. We only
have to bound ne in terms of n and k now. We know that nv, the number
of vertices, is bounded by 2n + k, but we also know for planar graphs that
ne = O(nv). And we are done. In fact we can even bound the number of
faces nf by 2ne/3. Then using Euler’s formula which states nv−ne +nf ≥ 2,
we have

2 ≤ (2n+ k)− ne + 2ne/3 = 2n+ k − ne/3

. Following, ne ≤ 6n+ 3k − 6 and m ≤ 12n+ 6k − 12.

What is the amount of storage required? Obviously, the status structure
holds every segment at most once. So we haveO(n) space for it. However, the
size of the event queue can be larger, as we also insert intersection points.
In worst case, we will have up to O(n + k) events, where k is again the
number of reported intersection points. Is it possible to reduce working
space? In fact, there is an easy way to do so. We only have to ensure
that no intersection of two segments is stored if the two segments are not



8 CHAPTER 1. LINE SEGMENT INTERSECTION

adjacent in the status structure. Obviously, we will only have linearly many
intersection events in the queue. The algorithm must be adapted to now also
delete events when two segments stop being adjacent. It is clear that the
two segments will become adjacent again, before the will finally intersect (if
at all). Though the overall running time is not harmed by this modification,
it is questionable of whether to really do so. If one is interested in the
arrangement (see Lecture ??), its output complexity is O(n+ k) anyhow. If
the output has less complexity, the change might be useful.

Note that the algorithm can also be used for checking whether there is
an intersection, that is, we could stop after the first intersection is found.
Really reporting the intersection is not required.

Theorem 7. Given n line segments, the decision of whether they intersect
can be done in O(n log n) time, and this is optimal.

Corollary 8. As a consequence, the following problems can also be solved
in time O(n log n):

• Is a given polygon simple?

• Do two given simple polygons (of size n) intersect?

• Does a chosen straight-line embedding of a planar graph contain any
crossing edges?

In the exercise we ask you to analyze the a sweep line algorithm to
compute the intersections of n circles. It is clear that a slightly modified
algorithm suffices to decide whether any two of n circles intersect in time
O(n log n).

1.3.2 Geometric operations required for the sweep line algo-
rithm

We next analyze more detailed which geometric operations are required by
the sweep line algorithm. We discuss them for segments, but they generalize
for other one-dimensional (and x-monotone) planar curves, too.

This operation is obvious:

Intersection of two segments Given two segments, report their intersect-
ing set, which is either empty, or consists of a single point, or is an
overlapping part of the two segments. In general, we must be able to
report a set of isolated intersection points (possibly empty) and a set
of overlapping parts (possibly empty).

The next operation is required to maintain the event queue:



1.3. SWEEP LINE ALGORITHM 9

Lexicographic comparison of points Given two points, decide whether
one is lexicographically smaller or larger than the other, or whether
they are equal.

Remember that the status structure is a sorted list of curves/segments
currently intersecting the sweep line. For its maintenance we need the fol-
lowing geometric predicates:

Point position Given an x-monotone curve and a point in the curve’s x-
range. Decide whether the point is below the segment, above it, or lies
on it. Below and above are with respect to the y-coordinates of the
point and the curve at the point’s x-coordinate. The predicate is used
to find the position of a curve that starts at the position of the sweep
line in the status structure (i.e., among the segments already contained
in the structure).

Compare to right Given two segments/curves intersecting in a common
point and not overlapping. Decide which of the two curves is smaller
(in y-direction) than the other just to the right of the intersection
point. This predicate is also used to insert a starting curve into the
status structure. Namely, when the previous predicate reported ’on a
curve’ for the starting curve’s minimal point. Then it did not succeed
to find the right position of the curve. Remember that we aim to
eventually obtain a status structure that reflects the vertical order of
segments/curves immediately to the right of the event currently being
process.

In case we consider non-linear curves (see Lecture ??), we also need a
way to split curves into (weakly) x-monotone subpieces:

Make x-monotone Splits a given non-x-monotone curve into a set of (weakly)
x-monotone curves (and maybe isolated points).

Exercise 9. Describe how to implement the predicates/operations for bounded
arcs of rational functions.



10 CHAPTER 1. LINE SEGMENT INTERSECTION



Chapter 2

Arrangements

When thinking about maps, they are often labeled. That is, some regions
contain names such as streets, places of interest, or areas of cities. We next
aim to represent such a decomposition in a data structure. Just collecting the
lists of curves bounding them is often no sufficient for quickly reporting, for
instance, the boundary of a city. That is why we aim for a more combinatorial
and topological description: Which curves bound a region, which curves
emanate from a point. More precisely: To transform the continuous problem
into a set of finite objects.

In computational geometry, this is supported by arrangements, that we
present in this lecture.

Definition 10. Given a finite collection S of geometric objects such as hy-
perplanes or spheres in Rd, the arrangement A(S) is the decomposition of
Rd into maximal connected open cells of dimensions 0, 1, . . . , d − 1 induced
by S.

Arrangements are interesting for their own, but can also serve as unify-
ing structure. We here focus on two-dimensional arrangements of segments,
lines, and later algebraic curves. Our actual assumption is that curves are
(weakly) x-monotone Jordan arcs. It simplifies computations and their anal-
yses.

The 0-, 1-, and 2-dimensional cells of a planar arrangement are called
vertices, edges, and faces. An arrangement is simple if every two curves
meet in a single point and any three curves do not have a point in common.1

Example 11 (Arrangement of lines). Given a set of lines L inducing a sim-
ple arrangement A(L). Then, a vertex of the arrangement is unique specified
by a pair of lines; an edge is the maximal connected portion of a line that
is not intersected by any other line. Finally, a face is a maximal connected
2-dimensional region that is not intersected by any line. An arrangement

1We omit d-dimensional definitions.

11



12 CHAPTER 2. ARRANGEMENTS

of n lines has up to O(n2) cells, where equality holds if the arrangement is
simple (as assumed).

In an arrangement of bounded curves, vertices are also modelled by end-
points of curves. In addition to curves, we can also assume the existence
of isolated points (that will form vertices on their own, if not covered by
a curve). Often we assume general position, that consists of conditions as:
Intersections are interior to input curves, or no three curves intersect in a
single point. However, we try to avoid such assumptions. An arrangement
of n Jordan arcs has up to O(n2) cells.

Arrangements also induce various interesting substructures. Some of
them already suffice to solve particular problems, which makes constructing
and querying an entire arrangement obsolete. As the complexity is usually
smaller, this has positive implications on an algorithm’s performance. We
only sketch main structures:

Lower envelope We interpret each curve ci as a graph of a continuous
function ci(x). The lower envelope is the pointwise minimum of these
functions. Similarly, we can define the upper envelope (or any k-level).

Minimization diagram This structure is related to the lower envelope. It
is the decomposition of the x-axis into intervals so that on each interval
the same subset of functions attains the minimum.

Zone Consider another curve γ, its zone consists of all faces of a given
arrangement that are intersected by γ.

Single cell A single cell of an arrangement. Often specified by a point
contained in the cell.

For more details and an overview of complexities of substructures we
refer the reader to [3, Chapter 24].

Beyond substructures there are decompositions. Resulting cells usually
have finite complexity, for instance, the one of a disk. It offers simplification,
and allows to analyze algorithms and the arrangement itself. A famous
one is the vertical decomposition where each vertex is extended in upward
and downward direction. The extension is a vertical segment if it next hits
another curve, and a vertical ray, if it extends to infinity.

Exercise 12. Show that O(n) is the complexity of a vertical decomposition
of a planar arrangement of complexity n.



2.1. REPRESENTATIONS 13

2.1 Representations

We next present possible representations for an arrangement.

Incidence graph This graph G = (V,E) has a node for each cell of the
arrangement, and two nodes are linked if the two cells are incident to
each other.

Skeleton A skeleton is a connected subset of the edges and vertices of the
arrangement. The complete skeleton is the union of all vertices and
edges.

Cell-tuple structure The incidence graph misses to capture order infor-
mation between cells. For example, edges bounding a face can be nat-
urally ordered (e.g., counterclockwisely). The famous two-dimensional
cell-tuple structure is the doubly-connected-edge-list, DCEL for short.
It provides simple and unified access to incidence and ordering infor-
mation in the arrangement. A DCEL contains a record for each face,
each edge, and each vertex of the arrangement. A record can store an
“attribute”, that is, some information in addition to the geometric and
topological data that are used to provide easy access to operations as:

• Which are the edges bounding a face?
• To which vertex is an edge connected?
• What are inner components of a face?
• What are neighboring faces of a vertex or an edge?
• What is the geometric point of a vertex?
• What is the curve supporting an edge?

These operations are enabled by adding pointers between the records,
or to geometric objects. Note that faces usually do not have their own
geometric object, as they are implicitly given by the surrounding curves
(and maybe excluded isolated points). Edges are the central objects of
a DCEL. Each edge stores a pointer to a geometric curve that it rep-
resent (as a vertex stores a pointer to a geometric point). Actually for
one edge we store a pair of twin halfedges in opposite direction. Each
halfedge then has a pointer to the face that is to the left of the halfedge
when travelling the halfedge in its orientation. Due to the orientation
we can also define source and target of a halfedge, but we only have
to store one, as the other can be accessed by the halfedge’s twin. In
order to travel along the cycle of halfedges surrounding a face we have
to store a pointer to the next halfedge in that order. To get from a
face to such a cycle we store a pointer from the face to an arbitrary
halfedge in the cycle. Note that there can be more than one cycle for
a face: Usually one is oriented counter-clockwisely (the outer cycle),
while there can be an arbitrary number of clockwisely oriented cycles



14 CHAPTER 2. ARRANGEMENTS

(separating inner components). Isolated vertices excluded in a face
need additional pointers inside a face. Further note that a DCEL is
not needed to be connected. One might think of introducing “dummy”
edges to avoid inner components. This can even be done without sac-
rificing the DCEL’s complexity. With the next and twin pointers, we
obtain a way to visit all edges incident to a vertex, that is, jumping
from an edge to the next in circular order is given by twin(next(h)).
To summarize,

a vertex stores a constant number of information: Pointer to geomet-
ric point and a pointer to an arbitrary incident edge (we just told
how to visit all its incident edges starting from any)

an halfedge also stores a constant number of information: A pointer
to a geometric curve that is represented by the halfedge. A pointer
to its twin halfedge, a pointer to its target vertex, and a pointer
to the face incident to the left of the halfedge. Finally a pointer
that gives the next halfedge along the boundary of the incident
face. Note that this will form a cyclic list that is either an outer
edge cycle of the face, or an inner edge cycle of the incident face.

a face stores linearly many information — linear in the number of
inner components. We have a pointer to one outer edge cycle,
which is ’nil’ in case of the single unbounded face. For each inner
edge cycle there is another pointer. Similarly there is a pointer to
every isolated vertex excluded from the face.

However, we can see that the total amount of storage is linear in the
number of cells, that is, the complexity of the subdivision, as each
inner component is only referenced once. For more details we strongly
encourage to read [2, Chapter 1] and [1, Chapter 2.2]

2.2 Algorithms

In this section we answer the question: How to get the DCEL from a given
set of curves? We will discuss three approaches.

Naive The first is simple, naive and direct. Decompose the set of curves C
into (weakly) x-monotone subpieces. Call the set C ′. We do so, as this makes
a vertical decomposition and other algorithms easier to handle. We next
compute all intersections of curves in C ′ and decompose the curves further
such that they are interior disjoint from any intersection point (endpoints of
overlapping parts can also serve for this purpose). Let B the resulting set.
Now we can construct the DCEL for the set B. For each edge we may store
pointers to the original curves in C, in case of overlaps there is more than
one curve to be linked.



2.2. ALGORITHMS 15

Sweep line We next discuss how to extend the sweep line algorithm to
construct a DCEL, that is, we have to create vertices, edges connecting them,
and create faces for which we have to find edges surrounding them. Vertices
are trivial to create, namely whenever we see an event, we create a vertex.
To create edges, we have to know the two vertices. For that we store with
each curve maintained in the status structure a pointer to the vertex from
which the curve emanates. Once we reach an event where a curve is involved
(be it ending or passing), we create an edge from the stored source vertex to
the newly created vertex of the event currently processed. It is questionable
what geometric information to store with the edge: Two options are common.
Either we store a link to the original curve, although the edge only represents
some part of that curve (i.e., if a curve is intersected by another, we see at
least two edges, but both would be linked to the original curve). Or, we
split the curve at vertices, and only store with an edge the split part, that
is, the curve stored in an edge directly represents what is meant with the
edge (the part between two geometric points). The latter requires a split
operation on an edge (and a merge if we later allow to remove vertices of
an arrangement). However, the latter has advantages when processing the
arrangement further, for example, when we compute overlays below, or when
we extract a single cell. The order of edges around the vertices is given by
the concatenated order of curves incident to an event. Remember that each
event maintains a list of curves ending, passing, and starting. In worst case,
we would require m operations to correctly find the cyclic order (where m
is the number of curves in an event). Note that this does not harm the
overall running time of the sweep. It remains to care about the DCEL’s
faces. Assume first, that we correctly created all vertices and edges with a
sweep as above. Correctly link by the next pointers. That is, we have all
edges (pairs of twins) available, that can form the outer and inner cycles of
edges surrounding the faces. And we know that a face is always to the left
of such a cycles (the cycles are counterclockwisely and clockwisely oriented).
That is, we only have to collect the cycles, to determine their orientation,
and to assign the cycles to faces and vice versa. To find the cycles is simple:
Pick an edge, follow its next pointer until the first edge is seen again. This
closes a cycle. Do so, until all edges are seen. Next we have to determine
the cycle’s orientation. This can be done as seen in Lecture ?? for the
orientation of the polygon. Search for the lexicographical minimal vertex
(point) and check the angle formed by the edge towards the vertex and the
next edge (using the stored curves). If it is smaller than 180 degrees, then
the cycle is outer. If it is larger, the cycle is inner. The test can also be
done by comparing the vertical order (in y-direction) of the curves right of
the lexicographically minimal point. We finally have to assign cycles to faces
and vice versa. For that we create a graph, where each cycle forms a node
(there is also a node for the imaginary outer cycle of the unbounded face).
There is an arc between two nodes (cycles) if and only if one of the cycles



16 CHAPTER 2. ARRANGEMENTS

is a boundary of a hole (an inner one) and the other has an edge (vertex)
immediately below the lexicographical minimal point of the first (i.e., inner)
cycle. Note that each inner cycle must be connected to an outer. It can be
transitive via other inner cycles.

Lemma 13 (Lemma 2.5 in [1]). Each connected component of the graph
corresponds to exactly the set of cycles incident to one face.

Proof. Fix one cycle C of a face f . The face has to lie locally below the
lexicographical minimal point of C. Thus, the other cycle to which it is
linked must belong to the same face (there is no other face in between).

It remains to show that every inner cycle (bounding hole) is eventually
linked to the outer cycle of the face. Suppose there is a cycle for which it is
not the case and let C be the bottom most, which also has a lexicographically
minimal point. However, by definition, there is another cycle C ′ to which C
is connected. C ′ is below. Hence, C ′ is in the same connected component as
C, which is not the connected component of f ’s outer cycle. This contradicts
the definition of C.

How can we construct the graph? We enhance the sweep by detecting
the lexicographical minimal points of cycles. This happens when a curve
starts in an event where no ending or passing curves exist (observe that cy-
cles maybe one-dimensional). Note that in addition the status line gives an
order of curves (and edges) below the current event (and thus below a lexi-
cographically minimal point). The edge below is either another inner cycle,
or an outer cycle of the face. Note that the orientation of a cycle (or even is
stub only) is already determined when having processed the lexicographically
minimal point — which is luckily ensured by the sweep order.

(Random) Incremental Suppose we are given an arrangement A and
we are aiming to insert another curve γ into it. We can assume that γ is
x-monotone, as all curves in the arrangement. If the arrangement is empty,
the insertion is trivial. If it already consists of curves we need to do more:

1. Locate γ’s minimal point in the arrangement (we discuss point location
strategies below). This gives a cell.
• If it is a vertex, then γ starts in it, and we have to update the

DCEL accordingly, namely to insert a new edge in the right po-
sition of the cyclic lists of edges around the vertex.
• If it is an edge, we have to split the edge. The new vertex has

three incident edges then.
• If it is a face, we create a new vertex of degree one contained in

the face.
2. Next we traverse the zone of γ. That is, we compute which faces are

crossed by the curve until we reach the curve’s endpoint (see next step).
In order to get from one face to the next, we have to check which of



2.3. POINT LOCATION 17

the current face’s edges γ intersects. This implies that whenever this
happens we have to split an edge and we also have to split a face if it
is totally crossed by γ.

3. γ’s endpoint can be within a face, but also lie on an edge or an existing
vertex. We proceed analogously to the starting point.

A special case is given when the entire γ lies within one face.
We remark that the order of insertion for n curves influences the (ex-

pected) running time (also in constants). A usual trick is to first compute
a random permutation and then to insert the curves according to this per-
mutation. However, the worst case running time for n line segments is still
O(n2), which is optimal if all curves pairwisely intersect.

As mentioned, the algorithm relies on the possibility to perform exact
point location for a curve’s starting point in an existing arrangement. We
next analyze this task in more detail.

Exercise 14. Design a sweep-like algorithm to insert a set of curves into an
existing arrangement.

2.3 Point Location

In this section we are facing the problem of locating a point in a given
arrangement (subdivision). That is, determine which cell (vertex, edge, face)
contains a specified query point.

Naive A very naive approach is to just iterate over all cells. We start with
the vertices and check whether one of the stored points is equal to the given
point. This can be done by lexicographical comparison. We next check all
edges whether they contain the point, which can be done with the point
position predicate as described above. Note that we only check the interior
of edges, as vertices are already checked. If not successful we similarly check
the interior of faces. If no holes exists, this can be done by only checking the
edges of the outer cycle of the face. For instance, whether they all have the
point “to their left”. Or to determine the two edges that contain the point’s
x-coordinate in their x-range and then to query the point position predicate
for the two. In case that holes exists, we have to exclude that the point is
actually inside a hole. For that we can either modify the previous tests to
also consider edges of inner cycles. Or we descend to holes and ensure that
the query point is not contained in any face contained in a hole (note that
there can be more than one face contained in a hole) to finally decide whether
the query point is inside the current query face. There are possibilities to
tune this naive search.

Walk along a (vertical) line The previous exhaustive search can be
improved by only searching cells that are met when walking in reverse order



18 CHAPTER 2. ARRANGEMENTS

along an “imaginary” ray starting in the query point. That is, we compute a
special zone (see below) starting in the unbounded face, until we eventually
meet the query point. On the way we may cross vertices, edges, and other
faces. Once we reach the query point we exactly know which cell contains
it.

Using landmarks We maintain a list of landmarks, that is, points for
which we know their exact location in the subdivision. Given a new query
point, we first perform some nearest-neighbor search (using a proper data
structure, e.g., a Kd-tree) to find the nearest landmark and then perform
“walk along a segment” from the landmark to the query point.

Vertical decomposition We decompose the arrangement further by ex-
tending vertices vertically; see construction above. We get a set of pseudo-
trapezoids. We have to link those together which requires in total linear
space. For the search we require a search structure which is formed by a
directed acyclic graph (DAG) (of expected linear size), if the constructions
are random incremental. More details can be found in [1, Chapter 6].

While the first two do not need additional data structures, the other
two need. Those must be updated whenever the arrangement structurally
changes. For that reason, one often introduces observers that get notified
upon changes, that is, when a vertex, edge, or face is created (or deleted), or
when a face is split, and more cases. This way the external entity can main-
tain and update auxiliary data based on local changes in the arrangement.

Exercise 15. Design an efficient algorithm that computes the locations of a
set of points in an arrangement using the sweep line paradigm.

2.4 Overlay and Boolean Set Operations

We next face the problem that we are given two arrangements, and we want
to compute their overlay, for example to match agricultural fields with a
rain map. The goal is to subdivide each arrangement with respect to the
other such that we finally know for each plant (on a field) how much water it
received. That is, we want to label each face (to be more precise: each cell)
with a pointer to the cells in the two original arrangements. A crucial ob-
servation is that a cell of one arrangement is only changed, if its intersection
with a non-face of the other arrangement is non-empty. For that we assume
that we are given a red-colored and a blue-colored arrangement. A red face
is only split (or modified), if there is a blue edge running in the face, or it
contains a blue vertex. And a red edge is only split, if there is a blue vertex
or blue edge intersecting the red edge (there is the special case of overlapping
edges, that we ignore here. Its handling is possible, though tedious). We



2.4. OVERLAY AND BOOLEAN SET OPERATIONS 19

again use the sweep line paradigm to compute the overlay. Here, we rely on
the fact that sweeping the curves in the red (or the blue) arrangements only,
do not result in new intersection points. That is, no new event will ever be
added to the initial list of events. However, if we sweep the red and blue
arrangement in parallel, we add events, namely those where a red curve and
a blue curve intersects. To obtain the resulting DCEL we simply do exactly
the same as for a single set of curves (ignoring the colors at first hand). Note
that this even allows to use the same tricks to determine the faces and their
cycles.

It only remains to consider the colors, namely for the labelling of the
newly created DCEL records. Remember that the recent sweep newly creates
vertices, edges, and faces that will eventually be linked together and form the
DCEL of the overlay. Each such record should be enhanced by two pointers:
One into a red cell and one into a blue cell. However, this can be done when
creating the records, using the fact that we sweep in both arrangements in
parallel, and exactly know in which cell of each arrangement we are (or at
least to which cells the current sweep event is incident). For example, think
of an event that is formed by a red vertex only. It can match with a blue
vertex, so we immediately have the originating cells. Or it can lie on a blue
edge, which is determined by a geometric predicate. And we again know the
cells. Or it can fall into a blue face, which is known from the last blue event
that we encountered. Note that the ’active’ face of one arrangement only
changes at events of that arrangement. Similar considerations are possible
for the red edges and faces, and for all blue records. In total we have ten
cases: vertex-vertex = vertex, vertex-edge or edge-vertex = vertex, vertex-
face or face-vertex = point, edge-edge = vertex, edge-edge = edge, edge-face
or face-edge = edge, and finally face-face = face.

Boolean operations The map overlay allows to perform Boolean set op-
erations. Think of each cell of an arrangement labelled with a Boolean flag
as attribute. It is true if the cell (actually the points of the cell) is contained
in the set, and false otherwise. Given two such sets, we want to perform
operations as union, intersection, or difference. Observe that even though
the input is a polygonally bounded set, the output can be more complicated.
Just think of isolated points removed from a set. To compute such an oper-
ation, say intersection, we eventually traverse the overlay and report all cells
whose originating cell both carry a true flag. To get the union, we report
all cells where at least one of the originating cells carries a true flag. And
similar for other Boolean operations.

This approach leads to unregularized Boolean set operations. If you
want to have regularized operations, that is, the output is cleaned from
lower-dimensional features such as isolated points, isolated edges, antennas,
or open boundaries, you have to post-process the result. A more direct way



20 CHAPTER 2. ARRANGEMENTS

is presented in [4, Chaper 10.8].



Bibliography

[1] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark H. Over-
mars. Computational geometry. Springer, Berlin [u.a.], 3., ed. edition,
2008.

[2] Jean-Daniel Boissonnat and Monique Teillaud, editors. Effective compu-
tational geometry for curves and surfaces, volume - of Mathematics and
visualization. Springer, Berlin ; Heidelberg [u.a.], 2007.

[3] Jacob E. Goodman and Joseph O’Rourke. Handbook of discrete and
computational geometry, volume - of Discrete mathematics and its appli-
cations. Chapman & Hall/CRC, Boca Raton, 2nd. ed. edition, 2004.

[4] Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for
Combinatorial and Geometric Computing. Cambridge Uni-
versity Press, Cambridge, UK, 2000. Available online at
http://www.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html.

[5] Mariette Yvinec. 2d triangulations. In CGAL Editorial Board, editor,
CGAL User and Reference Manual. 3.5 edition, 2009.

21



22 BIBLIOGRAPHY



Chapter 3

Non-linear curves

Sweep needs modifications:

More than one intersection (e.g., several points, several overlapping parts).
We have to insert only the leftmost to the event queue, unless all
are available. Then without running time penalty (but with higher
space consumption – not higher than the output complexity of the
corresponding arrangement), we can add all of them.

We have to consider the Multiplicity of an intersection point of two curves.
An exact definition is given in Lecture . It is odd, the two curves
swap vertical ordering when processing the intersection point (as line
segments), if it is even, the order is preserved. In that case, no new
adjacency is created.

If k > 2 curves intersect in a common point (pass through), it is non-
trivial to compute their ordering to the right. This can be done in O(Mk)
where M is the maximal pairwise multiplicity.

23


