
Controlled Perturbation for Delaunay Triangulations

Stefan Funke
�

Christian Klein
�

Kurt Mehlhorn
�

Susanne Schmitt
�

18. Oktober 2004

Keywords: Randomized incremental algorithm, randomized
incremental construction, controlled perturbation, floating
point computation, Delaunay triangulations, convex hulls

Zusammenfassung

Most geometric algorithms are idealistic in the sense that they are
designed for the Real-RAM model of computation and for inputs in
general position. Real inputs may be degenerate and floating point
arithmetic is only an approximation of real arithmetic. Perturbation
replaces an input by a nearby input which is (hopefully) in general
position and on which the algorithm can be run with floating point
arithmetic. Controlled perturbation as proposed by Halperin et al.
calls for more: control over the amount of perturbation needed for
a given precision of the floating point system. Or conversely, a con-
trol over the precision needed for a given amount of perturbation.
Halperin et al. gave controlled perturbation schemes for arrange-
ments of polyhedral surfaces, spheres, and circles. We extend their
work and point out that controlled perturbation is a general sche-
me for converting idealistic algorithms into algorithms which can
be executed with floating point arithmetic. We also show how to
use controlled perturbation in the context of randomized geometric
algorithms without deteriorating the running time. Finally, we gi-
ve concrete schemes for planar Delaunay triangulations and convex
hulls and Delaunay triangulations in arbitrary dimensions. We ana-
lyze the relation between the perturbation amount and the precision
of the floating point system. We also report about experiments with
a planar Delaunay diagram algorithm.

1 Introduction

Most algorithms of computational geometry are designed
under two simplifying assumptions: the availability of a
Real-RAM and non-degeneracy of the input. A Real-RAM
computes with real numbers in the sense of mathematics,
i.e., it stores real numbers in its registers and performs exact
arithmetic (basic arithmetic, roots of polynomials, trigono-
metric functions, . . .) on them. The exact notion of degenera-
cy depends on the problem; examples are collinear or cocir-
cular points or three lines with a common point. We call an
algorithm designed under the two simplifying assumptions
an idealistic algorithm. Implementations have to deal with

�
Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123

Saarbrücken, Germany,
�
funke,cklein,mehlhorn,sschmitt � @mpi-sb.mpg.de

t

Forbidden
Areas

Possible
Perturbations

Abbildung 1: The forbidden areas (light gray) for a new point
t induced by a Delaunay triangulation. Each forbidden area is
induced by a vertex (a disc centered at it), an edge (a strip around
it) or a triangle (an annulus around its circumcircle) of the current
diagram.

the precision problem (= the Real-RAM assumption) and the
degeneracy problem (= the non-degeneracy assumption).

The exact computation paradigm [KLN91, JRZ91,
FvW93, Yap93, MN94, MN99] addresses the precision pro-
blem. It proposes to implement a Real-RAM tuned to geo-
metric computations. The degeneracy problem is addressed
by reformulating the algorithms so that they can handle all
inputs. This may require non-trivial changes. The approach
is followed in systems like LEDA [LED] and CGAL [CGA].

Halperin et al. [HS98, HR, HL03] proposed controlled
perturbation to overcome both problems. The idea is to solve
the problem at hand not on the input given but on a nearby
input. The perturbed input is carefully chosen, hence the na-
me controlled perturbation, so that it is non-degenerate and
can be handled with approximate arithmetic. They applied
the idea to three problems (computing polyhedral arrange-
ments, spherical arrangements, or arrangements of circles)
and showed that variants of the idealistic algorithms can be
made to work. In this paper we extend their work in several
directions:

1. we point out that controlled perturbation and guarded

tests are a general conversion strategy1 for idealistic
algorithms, see Section 2,

2. we show how to use controlled perturbation in the con-
text of randomized algorithms, in particular randomized
incremental constructions, see Section 3,

3. we give specific schemes for planar Delaunay triangu-
lations and convex hulls and Delaunay triangulations in
arbitrary dimensions, see Sections 4, 5, and 6, and

4. we show how to generalize the analysis from the pre-
vious item to all surprise-free randomized incremental
constructions, see Section 7.

Note: We want to emphasize that while at first sight the
concept of controlled perturbation might look similar to
the approach of smoothed analysis as pioneered by Spiel-
man/Teng [ST04], the goals and effects are quite different.
The purpose of controlled perturbation is to actually per-
turb the input, thereby reducing the required precision of the
underlying arithmetic and getting rid of explicit treatment
of degenerate cases. In contrast, the goal of [ST04] is mo-
re analytical in a sense that they examine the combinatorial
complexity of an algorithm when moving from a problem
instance randomly to another ’nearby’ instance. That should
be seen rather as a trade-off between worst-case and average-
case analysis than something to actually implement.

2 Guarded Tests and Controlled Perturbation

Geometric algorithms branch on geometric predicates. A
basic predicate for two-dimensional geometry is orientation.
Given three points decide whether they lie on a common
line or form a left turn or form a right turn. Typically,
geometric predicates can be expressed as the sign of an
arithmetic formula E. For example, the orientation predicate
for d � 1 points � p0 ���	���
� pd � in � d is given by the sign of a� d � 1 �� � d � 1 � determinant:

orient � p0 ���	���
� pd � : � sign

�������
p01 ���	� p0d 1
... ���	� ...

...
pd1 ���	� pdd 1

������� �(2.1)

The determinant evaluates to zero if and only if the d � 1
points lie in a common hyperplane. In many algorithms this
is considered a degeneracy.

When evaluating an arithmetic formula E using floating-
point arithmetic, round-off errors occur which might result
in the wrong sign being reported. If this stays undetected,
the program may enter an illegal state and disasters might

1This observation is already implicit in the paper of Halperin and
Leiserowitz [HL03]. They write in Section 2.1: We look to move the centers
of the circles slightly ... such that when constructing the arrangement (of the
perturbed circles) while using a fixed precision floating point filter, the filter
will always succeed and we will never have to resort to higher precision or
exact arithmetic.

happen, see [KMP �] for some instructive examples. In order
to guard against round-off errors, we postulate the availa-
bility of a predicate GE with the following guard property:
If GE evaluates to true when evaluated with floating point
arithmetic, the evaluation of E with floating point arithmetic
yields the correct sign. In an idealistic algorithm A we now
guard every sign test by first testing whether the correspon-
ding guard evaluates to true. If not, we abort. We call the
resulting algorithm a guarded algorithm and use Ag to deno-
te it. On an input x, Ag will either follow the same execution
path as A or abort after an initial segment of it. In the former
case, we will say that Ag succeeds on x. When Ag succeeds
on x, the combinatorial part of the output will be correct and
the numerical part will be a floating point approximation of
the exact result. In all applications in this paper, the nume-
rical part of the output will be identical to the input. Also
the running time of Ag on x will be at most the running time
of A on input x; this assumes that the cost of evaluating a
guard is bounded by the cost of evaluating the corresponding
expression and ignores constant factors.

The controlled perturbation version of idealistic algo-
rithm A is as follows: Let δ be a positive real. On input x, we
first choose a δ-perturbation �x of x and then run the guarded
algorithm Ag on �x. If it succeeds, fine. If not, repeat. What is
a δ-perturbation? If the input is a set of points, the following
definition is natural. A δ-perturbation of a point is a random
point in the δ-ball (or δ-cube) centered at the point and for
a set of points a δ-perturbation is simply a δ-perturbation of
each point in the set. For more complex objects, alternative
definitions come to mind, e.g., for a a circle one may want to
perturb the center or the center and the radius.

The goal is now to show experimentally and/or theo-
retically that Ag has a good chance of working on a δ-
perturbation of each input and a small value of δ. More gene-
rally, one wants to derive a relation between the precision p
of the floating point system (= length of the mantissa), a cha-
racteristic of the input set, e.g., the number of points in the
set and an upper bound on the maximal coordinate of any
point in the input, and δ. Halperin et al. have done so for ar-
rangements of polyhedral surfaces, arrangements of spheres,
and arrangements of circles.

We want to stress that a guarded algorithm can be used
without any analysis. Suppose we want to use it with a
certain δ. We execute it with a certain precision p. If it does
not succeed, we double p and repeat. We elaborate on this
scheme at the end of Section 4.

Guard predicates must be safe and should be effective,
i.e., if a guard does not fire, the approximate sign compu-
tation must be correct, and guards should not fire too often
unnecessarily. It is usually difficult to analyze the floating
point evaluation of GE directly. For the purpose of the analy-
sis, we therefore postulate the existence of a bound predicate
BE with the property: If BE holds, GE evaluates to true when

E �E �Esup indE

c � const c � c � 0
x � y x � y �xsup � �ysup 1 � max � indx � indy �
x � y x � y �xsup � �ysup 1 � max � indx � indy �
x � y x y �xsup �ysup 1 � indx � indy

Tabelle 1: Rules for calculating error bounds. � , � , and
stand for floating point addition, subtraction, and multiplication,
respectively. .

evaluated with floating point arithmetic. We next give con-
crete examples for guard and bound predicates:

Straight-Line Evaluation: When E is evaluated by a
straight-line program, it is easy to come up with suitable
predicates GE and BE using forward error analysis. For
example, the rules in Table 1 ([MN99]) recursively define
two quantities !Esup and indE for every arithmetic expression
E such that "

E # �E "%$ BE : � !Esup � indE � 2 & p

where �E denote the value of E computed with floating point
arithmetic and p denotes the mantissa length of the floating-
point system. (i.e. p � 52 for IEEE doubles). We also write
ε instead of 2 & p. We can then use

GE ' (" �E "%) BE * and BE ' � "E "+) 2BE � �(2.2)

where BE is valid since it guarantees that
" �E " � "

E
" # "

E #�E ",) 2BE # BE � BE by the inverse triangle inequality. Ori-
entation tests and insphere tests in low dimensions, certainly
dimensions 2 and 3, are usually implemented through ex-
pressions and hence straight-line computation.

General Evaluation: For a more complex expression
E, we will evaluate the sign with a program involving
branching. For example, we might compute the sign of the
determinant of a d d matrix A by computing an LU-
decomposition of the matrix and then determining the signs
of the determinants of L and U (which is simply the parity of
the number of negative elements on the diagonal). Gaussian
elimination [DH91, Section 2.4.2] yields matrices L - and U -
such that every entry of ∆ � L -U -.# A is bounded in absolute
value by f � d � Mε, where M is the maximal absolute value of
an entry of A and f � d � depends on the pivoting strategy. For
example, f � d � � d2d for partial pivoting.

Let A -/� L -U - . Then A -0� A � ∆ � A � I � A & 1∆ � . We
have det � I # A & 1∆ � �1� 1 # γ1 � �����2� 1 # γd � where the γi are
the eigenvalues of A & 1∆. Assume

"
γi
"3$

1 45� 100d � for all i.
Then

"
1 # ∏i � 1 # γi � "3$ ∑i

"
γi
"3$

1 4 100 and hence detA -5�
detA � 1 � δ � with

"
δ
",6

1 4 100. Let λ1,. . . , λn be the eigenva-
lues of A. Then detA � λ1 ����� λd and

"
λi
"7$

M for all i since
every entry of A is bounded by M. Thus

"
λi
"%89"

detA
" 4 Md & 1

for all eigenvalues of A and hence all eigenvalues of A & 1

are bounded by Md & 1 4 " detA
"

in absolute value. Thus the

largest eigenvalue of A & 1∆ is bounded by f � d � Md ε 4 " detA
"

in absolute value. This is less than 1 45� 100d � if
"
detA

":)
100d f � d � Mdε. We may thus use

Gd ' ("
detL -U - "%) 1 � 01 � 100d f � d � Mdε *

Bd ' ("
detA

"%)
Bd : � 1 � 012 � 100d f � d � Mdε * �

Clarkson [Cla92] gave a method for computing the exact sign
of a d d integer matrix with entries bounded by M with
floating point arithmetic of precision 1 � 5logd � 2logM. It is
not clear to us how to exploit his method in the context of
controlled perturbation.

3 Randomized Algorithms and Controlled
Perturbation

Randomized algorithms are abundant in computational geo-
metry; we are particularly interested in randomized incre-
mental constructions. We use A to denote our randomized
algorithm and assume that it uses at most m � f � n � random
bits on any input of length n. We use x to denote the input and
π ;=< 0 � 1 > m to denote the random bits used by the algorithm.
We also use the following notation:

T � x � π � denotes the running time of A on input x and
random bits π.

T � x � � Eπ ? T � x � π �A@ � 2 & m ∑π T � x � π � denotes the expec-
ted running time of A on x. The expectation is taken with
respect to the random bits.

Uδ � x � denotes the δ-neighborhood of x. We use x - to
denote a random element in Uδ � x � .

Tδ � x � � Ex BDC Uδ E x F ? T � x - �A@ � 1G
Uδ E x F G ∑x BHC Uδ E x F T � x - � denotes

the δ-smoothed running time at x, i.e., the average expected
running time on a random instance in a δ-neighborhood of x.
For simplicity, we use summation instead of integration for
the averaging over Uδ � x � . The δ-smoothed running time at x
may be larger or smaller than the running time at x.

The guarded version Ag of A satisfies: For every input x
and random bits π, the execution of Ag � x � π � is a prefix of the
execution of A � x � π � and Tg � x � π � � O � T � x � π ��� for all x and
π, where Tg � x � π � is the running time of Ag on input x with
random bits π. Let χ � x � π � be the indicator variable which is
1 if Ag � x � π � aborts and let

pδ � x � � ∑
π

∑
x B C Uδ E x F χ � x - � π �

2m � "Uδ � x � "
be the probability that Ag fails on a random δ-perturbation x -
of x and random bits π, (figure 2). The controlled perturbati-
on algorithm CP is as follows:

repeat
choose a random δ-perturbation x - and random bits π;

until Ag � x - � π � succeeds.

PSfrag replacements

π

x -
Abbildung 2: The x-axis spans the instances in the δ-
neighborhood of x and the y-axis spans the space of random bits.
The shaded area indicates the pairs � x I � π � for which Ag aborts. Ob-
serve that there may be instances for which no random bits work
and and that there may be random bits which work for no instance.

THEOREM 3.1. The expected running time of the controlled
perturbation scheme on input x is bounded by 1

1 & pδ E x F times
the smoothed complexity of A on input x, i.e.,

E ? TCP � x �A@ $ 1
1 # pδ � x � Tδ � x � �

Proof: CP runs Ag on a random δ-perturbation x - of x with
random bits π. This has cost bounded by T � x - � π � . If the
computation succeeds, we are done. Otherwise, we repeat.
The probability of failing is pδ � x � . Thus

TCP � x � $ ∑
π

∑
x BDC Uδ E x F T � x - � π � � χ � x - � π � TCP � x �

2m � "Uδ � x � "
and hence TCP � x � $ Tδ � x � � pδ � x � � TCP � x � � J
In the case of randomized incremental constructions the
input x is a set S of n objects and the random bits determine a
permutation of S. The objects in S are considered in the order
of this permutation. The execution of the algorithm naturally
splits into phases, one phase per point. If the probability
of failure in any particular phase is less than c 4 n, the total
probability of failure is less than c.

4 Planar Delaunay Triangulations

A triangulation of a point set S is called Delaunay triangula-
tion (DT � S �) if the interior of the circumcircle of any triangle
in the triangulation contains no point of S. If S contains no
four cocircular points, DT � S � is unique.

There are many algorithms for computing the Delaun-
ay triangulation of a point set following the well-known pa-
radigms for geometric algorithms like divide and conquer,
sweep-line, and also RIC. For all these algorithms the only
geometric predicates required are the orientation and incircle
tests2 and the comparison of coordinates.

2The insphere test in d-dimensions decides for a sequence of d K 2 points

The maybe most elegant algorithm is the RIC developed
by Guibas, Knuth and Sharir in [GKS92]. In this algorithm
the points are inserted in random order into the triangulati-
on. The starting triangulation consists of a triangle with end-
points at infinity and hence containing all sites.

When a new point p is inserted, the triangle ∆ � qrs �
containing p is located and split into three new triangles
by connecting its vertices to p. Then for each new triangle
∆ � pab � and its neighboring old triangle ∆ � abc � it is checked
if incircle � a � b � c � p � holds. If not, the edge a � b is replaced
by the edge p � c. This generates two new triangles which are
also checked. The expected number of edges generated by
the algorithm is less than 6n and the number of triangles
generated is at most twice the number of edges generated3

and hence overall the update step takes expected time O � n � .
To locate the triangle containing p, a simple acyclic

point location graph is build, in which each node represents
a triangle that existed at some time during the algorithm. If
a triangle is destroyed by splitting it or flipping an edge, its
children in the graph will be the triangles generated by this
operation. To locate a point, we start at the infinite triangle
and check which child triangle contains the point, and then
again check the children of this triangle, until we reach the
bottom of the search graph, and thus have found the triangle
of the current triangulation containing p. In each search step
an orientation test � p � q � r � is performed where � q � r � is the
common edge of the children triangles.

The expected time of the algorithm is O � n logn � , which
is the optimal asymptotic running time for the construction
of Delaunay triangulations.

4.1 Controlled Perturbation We derive and analyze the
controlled perturbation version of the algorithm in three
steps. We first derive the guards and bound predicates. Then
we give a quantitative version of the statement: if the input is
in sufficiently general position the guarded algorithms suc-
ceeds. Finally, we show that a δ-perturbation with sufficient-
ly large δ transforms any input into a sufficiently general in-
put with constant probability.

In the following we assume that all coordinates are
bounded by M after the δ-perturbation. We use Orient and
Incircle to denote the absolute values of the orientation
and incircle determinants. Floating point comparisons of

p0,. . . ,pd,p in L d whether the point p lies outside, on, or inside the oriented
sphere defined by the first d K 1 points. We have insphere M p0 NPOPOPOAN pd N p QSR
orient M l M p0 Q NPOPOPOTN l M pd Q N l M p QUQ where for a point q RVM q1 NPOPOPOAN qd QXWYL d , l M q QZRM q1 NPOPOPOTN qd N q2

1 K OPOPO K q2
d Q3W[L d \ 1 is the lifting of q onto the paraboloid of

revolution in Rd \ 1. For d R 2, the insphere test is called incircle test.
3The average degree of a node in a planar graph is less than six and hence

backwards analysis [CMS93] gives a 6n bound on the expected number of
edges constructed. Let m be the number of edges constructed. When a point
of degree k is inserted, we generate 2 M k] 3 QXK 3 new triangles (three for
the first three edges and two for each additional edge) and hence the total
number of generated triangles is 2m] 3n.

coordinates are exact and need no guards. Using table 1 we
obtain the error bounds

BOrient � 24 � M22 & p � BIncircle � 432 � M42 & p �
By plugging them into (2.2) we get guard predicates GOrient ,
GIncircle and bound predicates BOrient , BIncircle for the incircle
and orientation test.

LEMMA 4.1. If GOrient and GIncircle hold for all orientati-
on and incircle tests performed, the guarded algorithm suc-
ceeds.

Let us emphasize one more time that at runtime, only the
guard predicates are evaluated. But since analyzing the be-
havior of the guard predicates seems hard, we will show that
under certain conditions, the probability of a bound predi-
cate failing is not too large. As a bound predicate not failing
implies the successful evaluation of the respective guard pre-
dicate, we can obtain a lower bound on the success probabi-
lity for the guarded execution of our algorithm. We next give
geometric interpretations of these conditions.

LEMMA 4.2. Let p, q, and r be three points, ∆ the tri-
angle defined by them and v and R the center and ra-
dius of the circumcircle of ∆. Then Orient � p � q � r � � 2 �
area � ∆ � and Incircle � p � q � r� t � 8 2 � area � ∆ � R " dist � v � t � # R

"X8
area � ∆ � 3 ^ 2 " dist � v � t � # R

"
.

Proof: The first equality is standard. For the second in-
equality, we start with the observation that the determi-
nant Incircle � p � q � r� t � evaluates to six times the signed vo-
lume vol � L � of the simplex L defined by the four points
l � p � � l � q � � l � r � and l � t � . Here l � p � denotes the projection of
p onto the paraboloid P : x2 � y2 # z � 0.

Let l � ∆ � be the triangle defined by the lifted points
l � p � , l � q � , l � r � and area � l � ∆ �	� be its area, and let E be the
plane defined by l � p � , l � q � , l � r � . The equation of E can be
obtained as follows. Let v �_� a 4 2 � b 4 2 � . The points � x � y � on
the circumcircle satisfy � x # a 4 2 � 2 �`� y # b 4 2 � 2 # R2 � 0 and
their liftings have z-coordinate z � x2 � y2 � ax � by � R2 #
a2 4 4 # b2 4 4. Thus these liftings lie in the plane with equation
z � ax � by � c and c � R2 # a2 4 4 # b2 4 4. This is the equation
of E. Finally, let α denote the angle between E and the � x � y � -
plane. Then vol � L � � area � l � ∆ �	� h 4 3 where h is the distance
of l � t � from the plane E. Also, area � l � ∆ ��� � area � ∆ � 4 cos � α �
and h � cos � α � hv, where hv is the vertical distance of t from
E. Thus

vol � L � � area � l � ∆ ��� h 4 3 � area � ∆ � hv 4 3 �
To compute hv we compare the z-coordinates of l � t � and the

projection of t onto E. We have

hv � �� � t2
x � t2

y � #a� atx � bty � c � ��
� ����� (tx # a

2 * 2 �cb ty # b
2 d 2 #_b a2

4
� b2

4
� c d

������ �� dist2 � v � t � # R2
�� 8 R � " dist � v � t � # R

" �
Combining our inequalities we obtain Incircle � p � q � r� t � 8
2 � area � ∆ � R " dist � v � t � # R

"
. For fixed circumradius, the equila-

teral triangle maximizes the area and hence area � ∆ � $ 6 �
Rcos � π 4 6 � � Rsin � π 4 6 � � 4R2. Conversely R

8fe
area � ∆ � 4 2

and hence Incircle � p � q � r� t � 8 area � ∆ � 3 ^ 2 " dist � v � t � # R
"
. J

We have now arrived at geometric conditions for success.
Whenever the orientation of three points is tested, they must
form a triangle of area at least BOrient 4 2, and whenever the
incircle property is tested for four points, the fourth point
must lie outside an annulus of half-width BIncircle 4 area � ∆ � 3 ^ 2
around the circumcircle of the triangle ∆ formed by the first
three points. The latter condition is the more stringent one,
as we will see below.

We come to the analysis of the failure probability of
the guarded Delaunay algorithm. For that it is convenient to
require additional properties – let us call them assertions –,
namely that any two perturbed points have distance at least
ξ and that any triangle formed in the course of the algorithm
has area at least ξ∆ with ξ∆

8
BOrient 4 2. We will fix these

constants later. These assertions – as the bound predicates –
do not have to be checked at runtime, but we will argue about
the probability of them being fulfilled.

The expected number of edges constructed by the algo-
rithm is bounded by 6n and hence, by Markov’s inequality,
the probability that more than 24n edges are constructed is at
most 1 4 4. For the purpose of the analysis, we consider a run
of the guarded algorithm constructing more than 24n edges a
failure and restrict attention to runs constructing at most 24n
edges and hence at most 48n triangles.

For the analysis, we may assume that the perturbation is
chosen in on-line fashion. When we perturb the i-th point, the
positions of the previously inserted points are already fixed
and the new point is perturbed to a random point in a disc
of area πδ2. We will choose δ such that at most a 1 4g� 4n �
fraction of the points in the disc are forbidden by one of our
conditions. We use p to denote the i-th point.

We want that p has distance at least ξ from all previous
points. This excludes a region of size at most nπξ2.

During the insertion of p, we perform a number of
orientation tests orient � q � r� p � and we construct a number of
new triangles ∆ � q � r� p � . In each case, � q � r � is a previously
constructed edge. We always want that area � ∆ � q � r� p ��� 8 ξ∆.
There are at most 24n such pairs � q � r � to consider4. Since

4Observe that we do not have to consider all pairs M q N r Q , but only those
which formed an edge in some triangulation.

q and r where inserted earlier, we know that dist � q � r � 8 ξ.
Hence, if p is placed outside a strip of half-width 2ξ∆ 4 ξ
about the line h7� q � r � , the triangle has the desired size. The
area of the intersection of such a strip with a circle of radius δ
is at most 2δ � 4ξ∆ 4 ξ and hence the total size of the forbidden
region is at most 24n � 8δξ∆ 4 ξ.

We also perform a number of incircle tests
incircle � q � r� s � p � . In each such case, the first three points
form a triangle of the current Delaunay triangulation. There
are at most 2n such triangles5 and each has area at least ξ∆.
The forbidden region is an annulus of half-width at most

BIncircle 4 ξ3 ^ 2
∆ and the area of the intersection of this annulus

with a disk of radius δ is at most 2πδ � 2BIncircle 4 ξ3 ^ 2
∆ .

The total size of the forbidden region is thus bounded by

8nπδBIncircle 4 ξ3 ^ 2
∆ . We summarize:

LEMMA 4.3. Let ξ and ξ∆ be positive constants with
ξ∆

8
BOrient 4 2. If πδ2 8

4n �i� nπξ2 � 192nδξ∆ 4 ξ �
8nπδBIncircle 4 ξ3 ^ 2

∆ � , the success probability of the guarded
algorithm is at least 1 4 2.

Proof: The guarded algorithm fails if during its execution
too many objects are created or some insertion fails. An in-
sertion fails if the chosen perturbation leaves the point in a
forbidden region. The probability of the former is at most
1 4 4, the probability of the latter is at most 1 45� 4n � . Hence
the probability of the guarded algorithm failing is at most
1 4 4 � n � 1 45� 4n � � 1 4 2. J
We are aiming for a solution to the inequalities from the lem-
ma with minimal δ, Recall that BIncircle and BOrient are functi-
ons of M and p. An optimal solution is easily obtained by nu-
merical methods. For example, assume we have n � 26 � 64
points each with coordinates in the range ? # 127 �	������� 127 @
(i.e. M � 27) and we are running our implementation on a
SUN Sparc station which provides long doubles of p � 112
bit precision. For ξ � 0 � 4 � 10 & 3 and ξ∆ � 0 � 2 � 10 & 10, the
above theorem tells us that if we choose δ � 0 � 10724, the
probability of Am succeeding is psucc

8
1 4 2 and hence the

expected running time of CP is O � n logn � .
We now derive an approximate solution to obtain a

feeling for the quantities involved. In doing so, we will
ignore constant factors. If we choose δ such that πδ2 is at
least three times the value of each term on the right hand side
we are on the safe side, i.e., ignoring constant factors δ2 8
n2ξ2, δ2 8 n2δξ∆ 4 ξ, and δ2 8 n2δBIncircle 4 ξ3 ^ 2

∆ . Only one of
the right hand sides increases in ξ and hence we may assume
that the first constraint is tight, i.e., ξ � δ 4 n. Analogously
we may assume that the second constraint is tight, i.e.,
ξ∆ � δξ 4 n2 � δ2 4 n3 Thus (from ξ∆

8
BOrient 4 2), we get

δ2 8 n3BOrient � n3M22 & p and δ2 8 n2δBIncircle 4g� δ2 4 n3 � 3 ^ 2
5Observe that we do not have to consider all triples M q N rN s Q , but only

those which form a triangle in the current triangulation.

or δ4 8 BIncirclen13 ^ 2 � M42 & pn13 ^ 2. In other words, 2p 8
max ��� M 4 δ � 2n3 � � M 4 δ � 4n13 ^ 2 � �f� M 4 δ � 4n13 ^ 2.

THEOREM 4.1. If the guarded algorithm is executed with
precision p, where p

8
C � logM # logδ � logn � 1 � for a

suitable constant C, it succeeds with probability at least 1/2.

4.2 Determining the Optimal Precision Our estimates in
the preceding section are extremely pessimistic and hence
one should not use them in a real implementation. Assume
δ is given. We advise to start with a small precision p0

and to double it in case of k repeated failures, for some
constant k. Let l0 be the smallest non-negative integer such
that execution with precision 2l0 p0 has error bound less than
1 4 2. The scheme will terminate after an expected number
of l0 � O � 1 � rounds. Moreover, if the running time of our
algorithm is paT � n � for some a

)
1 (for example, a � 2,

if the algorithm uses multiplication and multiplication is
implemented by the school method), the expected running
time is O ��� ∑0 j l k l0 � 2l p0 � a � ∑l l l0 2 & k E l & l0 F � 2l p0 � a � T � n ��� �
O � 2l0 p0T � n �	� if k

)
a. A similar scheme can be used to find

the optimal value of δ for fixed precision.

4.3 Lazy Perturbations Another perturbation approach
would be to perturb sites only if during their insertion some
predicates could not be certified and then repeat the insertion.
This seems to work well in practice, see Section 8. There are
however two drawbacks. First, in this case the perturbation
depends on the insertion order and hence the probabilistic
analysis based on configuration spaces does not seem to
carry over (at least we were unable to carry it over). Second,
it is necessary to explicitly check the auxiliary assertions
that every edge constructed has length at least ξ and that
every triangle constructed has area at least ξ∆. This requires
a change of the algorithm, see [Kl04] for more details. We
refer to the two approaches as standard and lazy.

5 Convex Hulls in Arbitrary Dimensions

The Idealistic Algorithm: We use the randomized incre-
mental algorithm analyzed in Clarkson, Mehlhorn, and Sei-
del [CMS93]. We use d to denote the dimension of the un-
derlying space and for a set R use convR to denote its convex
hull. We assume our input points to be in general position
and denote them x1, x2, . . . , xn in the order of insertion. Let
S �m< x1 ���	���
� xn > be our set of points and let fr be the expec-
ted number of facets of convR for a random subset R n S of
size r. We use CH i to denote the convex hull of the first i
points. The algorithm maintains a triangulation T of the cur-
rent hull CH. The triangulation is initialized to the simplex
spanned by the first d � 1 points. When a point x is added,
the triangulation is updated as follows: If x ; CH, we leave
T as it was. If x o; CH, for every facet F of CH visible from
x, we add to T the simplex S � F � x � � conv � F pq< x > � . We call

F the base of this simplex and x its peak. A facet F is vi-
sible to x when S � F � x � meets the hull only at F . Let Ai (A
for additional) be the facets of CH i which were not facets of
CHi & 1.

We need the following fact (shown in [CMS93]):

1. The cost of adding point x j is bounded by the number
of facets in p j k iA j visible from xi.

2. The expected number of facets in p j j iA j is Ci : �
∑ j j i d f j 4 j.

3. The expected running time of the algorithm is
O � d5 � ∑ j j n

n f j
j E j & 1 F .

The Guarded Algorithm: The algorithm uses only the
orientation test given by determinant (2.1). When this test
is applied during the insertion of xi, the first d points define
a facet of CH j for some j

6
i and the last point is xi. We

therefore write the test as orient � F � xi � with facet F and point
xi. We use the guard Gd defined in section 2.
The Analysis: The perturbation must guarantee
Orient � F � xi � 8 Bd for every orientation test performed
by the algorithm, where Bd is as defined in section 2.
As in the case of Delaunay triangulations, we guarantee
more: namely a minimum relative volume of all faces of all
dimensions. The details are as follows.

Let h0, h1, . . . hd & 1 be a sequence of positive reals. For
an l-face f define forbidden � f � hl � to be the set of points
with distance less than hl from the l-flat containing f . So
for a 0-face f (= a vertex) forbidden � f � h0 � is an open
ball with radius h0 centered at f . For a 1-face f (= an
edge) forbidden � f � h1 � is an open hyper-cylinder of radius
h1 whose axis is the line containing f .

The relative volume rvol � f � of a face f is the volume of
f when viewed as a subset of its affine hull. Define s0, s1,
. . . , sd by s0 � 1 and

sl � hl & 1 �	��� h0

l!
� hl & 1sl & 1

l
for l

8
1 �

LEMMA 5.1. Let CH � CH i be the current hull and let
p � xi � 1 be the point to be inserted. If

1. d! � sd
8

Bd where Bd is as defined in section 2,

2. rvol � f � 8 sl for every l-face f of CH,

3. p o; forbidden � F � hd & 1 � for any facet F of any previous
hull, and

4. p o; forbidden � f � hl � of any l-face f of CH

then the insertion of p is succeeds and 2. holds for all faces
of CH - � CH i � 1.

Proof: When we insert p, we perform orientation tests
orient � F � p � where F is a facet of some previous hull. The
value of orient � F � p � is d! times the signed volume of the
simplex conv � F � p � . Let h be the distance of p from the hyper-
plane containing F. Then

vol � conv � F � p ��� � h � rvol � F � 4 d 8 hd & 1 � sd & 1 4 d � sd

and hence Orient � F � p � is at least d! � sd , which in turn is at
least Bd . Thus we can conclude that the insertion is f-safe,
which proves the first part of the theorem.

For the second part observe that an l-face f - of CH - is
either an l-face of CH (in which case 2. already holds for f -)
or has the form conv � f � p � with f an l # 1-face of CH. In this
case let h be the distance of p from the affine hull of f . Then

rvol � conv � f � p ��� � h � rvol � f � 4 l 8 hl & 1 � sl & 1 4 l � sl �
which concludes the proof of the theorem. J
The Lemma gives us a geometric condition for success.
When we perturb a new point, we must avoid the forbidden
regions. We next estimate their size. Analogously to the
Delaunay case, we only need to consider the intersection
with the δ-ball around a point. Recall that the volume of an
l-dimensional ball of radius δ is flδl for some constant fl .

LEMMA 5.2. Let Uδ be a d-dimensional ball of radius δ and
let f be an l-face. Then

vol � Uδ r forbidden � f � h �	�
vol � Uδ � $ clcd & l

cd
� h
δ � d & l �

Proof: The ratio is maximized if the l-flat containing f
passes through the center of U δ. Hence assume w.l.o.g. that
Uδ is centered at the origin and that the l-flat corresponds
to the flat spanned by the first l coordinate vectors. A point� x1 �	�����
� xd � ; Uδ r forbidden � f � h � must satisfy both

x2
1 � ����� x2

d
$

δ2 and x2
l � 1 � ���	� � x2

d
$

h2

and hence is contained in the set defined by

x2
1 � ���	� x2

l
$

δ2 and x2
l � 1 � ����� � x2

d
$

h2 �
But this set has volume clδl � cd & lhd & l . J
We need to guarantee 3. and 4. of lemma 5.1 for every inser-
tion. Recall that the expected number of facets constructed
by the algorithm is Cn. The probability that more than 4Cn

facets are constructed is at most 1 4 4. We consider any run
which constructs more than 4Cn facets a failure and proceed
under the assumption that at most 4Cn facets are constructed.
Every face is a subset of some facet and hence we may assu-
me that the number of faces of any dimension constructed by
the algorithm is at most N : � 4 � 2dCn. Thus the position of a
new point is constrained by at most N forbidden regions.

It remains to choose the hl’s. Let c � maxclcd & l 4 cd.We
fix them so as to make all forbidden regions the same size,
i.e., for l

6
d # 1 we choose hl such that

c � hl

δ � d & l � hl

δ �
Set h � hd & 1. Then

hl � δ � h
δ � 1 ^ E d & l F or hd & i � δ � h

δ � 1 ^ i
for 0

$
l
$

d # 1 or 1
$

i
$

d. From Bd � h0h1 ����� hd & 1 we
obtain

δd ∏
1 j i j d

� h
δ � 1 ^ i � Bd or � h

δ � Hd � B
δd

or
h
δ
�f� B

δd � 1 ^ Hd
8ts

C � M
δ � dε u 1 ^ Hd

for some constant C and Hd : � ∑n
i v 1 1 4 n being the n-th

harmonic number. Every forbidden region uses at most a
fraction ch 4 δ of Uδ and hence we need

cN
s
C � M

δ � dε u 1 ^ Hd
$ 1

2n
or ε

$ws δ
M
u d 1

C � 2ncN � Hd
�

We summarize in:

THEOREM 5.1. If p
8

d log � M 4 δ � � Hd lognCn � O � dHd � ,
the guarded convex hull algorithm succeeds with probability
at least 1 4 2.

6 Delaunay Triangulations in Arbitrary Dimensions

The simplest way to construct the Delaunay triangulation
of a set of points in � d is to construct the convex hull of
the lifted points in d � 1-dimensions. The projection of the
lower hull is the Delaunay triangulation. The only predicate
used by the algorithm is the orientation predicate of the
lifted points; it is equivalent to the insphere predicate of the
original points.

We cannot use the results of the preceding section as
we perturb the original points and not the lifted points.
Since the additional coordinate is a function of the original
coordinates we cannot perturb it independently of the others.
However, we can reuse the analysis of the preceding section
and combine it with the analysis of the Delaunay algorithm
in the plane. Details are given in the full paper.

7 Forbidden Regions in Surprise-Free RICs

In the d-dimensional convex hull problem we associated a
forbidden region with each l-face, 0

$
l
6

d, of the current
hull, but not with every l-subset of the current point set, the
reason being that only the former subsets can develop into

facets by further insertions. In this section we generalize
this observation to arbitrary surprise-free RICs. RICs were
introduced by Clarkson and Shor [CS89].

Let S be a set with n elements, which we call objects,
and let F � S � be a multi-set of subsets of S. For simplicity,
we assume that all subsets have the same size d. We call
the elements of F � S � ranges. For a region F ; F � S � and
an object x ; F, we say that F relies on x or x supports
F. For R n S, define F � R � �_< F ; F � S � ; F x R > with
multiplicities preserved. We also assume a conflict relation
C n S F � S � between objects and regions with the property
that if � x � F � ; C then F does not rely on x.

In the convex hull problem, the regions are d-subsets F
of S and each subset occurs twice. The two copies correspond
to the two open halfspaces H1 � F � and H2 � F � defined by F .
An object x is in conflict with the region denoting Hi � F � iff
x ; Hi � F � . The regions in F � S � which do not conflict with
any point in S correspond to the facets of the convex hull of
S.

For a subset R n S, F0 � R � denotes the set of all F ;
F � R � having no x ; R with � x � F � ; C, that is, F0 � R � is the
set of regions over R which do not conflict with any object
in R. In the randomized incremental construction [CS89] of
F0 � S � , the objects are considered in random order x1 ���	���
� xn

and, in the general step, F0 � R j � 1 � is constructed from F0 � R j �
where R j �m< x1 �����	��� x j > .

The only test used by the generic RIC (concrete realiza-
tions may use other tests for increased efficiency) is the con-
flict test C � F � p � between regions F and objects p. Moreover,
when p � x j then F ; F0 � Fi � for some i

6
j. The perturbation

of S must guarantee that all conflict tests are computed wi-
thout error. It is natural to perturb the objects in S one by one.
When x j is inserted, it is perturbed and the perturbations of
x1 to x j & 1 are already fixed. The perturbation must guarantee
that all conflict tests C � F � x j � with RF ;yp i k jF0 � Ri � are sa-
fe and it must also “prepare” for conflict tests C � F - � xk � with
k
)

j and x j ; F - .
What do we mean by prepare? For all l, 1

$
l
$

d, define
the l-faces of R j as the set of all l-subsets f of R j for which
there is a d # l-subset f - of S z R j with f p f -:; F0 � R j p f - � .
If all elements in f - are inserted before any conflict of the
region f p f - , then the algorithm might perform conflict tests
C � f p f - � � � . The perturbation of x j must prepare for these
tests. In the convex hull example, assertions 2. and 4. of
Lemma 5.1 serve this purpose.

As in the analysis of the convex hull problem it
seems natural to introduce auxiliary assertions Ai for
1
$

i
$

d � 1. The assertion Ai depends on i ob-
jects and we have: Ad � 1 � R � p � implies that the floa-
ting point evaluation of C � R � p � gives the correct re-
sult. For objects p1 �	���	�	� p j define their forbidden region
forbidden � p1 ���	���
� p j � �_< p ; { A j � 1 � p1 �����	�	� p j � p � > . We can
now state and prove the

LEMMA 7.1. Let F0 � F0 � Ri � be the current set of conflict
free regions and and p � xi � 1 be the point to be inserted. If

1. Al � f � holds for every l-face f of F0,

2. p o; forbidden � F � for any region F of any F0 � R j � with
j
$

i

3. p o; forbidden � f � of any l-face f of F0.

then the insertion of p succeeds and 2. holds for all faces of
F -0 � F0 � Ri � 1 � .
Proof: When we insert p, we perform conflict tests C � F � p �
where F is a region of some F0 � R j � with j

$
i. Since p is not

in the forbidden region of F , we have Ad � 1 � F � p � which in
turn guarantees that the floating point evaluation of C � F � p �
returns the correct result.

An l-face f - of F -0 is either an l-face of F0 or has the
form � f � p � where f is an l # 1-face of F0. In the former case
there is nothing to prove. In the latter case, we have Al � f � p �
by the definition of forbidden region. J
How many l-faces can Ri have? For a general RIC we have
no non-trivial bound. Call a RIC surprise-free if any l-face,
0
$

l
$

d, of Ri is a subset of some region in F0 � Ri � . The
RICs for convex hulls, Delaunay diagrams and line segment
intersection are surprise-free. In fact, we are not aware of
any RIC which can be turned into an efficient algorithm
and is not surprise-free. There are however RICs which are
not surprise-free. Take for example as the set of regions all
subsets of size d which contain a particular element x. Before
the insertion of x, there are no conflict-free regions. However,
any l-subset of the current point set, 1

$
l
6

d, is an l-face.
For surprise-free RICs the number of l-faces of Ri is bounded
by

s d
l u "F0 � Ri � " .

8 Experiments

We have implemented the controlled perturbation RIC for
Delaunay triangulations in C++. We have implemented stan-
dard and lazy perturbations. Our implementation is able to
use various number types for the underlying arithmetic. The
lazy perturbation algorithm also checks the additional pro-
perties introduced in section 4.1, namely that two points ha-
ve at least distance ξ and that every triangle hast at least area
ξ∆. To test our algorithm, we compiled it with GNU C++ 3.3
under Linux and ran it on a 3.06GHz Intel Xeon. As input
data set we used grids of various sizes and random points on
the “flower” formed by eight intersecting circles. All input
points have coordinates with absolute value less than 1000,
hence M � 1000. We further compared the running time of a
double version and a double interval version of our algorithm
to an implementation using exact arithmetic. For all followi-
ng tests we ran the algorithm a couple of times and give the
average value.

Grid-size CP (doubles) CP (interval) Exact

2601 0 | 05 0 | 13 0 | 27
10201 0 | 23 0 | 65 1 | 29
40401 1 | 10 3 | 02 5 | 96

160801 5 | 23 13 | 86 26 | 17

Tabelle 2: Timings for the lazy algorithm on a Grid using control-
led perturbation (CP) or exact arithmetic.

8.1 Behavior of Standard and Lazy Controlled Pertur-
bation First we ran both the standard and lazy approach to
determine the perturbation needed. For this we increase the
perturbation if a predicate fails. The results are shown in ta-
ble 3. While both algorithms need considerably smaller per-
turbations than suggested by our worst case formulae, for
larger inputs the perturbation required by the lazy algorithm
is much smaller. Recall however that the perturbation bound
derived by us does not hold for the lazy algorithm, and we al-
so do not know if its expected running time is still O � n logn � .
Hence we also monitored the number of triangles genera-
ted by the algorithm and the number of performed point-in-
triangle tests. The results are also shown in table 3 and sug-
gest that in practice these values are no worse than for the
normal algorithm. More extensive experiments can be found
in [Kl04]. We also note that by choosing a higher precisi-
on p or by using interval arithmetic, the required amount
of perturbation can be drastically reduced, in particular the
standard perturbation algorithm is then able to solve the lar-
ge instances with a reasonably small amount of perturbation.

8.2 Running Time of the Lazy Algorithm Since the lazy
algorithm gives a better perturbation bound and our experi-
ments suggest that it is usable in practice, we compared it to
an exact implementation of the RIC Delaunay algorithm. We
also ran our algorithm a second time with interval arithmetic
instead of the static bounds given by table 1. While inter-
val arithmetic gives smaller perturbations, its running time is
much worse. It is however still faster than the exact imple-
mentation. Timings are shown in table 2. Observe that for the
lazy algorithm, the auxiliary assertions need to be checked.
But this only requires the calculation of three additional ex-
pressions per incircle test, which furthermore are numerical-
ly less demanding than the incircle test itself.

9 Conclusions

We pointed out that controlled perturbation is a general sche-
me for converting idealistic algorithms, i.e., algorithms de-
signed for non-degenerate inputs and the Real-RAM model
of computation, into algorithms which can be executed with
multi-precision floating point arithmetic: every branch on the
sign of an expression E is guarded by a guard predicate GE

with the property: if GE evaluates to true when evaluated

Standard Perturbation Lazy Perturbation
Input, pts triangles locates avg.perturbation max.perturbation. avg.perturbation

Flower, 400 3396 6220 0 | 05877 0 | 001 0 | 001
Flower, 2000 17319 43065 0 | 20473 0 | 0076 0 | 0023

Flower, 10000 100389 284043 0 | 79845 127 | 83 51 | 76

Grid, 441 3867 7516 0 | 00308 0 | 001 0 | 001
Grid, 2601 23255 62217 0 | 00675 0 | 0076 0 | 0043

Grid, 10201 91981 293882 0 | 01299 0 | 292 0 | 105
Grid, 160801 1448884 6514681 0 | 05181 exceeded grid-size

Tabelle 3: Comparison of lazy and standard perturbation

with floating point arithmetic, the evaluation of E with floa-
ting point arithmetic will give the correct sign. One obtains
the guard predicates by error analysis.

Instead of executing the program on the actual input it
is executed on a perturbed input �x selected at random from a
δ-neighborhood of the true input. For fixed input parameters
(number of objects, maximal coordinate of any object), the
perturbation bound δ and the precision p of the floating
point system depend inversely on each other, the smaller δ,
the larger p, and vice versa. The details of the relation can
be determined either analytically or experimentally. In the
experimental setting and for fixed δ, one simply doubles p
starting from a small value, say p0 � 52, the precision of
native double precision floating point arithmetic, until the
algorithm succeeds.

In the analysis, one has to give geometric meaning to
statements of the form: the value of an expression E is larger
than a certain bound BE . The geometric interpretations lead
to forbidden regions for the placement of points.

If one is only interested in implementing a CP algorithm,
interval arithmetic can be used to check the guard predicates
without having to actually derive them. Hence the only
additional knowledge needed is what a δ-perturbation of the
input objects means.

References

[CGA] CGAL (Computational Geometry Algorithms Library).
http://www.cgal.org.

[Cla92] K.L. Clarkson. Safe and effective determinant evaluation.
In Proceedings of the 31st Annual Symposium on Foundations
of Computer Science (FOCS’92), pages 387–395, 1992.

[CMS93] K. Clarkson, K. Mehlhorn, and R. Seidel. Four re-
sults on randomized incremental constructions. Computa-
tional Geometry: Theory and Applications, 3:185–212, 1993.
http://www.mpi-sb.mpg.de/ mehlhorn/ftp/CMS-FourResults.ps.

[CS89] K.L. Clarkson and P.W. Shor. Applications of random
sampling in computational geometry, II. Journal of Discrete
and Computational Geometry, 4:387–421, 1989.

[DH91] P. Deuflhard and A. Hohmann. Numerische Mathematik:
Eine algorithmisch orientierte Einführung. Walter de Gruyter,
1991.

[FvW93] S. Fortune and C. van Wyk. Efficient exact integer arith-
metic for computational geometry. In 7th ACM Conference on
Computational Geometry, pages 163–172, 1993.

[GKS92] L. Guibas, D. Knuth, and M. Sharir. Randomized
Incremental Construction of Delaunay and Voronoi Diagrams.
Algorithmica 7: 381-413, 1992.

[HL03] D. Halperin and E. Leiserowitz. Controlled perturbation
for arrangements of circles. In SoCG, pages 264–273, 2003.

[HR] D. Halperin and S. Raab. Controlled perturbation for arran-
gements of polyhedral surfaces with application to swept vo-
lumes. available from Halperin’s home page; a preliminary
version appeared in SoCG 1999, pages 163–172.

[HS98] Halperin and Shelton. A perturbation scheme for spherical
arrangements with application to molecular modeling. CGTA:
Computational Geometry: Theory and Applications, 10, 1998.

[JRZ91] M. Jünger, G. Reinelt, and D. Zepf. Computing correct
Delaunay triangulations. Computing, 47:43–49, 1991.

[KLN91] M. Karasick, D. Lieber, and L.R. Nackman. Efficient
Delaunay triangulation using rational arithmetic. ACM Tran-
sactions on Graphics, 10(1):71–91, January 1991.

[Kl04] C. Klein. Controlled Perturbation for Voronoi Diagrams.
Master Thesis, Universität des Saarlandes, 2004.

[KMP }] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap.
Classroom examples of robustness problems in geometric
computations. to appear in ESA 2004, http://www.mpi-
sb.mpg.de/ mehlhorn/ftp/ClassRoomExample.ps.

[LED] LEDA (Library of Efficient Data Types and Algorithms).
http://www.mpi-sb.mpg.de/LEDA/leda.html.

[MN94] K. Mehlhorn and S. Näher. The implementation
of geometric algorithms. In Proceedings of the 13th
IFIP World Computer Congress, volume 1, pages 223–
231. Elsevier Science B.V. North-Holland, Amsterdam, 1994.
http://www.mpi-sb.mpg.de/ mehlhorn/ftp/ifip94.ps.

[MN99] K. Mehlhorn and S. Näher. The LEDA Platform for Com-
binatorial and Geometric Computing. Cambridge University
Press, 1999. 1018 pages.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed
analysis of algorithms: Why the simplex algorithm usually
takes polynomial time, In Journal of the ACM 51(3), 385–
463, 2004

[Yap93] C.K. Yap. Towards exact geometric computation. In Pro-
ceedings of the 5th Canadian Conference on Computational
Geometry (CCCG’93), pages 405–419, 1993.

