
NEW BOUNDS FOR THE DESCARTES METHODWERNER KRANDICK AND KURT MEHLHORNAbstra
t. We give a new bound for the number of re
ursive subdivisionsin the Des
artes method for polynomial real root isolation. Our proof usesOstrowski's theory of normal power series from 1950 whi
h has so far beenoverlooked in the literature. We 
ombine Ostrowski's results with a theoremof Davenport from 1985 to obtain our bound. We also 
hara
terize normal-ity of 
ubi
 polynomials by expli
it 
onditions on their roots and derive ageneralization of one of Ostrowski's theorems.1. Introdu
tionPolynomial real root isolation is the task of 
omputing disjoint intervals, ea
h
ontaining a single root, for all the real roots of a given univariate polynomialwith real 
oe�
ients. In the 1830s, Vin
ent [36℄ showed that polynomial real rootisolation 
an be performed using a test based on the Des
artes Rule of Signs. Thetest evaluates a 
ondition that implies that a given interval 
ontains a single root,and another 
ondition that implies that the interval does not 
ontain any roots. Ifneither 
ondition is satis�ed, the interval is bise
ted and ea
h subinterval is testedre
ursively. It is not obvious that Vin
ent's method terminates.In 1976, Collins and Akritas [10℄ proposed a method with a mu
h better worst-
ase 
omputing time than Vin
ent's method. We will refer to the improved methodas �Des
artes method�. A study by Johnson [21℄ shows that the Des
artes methodtypi
ally outperforms Sturm's method and other methods for real root isolation.Johnson's �ndings are 
on�rmed in experiments by Rouillier and Zimmermann [32,Figures 2,3℄. Re
ent versions of the Des
artes method use �oating point arith-meti
 [22, 12, 33℄, parallel 
omputation [15, 16℄, or they minimize spa
e require-ments [33℄.We give a new bound (Theorem 5.5) for the number of re
ursive subdivisionsin the Des
artes method. Our proof uses Ostrowski's theory [29℄ of normal powerseries from 1950 whi
h has so far been overlooked in the literature. We 
ombineOstrowski's results with a theorem of Davenport [14℄ from 1985 to obtain our bound.We also 
hara
terize normality of 
ubi
 polynomials by expli
it 
onditions on theirroots and derive a generalization (Theorem 6.4) of one of Ostrowski's theorems.The history of termination proofs starts in the 1830s with Vin
ent [36℄. Alesinaand Galuzzi [2℄ present Vin
ent's original proof in modern mathemati
al languageand provide extensive histori
al information on related earlier and later results. Itseems that Vin
ent's method was forgotten until 1948 when Uspensky [34℄ mod-i�ed Vin
ent's proof and bounded the number of re
ursive steps required by themethod. In 1950, Ostrowski [29℄ used a result from his earlier work [31℄ to improveUspensky's bound. Ostrowski's 
ontribution, though summarized in Mathemati
alReviews [26℄, was 
ompletely overlooked in later literature until it be
ame a

es-sible through an ele
troni
 database [3℄. When Collins and Akritas [10℄ improved1



2 WERNER KRANDICK AND KURT MEHLHORNVin
ent's algorithm in 1976 they based their analysis, later elaborated by Collinsand Loos [7℄, on Uspensky's work. Collins and Johnson [6℄ improved the analysissigni�
antly, but also their result is stri
tly weaker than Ostrowski's. Eventually,one of Ostrowski's theorems, the present Theorem 3.9, was independently redis
ov-ered by Alesina and Galuzzi [2, Corollary 8.2℄. These authors give a 
on
ise anddire
t proof, but their approa
h 
annot be used to prove the stronger Theorem 6.4of this paper.In Se
tion 2 we review the Des
artes method. In Se
tion 3 we present Ostrowski'stheory of normal power series and strengthen one of his results that links normalityof polynomials and termination of the Des
artes method (Theorem 3.3). We alsopresent Ostrowski's su�
ient 
ondition on the roots of a polynomial to guaranteenormality (Theorem 3.8). We use these results in Se
tion 4 to prove Theorem 4.6 onthe proximity of 
omplex roots to those intervals on whi
h the Des
artes methodre
urs. In Se
tion 5 we 
ombine Theorem 4.6 with Davenport's root separationtheorem to obtain new bounds for the re
ursion tree of the Des
artes method. InSe
tion 6 we use Theorem 3.3 to 
hara
terize the normal 
ubi
 polynomials byexpli
it 
onditions on their roots. We gauge the extent of the improvement byapplying the Des
artes method to 2.3 billion 
ubi
 polynomials. We use the newresult to prove Theorem 6.4�thus strengthening Theorem 3.9.2. Review of the Des
artes MethodDe�nition 2.1. Let a = (a0, . . . , an) be a �nite sequen
e of real numbers. Thenumber of sign variations in a, var(a), is the number of pairs (i, j) with 0 ≤ i <
j ≤ n and aiaj < 0 and ai+1 = · · · = aj−1 = 0. Let A be the polynomial
a0 + a1x + · · · + anxn. The number of 
oe�
ient sign variations in A, var(A), is
var(a).Theorem 2.2. [Des
artes Rule of Signs℄ For any non-zero real polynomial thenumber of 
oe�
ient sign variations ex
eeds the number of positive real roots�
ounting multipli
ities�by a non-negative, even integer.Proof. Let A(x) be a non-zero real polynomial. If xk is the highest power of x thatdivides A, the polynomial A/xk has the same number of 
oe�
ient sign variationsand positive real roots as A, and its 
onstant term is non-zero. Hen
e, we mayassume that the 
onstant term of A is non-zero. Let a0 be this 
onstant term, let
n be the degree of A, and let an be the leading 
oe�
ient. Let v = var(A), and let
p be the number of positive real roots of A, 
ounting multipli
ities.To show that v and p have the same parity we use an argument given byConkwright [13℄. Let z1, . . . , zn ∈ C be the roots of A. Then(2.1) A(x) = an(x− z1) · · · (x− zn),and hen
e a0 = A(0) = (−1)nanz1 . . . zn. Sin
e the non-real roots o

ur in 
omplex
onjugate pairs, their produ
t is positive. The produ
t of the positive roots islikewise positive, no root is zero sin
e a0 is non-zero, and the produ
t of the negativereal roots has the sign (−1)n−p. It follows that the sign of a0/an is (−1)p. Hen
e
v and p have the same parity.Gauss [18℄ proves v ≥ p by showing that, for any non-zero real polynomial B(x)and any positive real number a,(2.2) var(B) < var((x − a) · B).



NEW BOUNDS FOR THE DESCARTES METHOD 3So, in equation (2.1), every positive root of A 
ontributes at least one sign variation.To show inequality (2.2) let B = bmxm + · · · + b0, let a > 0, and let C =
(x − a)B = cm+1x

m+1 + · · · + c0. If var(B) > 0 let (i, j) be an index pair that
ontributes to var(B). Then 0 ≤ i < j ≤ m and bibj < 0 and either j = i + 1 or
bi+1 = 0. If σ : R −→ {−1, 0, 1} denotes the sign fun
tion then

σ(ci+1) = σ(bi − abi+1) = σ(bi).So, if (i1, j1), . . . , (ik, jk) are all the index pairs that 
ontribute to var(B), and if
0 ≤ i1 < j1 ≤ · · · ≤ ik < jk ≤ m, then

var(ci1+1, . . . , cik+1, cm+1) = var(bi1 , . . . , bik
, bm) = var(B).Now let i be the smallest index for whi
h bi 6= 0. Then 0 ≤ i ≤ i1 and σ(ci) =

σ(−abi) = −σ(bi) = −σ(bi1) = −σ(ci1+1), and so
var(C) ≥ var(ci, ci1+1, . . . , cik+1, cm+1) = 1 + var(B).If var(B) = 0 then var(C) ≥ var(ci, cm+1) = var(−abi, bm) ≥ 1. �Theorem 2.2 is named after Des
artes although he merely stated that there 
anbe as many positive real roots as there are 
oe�
ient sign variations [17℄. Theassertion that there are at least as many sign variations as there are positive rootswas �rst stated and proved by Gauss [5℄. Some modern authors [1, 37℄ seem to beunaware of Gauss's 
ontribution.Theorem 2.3. Let A be a non-zero real polynomial. If var(A) = 0 then A does nothave any positive real root; if var(A) = 1 then A has exa
tly one positive real root.De�nition 2.4. Let S be a subring of R with 1 ∈ S. We de�ne three polynomialtransformations S[x] −→ S[x]. Let A = anxn + · · · + a1x + a0 be an element of

S[x].(1) The homotheti
 transformation of A is the polynomial
H(A) = anxn + 2an−1x

n−1 + · · ·+ 2n−1a1x + 2na0.(2) The Taylor shift by 1 of A is the polynomial
T (A) = bnxn + · · ·+ b1x + b0where bk =

∑n
j=k

( j
k

)

aj for k ∈ {0, . . . , n}.(3) The re
ipro
al transformation of A is the polynomial
R(A) = a0x

n + · · ·+ an−1x + an.Note that R(A) = 0 if and only if A = 0, and that x | A implies R(A) =
R(A/x).The Des
artes method 
an now be stated as Algorithm 1.To show that Algorithm 1 is partially 
orre
t we relate the roots of transformedreal polynomials to the roots of the untransformed polynomials. Sin
e we want touse bije
tive mappings we add the point ∞ to C.



4 WERNER KRANDICK AND KURT MEHLHORNAlgorithm 1 [Des
artes method℄ This version is spe
ialized to root 
ounting in
I = (0, 1). The algorithm 
an easily be modi�ed to perform real root isolation.int roots in I (A ∈ S[x], A non-zero and squarefree, S ⊂ R subring, 1 ∈ S)

d← var(TR(A));if d ≤ 1 return d;
B ← H(A); C ← T (B);if x |C m← 1; else m← 0; Note: m = 1 if and only if A(1/2) = 0.return roots in I (B) + m + roots in I (C);De�nition 2.5. Let C = C ∪ {∞} be the Riemann sphere. We de�ne threefun
tions C −→ C.

h(z) =

{

z/2, if z ∈ C ;
∞, if z =∞.

t(z) =

{

z + 1, if z ∈ C ;
∞, if z =∞.

r(z) =







1/z, if z ∈ C− {0} ;
∞, if z = 0 ;
0, if z =∞.The fun
tions h, t, and r are elements of the group of Möbius transformations.These are all fun
tions C −→ C given by(2.3) z 7−→ az + b

cz + dwith a, b, c, d ∈ C and ad− bc 6= 0. Anderson [4℄ explains how formula (2.3) handlesdivision by 0 and evaluation at ∞; he also dis
usses the properties of Möbiustransformations.Remark 2.6. Let A ∈ R[x], and let n = deg(A); we adopt the 
onvention that
deg(0) = 0 and ld
f(0) = 0. Then, for all z ∈ C,

H(A)(z) = 2nA(h(z)),

T (A)(z) = A(t(z)),

R(A)(z) =

{

znA(r(z)), if z 6= 0 ;ld
f(A), if z = 0 .So, for all z ∈ C,
TH(A)(z) = 2nA((h ◦ t)(z)),

TR(A)(z) =

{

(t(z))nA((r ◦ t)(z)), if z 6= −1 ;ld
f(A), if z = −1 .Remark 2.7. By Remark 2.6, the following statements hold for all polynomials
A ∈ R[x].



NEW BOUNDS FOR THE DESCARTES METHOD 5(1) The fun
tion h maps the roots of H(A) one-to-one onto the roots of A;in parti
ular, the roots of H(A) in (0, 1) 
orrespond to the roots of A in
(0, 1/2).(2) The fun
tion t maps the roots of T (A) one-to-one onto the roots of A.(3) The fun
tion r maps the non-zero roots of R(A) one-to-one onto the non-zero roots of A; the roots of R(A) are non-zero unless A = 0.(4) The fun
tion h ◦ t maps the roots of TH(A) one-to-one onto the roots of
A; in parti
ular, the roots of TH(A) in (0, 1) 
orrespond to the roots of Ain (1/2, 1).(5) The fun
tion r ◦ t maps those roots of TR(A) that are di�erent from −1one-to-one onto the non-zero roots of A; the roots of TR(A) are di�erentfrom −1 unless A = 0. The positive real roots of TR(A) 
orrespond to theroots of A in (0, 1).Observations (1), (4), and (5) of Remark 2.7 
ombined with Theorem 2.3 provethe partial 
orre
tness of Algorithm 1.3. Ostrowski's TheoryDe�nition 3.1. A power series

+∞
∑

k=−∞

akzkwith non-negative real 
oe�
ients is normal [31℄ if(1) a2
k ≥ ak−1ak+1 for all indi
es k, and(2) ah > 0 and aj > 0 for indi
es h < j implies ah+1, . . . , aj−1 > 0.In 1950, Ostrowski linked the normality of a polynomial and the Des
artes rule.He stated his result [29, Lemma 1℄ for polynomials all of whose 
oe�
ients arepositive. Generalizing slightly we show in Theorem 3.3 that it su�
es to requirethat the leading 
oe�
ient be positive.De�nition 3.2. A polynomial with real 
oe�
ients is positive if its leading 
oe�-
ient is positive.Theorem 3.3. A positive polynomial A(x) is normal if and only if var((x −

α)A(x)) = 1 for all positive real numbers α.Proof. (i) Let A(x) be positive and normal, and let α be a positive real number.There is a non-negative integer m su
h that A(x) = B(x) ·xm where B(x) is normaland all the 
oe�
ients of B(x) are positive. Let B(x) = bnxn + · · ·+b1x+b0. Then
bn−1

bn
≥ bn−2

bn−1
≥ · · · ≥ b0

b1and hen
e
bn−1

bn
− α ≥ bn−2

bn−1
− α ≥ · · · ≥ b0

b1
− α.Sin
e also bn > 0 and −αb0 < 0, the polynomial

(x− α)B(x) = bnxn+1 + bn

(bn−1

bn
− α

)

xn + · · ·+ b1

(b0

b1
− α

)

x− αb0



6 WERNER KRANDICK AND KURT MEHLHORNhas exa
tly 1 
oe�
ient sign variation. And so,
1 = var((x − α)B(x)) = var((x − α)B(x) · xm) = var((x − α)A(x)).(ii) Conversely, let A(x) be positive but not normal. There is a non-negative inte-ger m su
h that A = B(x)·xm where B(x) has a non-zero 
onstant term. Moreover,the polynomial B(x) is positive and not normal�and hen
e non-
onstant. For anyreal number α let C(α)(x) = (x− α)B(x). Then var((x− α)A(x)) = var(C(α)(x)),and it su�
es to �nd a positive number α su
h that var(C(α)(x)) 6= 1.Let B(x) = bnxn + · · · + b1x + b0. Then n ≥ 1 and bn > 0 and b0 6= 0. Let

C(α)(x) = c
(α)
n+1x

n+1 + · · ·+ c
(α)
1 x + c

(α)
0 . Then c

(α)
0 = −αb0, c

(α)
k = bk−1 − αbk for

1 ≤ k ≤ n, and c
(α)
n+1 = bn.If var(B(x)) ≥ 2 
hoose α so small that, for all k with 1 ≤ k ≤ n, the signs of

c
(α)
k and bk−1 are equal whenever bk−1 6= 0; then var(C(α)(x)) ≥ var(B(x)) ≥ 2.If var(B(x)) = 1 the polynomial B(x) has exa
tly one positive real root by theDes
artes rule. So, for any α > 0, the polynomial C(α)(x) has two positive realroots, and, again by the Des
artes rule, var(C(α)(x)) ≥ 2.Finally, assume var(B(x)) = 0. Then, sin
e bn > 0, all the 
oe�
ients of B(x)are non-negative. If all the 
oe�
ients of B(x) are positive, then, sin
e B(x) is notnormal, there is an index k with 1 ≤ k ≤ n − 1 su
h that 0 < bk/bk+1 < bk−1/bk.Choose α su
h that bk/bk+1 < α < bk−1/bk. Now α > 0 and c

(α)
n+1 = bn > 0,

c
(α)
k+1 = bk − αbk+1 < 0 and c

(α)
k = bk−1 − αbk > 0, and hen
e var(C(α)(x)) ≥ 2.If not all the 
oe�
ients of B(x) are positive, there is a zero-
oe�
ient. Let bk bethe zero-
oe�
ient with the highest index; then c

(α)
k+1 < 0. Sin
e b0 > 0 there is anindex j < k su
h that bj+1 = 0 and bj > 0; then c

(α)
j+1 > 0. Now c

(α)
0 < 0 implies

var(C(α)(x)) ≥ 2 also in this 
ase. �By Theorem 3.3, the Des
artes rule will reveal the existen
e of a single positiveroot of a positive polynomial if the other�possibly non-real�roots α1, . . . , αn−1are su
h that
(x − α1) · · · (x− αn−1)is a normal polynomial.Theorem 3.4. A positive linear polynomial is normal if and only if its root isnegative or zero.Proof. Let A be a positive linear polynomial, and let α ∈ R be its root. Then thereis a positive real number a su
h that A(x) = a(x−α) = ax− aα. Now A is normalif and only if −aα ≥ 0, that is, if and only if α ≤ 0. �De�nition 3.5. Let

C =
{

a + ib
∣

∣a ≤ 0 and |b| ≤ |a|√3
}

.For an illustration see Figure 4.1(a); the 
one 
ontains its bordering rays andthe vertex 0.Theorem 3.6. A positive quadrati
 polynomial is normal if and only if its rootsare elements of the 
one C.



NEW BOUNDS FOR THE DESCARTES METHOD 7Proof. Let A be a positive quadrati
 polynomial, and let c > 0 be its leading
oe�
ient.If the roots of A are 
omplex 
onjugates a + ib and a− ib with real numbers a, bthen A(x) = c(x − (a + ib))(x− (a− ib)). Now A(x) = cx2 − 2acx + c
(

a2 + b2
) isnormal if and only if −2ac ≥ 0 and c(a2 + b2) ≥ 0 and (−2ac)2 ≥ c · c(a2 + b2), thatis, if and only if a ≤ 0 and 4a2 ≥ a2 + b2, or, equivalently, if and only if a± ib ∈ C.Otherwise, the roots of A are real numbers α and β, and we have A(x) =

c(x−α)(x−β) = cx2−c(α+β)x+cαβ. Now A is normal if and only if −c(α+β) ≥ 0and cαβ ≥ 0 and (−c(α + β))2 ≥ c · cαβ, that is, if and only if α + β ≤ 0 and
αβ ≥ 0 and (α + β)2 ≥ αβ, or, equivalently, if and only if α, β ≤ 0. �In Se
tion 6 we will 
hara
terize normal 
ubi
 polynomials. The �if�-dire
tionof Theorems 3.4 and 3.6 
an be generalized to polynomials of any degree usingan earlier result of Ostrowski. Ostrowski showed in 1939 that the produ
t of twonormal series, if it exists, is normal [31℄. In 1950, he gave a simpler proof for the
ase of polynomials [29℄.Theorem 3.7. The produ
t of two normal polynomials is normal.Proof. Let A =

∑m
h=0 ahxh and B =

∑n
j=0 bjx

j be normal polynomials. Anynormal polynomial 
an be written as P · xk where k is a non-negative integer and
P is a normal polynomial and all the 
oe�
ients of P are positive. Hen
e it su�
esto 
onsider the 
ase where all the 
oe�
ients of A and B are positive.Let C = A · B =

∑m+n
k=0 ckxk. Write ck =

∑

h ahbk−h where h and k range overthe set of all integers and all ah with h /∈ {0, . . . , m}, all bj with j /∈ {0, . . . , n}, andall ck with k /∈ {0, . . . , m + n} are taken as zero. Clearly, all the 
oe�
ients of Care positive; it remains to show that c2
k − ck−1ck+1 ≥ 0 for all k.Using the following de
omposition of the set of summation indi
es

{

(h, j) ∈ Z
2

∣

∣ h > j
}

=
{

(j + 1, h− 1) ∈ Z
2

∣

∣ h ≤ j
}

∪
{

(h, h− 1) ∈ Z
2
}we obtain, for any index k,

c2
k − ck−1ck+1

=
∑

h≤j

ahajbk−hbk−j +
∑

h>j

ahajbk−hbk−j

−
∑

h≤j

ahajbk−h+1bk−j−1 −
∑

h>j

ahajbk−h+1bk−j−1

=
∑

h≤j

ahajbk−hbk−j +
∑

h≤j

aj+1ah−1bk−j−1bk−h+1 +
∑

h

ahah−1bk−hbk−h+1

−
∑

h≤j

ahajbk−h+1bk−j−1 −
∑

h≤j

aj+1ah−1bk−jbk−h −
∑

h

ahah−1bk−h+1bk−h

=
∑

h≤j

(ahaj − ah−1aj+1)(bk−jbk−h − bk−j−1bk−h+1),that is,(3.1) c2
k − ck−1ck+1 =

∑

h≤j

(ahaj − ah−1aj+1)(bk−jbk−h − bk−j−1bk−h+1).



8 WERNER KRANDICK AND KURT MEHLHORNSin
e A is normal and a0, . . . , am are positive, one has
am−1

am
≥ am−2

am−1
≥ · · · ≥ a0

a1
,and hen
e ahaj −ah−1aj+1 ≥ 0 for all h ≤ j; the analogous statement holds for the
oe�
ients of B. Hen
e ea
h summand on the right hand side of equation (3.1) isnon-negative, and thus c2

k − ck−1ck+1 ≥ 0 for all k. �Theorem 3.8. If the roots of a positive polynomial are in the 
one C then thepolynomial is normal.Proof. Let A be a positive polynomial all of whose roots are elements of the 
one
C. The 
omplete fa
torization of A over the �eld of real numbers is a produ
t oflinear and quadrati
 fa
tors. We may assume that all these fa
tors are positive.Sin
e all the roots are in the 
one C, Theorems 3.4 and 3.6 apply, and ea
h fa
toris normal. Thus, by Theorem 3.7, the polynomial A is normal. �Of all the theorems in this se
tion, we will invoke only Theorem 3.9 in Se
tions 4and 5.Theorem 3.9. If the roots of a non-zero polynomial A(x) are in the 
one C then
var((x− α)A(x)) = 1 for all positive real numbers α.Proof. Theorems 3.8 and 3.3. �4. Three Cir
lesBy Theorem 3.9, Algorithm 1 will stop 
alling itself when it en
ounters a polyno-mial TR(A) that has exa
tly one positive root and whose other roots are elementsof the 
one C. We want to state this 
ondition in terms of the roots of the polyno-mial A. Sin
e A is non-zero, Remark 2.7 (5) implies that the fun
tion r ◦ t mapsthe roots of TR(A) one-to-one onto the non-zero roots of A. But mu
h more is truesin
e r ◦ t is a Möbius transformation.Remark 4.1. Anderson [4℄ reviews some properties of Möbius transformations.These transformations are homeomorphisms of the Riemann sphere C = C ∪ {∞}that map 
ir
les in C to 
ir
les. In parti
ular, 
ir
les and lines in C are mappedto 
ir
les and lines. To identify the image of a given 
ir
le or line K under a givenMöbius transformation it su�
es to sele
t three distin
t points on K, to 
omputetheir images under the transformation, and to determine the unique 
ir
le or line Lthat 
ontains those images. The sets C−K and C−L ea
h have exa
tly two 
on-ne
ted 
omponents. Ea
h 
omponent of C−K is mapped to a di�erent 
omponentof C − L sin
e Möbius transformations are homeomorphisms of C. By applyingthe transformation to a single point in C−K one 
an determine the image of ea
h
omponent of C−K.De�nition 4.2. We de�ne three 
ir
ular disks.

C =
{

z ∈ C

∣

∣

∣

∣

∣z −
(

1/2− i
√

3/6)
)∣

∣ <
√

3/3
}

,

C =
{

z ∈ C

∣

∣

∣

∣

∣z −
(

1/2 + i
√

3/6
)∣

∣ <
√

3/3
}

,

C =
{

z ∈ C

∣

∣

∣
|z − 1/2| < 1/2

}

.



NEW BOUNDS FOR THE DESCARTES METHOD 9Remark 4.3. The Möbius transformation r ◦ t maps the 
one C one-to-one onto
C− (C ∪ C) and the half-plane {z ∈ C |Re(z) ≤ 0} one-to-one onto C − C. Bothstatements 
an be veri�ed using the method des
ribed in Remark 4.1.Figure 4.1(a) shows the 
one C. Figure 4.1(b) shows the boundaries of the opendisks C and C. Figure 4.1(
) shows how the Möbius transformation r operates onthe boundary of C. If z traverses the boundary of C 
lo
kwise from 1 towards 0,the re
ipro
al r(z) traverses the ray {1 − s +

√
3si | s ≥ 0} upwards starting at 1.Similarly, if z traverses the boundary of C 
ounter
lo
kwise from 1 towards 0, there
ipro
al r(z) traverses the ray {1 − s −

√
3si | s ≥ 0} downwards starting at 1.The point z = 0 is mapped to r(0) = ∞ /∈ C. Thus the �gure illustrates how thefun
tion t−1 ◦ r = (r ◦ t)−1 maps C− (C ∪ C) one-to-one onto C.

(b) C

C

0 1

C(a) (
)Figure 4.1. (a) A positive quadrati
 polynomial is normal if andonly if its roots are in the 
one C. (b) If a polynomial A hasa simple root in the interval (0, 1) and no other real or non-realroots in C ∪C then var(TR(A)) = 1. (
) The image of C under r.Theorem 4.4. [Two�Cir
le Theorem℄ Let A be a real polynomial with a single,simple root in the interval (0, 1) and no other real or non-real roots in the opendisks C and C. Then var(TR(A)) = 1.Proof. Let A be as des
ribed. Then A 6= 0 and, by Remark 2.7 (5), the roots of
B = TR(A) are all di�erent from −1. Therefore, the fun
tion (r ◦ t)−1 maps thenon-zero roots of A one-to-one onto the roots of B. Hen
e, B has a single, simpleroot in (r ◦ t)−1((0, 1)) = (0,∞), and its other roots are in (r ◦ t)−1(C− (C ∪ C))whi
h equals C by Remark 4.3. Now Theorem 3.9 yields var(B) = 1. �The two-
ir
le 
ondition is not ne
essary for the termination of the Des
artesmethod. Indeed, the polynomial A = 32x3 − 16x2 + 2x − 1 has the single, simpleroot 1/2 in the interval (0, 1), the pair of 
omplex 
onjugate roots ±i/4 inside theopen disks C and C, and var(TR(A)) = 1.Our two-
ir
le theorem improves upon a two-
ir
le theorem of Collins and John-son [6℄. They use the disks D1 = {z ∈ C | |z| < 1} and D2 = {z ∈ C | |z − 1| < 1}instead of C and C. But C ∪C is a proper subset of D1∪D2, and the area of C ∪Cis exa
tly one-third of the area of D1 ∪D2. Indeed, the Möbius transformation

z 7−→ i
√

3

3
z +

(1

2
− i

√
3

6

)maps D1 ∪D2 onto C ∪ C.The following well-known theorem 
ompletes our 
onverse of Theorem 2.3.Theorem 4.5. If a polynomial A does not have any roots in the open disk C then
var(TR(A)) = 0.



10 WERNER KRANDICK AND KURT MEHLHORNProof. Let A be as des
ribed. Then A 6= 0 and, by Remark 2.7 (5), the roots of
B = TR(A) are all di�erent from −1. Therefore, the fun
tion (r ◦ t)−1 maps thenon-zero roots of A one-to-one onto the roots of B. But sin
e the roots of A are allin C−C, the roots of B have non-positive real parts by Remark 4.3. Hen
e, in thede
omposition of B into a produ
t of a 
onstant and moni
 linear and quadrati
fa
tors, every linear fa
tor is of the form x − α where α ≤ 0, and every quadrati
fa
tor is of the form (x− (a + ib))(x− (a− ib)) = x2− 2ax+(a2 + b2) where a ≤ 0.Sin
e all the non-zero 
oe�
ients of all the linear and quadrati
 fa
tors of B havethe same sign, the non-zero 
oe�
ients of B all have the same sign. �When we bound the re
ursion depth of the Des
artes method we will use Theo-rem 4.6 whi
h summarizes the pre
eding results.Theorem 4.6. Let A be a real polynomial with var(TR(A)) ≥ 2. Then either theopen disk C 
ontains at least two roots of A, or the interval (0, 1) 
ontains exa
tlyone real root and the union of the open disks C and C 
ontains a pair of 
omplex
onjugate roots.Proof. If A has no root in C then var(TR(A)) = 0 by Theorem 4.5. Thus, A hasat least one root in C. If this is the only root in C, the root is real and it is, infa
t, the only real root in the interval (0, 1). Then C ∪ C must 
ontain a pair of
omplex 
onjugate roots be
ause otherwise var(TR(A)) = 1 by Theorem 4.4. �5. Bounds for the Re
ursion TreeFor any input polynomial A the re
ursion tree of Algorithm 1 is a full binarytree; Figure 5.1 shows an example. With every node of the tree we asso
iate a pair
(B, I) 
onsisting of a polynomial B and an interval I. With the root of the tree weasso
iate the pair (A, (0, 1)). If an internal node is asso
iated with the pair (B, I)we asso
iate one 
hild with the pair (BL, IL) where BL = H(B) and IL is theopen left half of I, and we asso
iate the other 
hild with the pair (BR, IR) where
BR = TH(B) and IR is the open right half of I.Remark 5.1. By Remarks 2.7 (1) and (4), the fun
tion h maps the roots of BL in
(0, 1) onto the roots of B in IL, and the fun
tion h◦ t maps the roots of BR in (0, 1)onto the roots of B in IR. Thus, there is a sequen
e of elements of {h, t} whose
ompositionm maps the roots of B in (0, 1) onto the roots of the input polynomialAin I. When m maps the interval (0, 1) onto the interval I it transforms at the sametime the disks C, C and C of Se
tion 4. These disks are the 
ir
ums
ribing disks ofisos
eles triangles with base (0, 1) and base angles 45◦, −60◦ and 60◦, respe
tively,as shown in Figure 5.1. But h, t and, hen
e, m are Möbius transformations and thuspreserve angles [4℄. Moreover, the transformations h, t and, hen
e, m map straightlines in C onto straight lines in C and 
ir
les in C onto 
ir
les in C. Therefore, theimages m(C), m(C) and m(C) are the 
ir
ums
ribing disks of the isos
eles triangleswith base I and base angles 45◦, −60◦ and 60◦, respe
tively. Figure 5.1 shows thedisks that are 
onsidered at the leaf nodes of a parti
ular re
ursion tree.The depth of the re
ursion tree 
an be bounded using Mahler's root separationtheorem [25℄. To obtain a bound that also 
overs the width of the tree we useDavenport's generalization [14℄ of Mahler's theorem in a form due to Johnson [21℄.De�nition 5.2. Let A = anxn + · · ·+ a1x+ a0 be a non-zero polynomial of degree
n with 
omplex 
oe�
ients and the 
omplex roots α1, . . . , αn. The Eu
lidean norm
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(a) (b) (c) (d)

10

C
45

◦

0 1

C
60

◦

0 1Figure 5.1. (a) Re
ursion tree for A = 27648x3 − 46080x2 +
25251x− 4321. (b),(
) Triangles with 
ir
ums
ribing disks C, C.(d) Cir
ums
ribing disks for the intervals at the leaf nodes of thetree in (a). Also shown are 1/3 and 2/3± i · 5/32, the roots of A.of A is |A|2 = (a2

n+· · ·+a2
0)

1/2, the measure of A is M(A) = |an|·
∏n

i=1 max(1, |αi|),and the dis
riminant of A is D(A) = a2n−2
n

∏

i<j(αi − αj)
2.Remark 5.3. A theorem of Landau [24℄ implies M(A) ≤ |A|2. The inequality wasindependently redis
overed more than on
e. Ostrowski [30℄ summarizes its historyuntil 1961 and proves a generalization. Mignotte [27, 28℄ gives a short elementaryproof. The dis
riminant D(A) is known [35℄ to be a polynomial in the 
oe�
ientsof A; hen
e D(A) ≥ 1 if A is a squarefree integer polynomial.Theorem 5.4. Let A be a non-zero 
omplex polynomial of degree n with the roots

α1, . . . , αn. Let k be an integer, 1 ≤ k ≤ n, and let (β1, . . . , βk) be a sequen
e ofroots of A su
h that
βi 6∈ {α1, . . . , αi} and |βi| ≤ |αi| for all i ∈ {1, . . . , k}.Then

k
∏

i=1

|αi − βi| ≥ 3k/2D(A)1/2M(A)−n+1n−k−n/2.Proof. See [21℄. �Theorem 5.5. Let A be a non-zero real polynomial of degree n, measure M , anddis
riminant D. Let the integers h ≥ 0 and k ≥ 1 be su
h that k is the number ofinternal nodes of depth h in the re
ursion tree of Algorithm 1 with input A wheredepth is the distan
e from the root. Then(1) k ≤ n, and(2) 2(1−h)k > 3kD1/2M−n+1n−k−n/2.Proof. Let I1 < . . . < Ik be the open subintervals of (0, 1) that are asso
iated withthe internal nodes of depth h, and let A1, . . . , Ak be the 
orresponding polynomials.The intervals have width 2−h. For every index i ∈ {1, . . . , k} let Ci, Ci and Ci bethe 
ir
ums
ribing disks of the isos
eles triangles with base Ii and base angles 45◦,
−60◦ and 60◦, respe
tively. By Remark 5.1 the roots of Ai in the disks C, C and
C, 
orrespond, respe
tively, to the roots of A in the disks Ci, Ci and Ci. But thepolynomials Ai are at internal nodes of the re
ursion tree, so var(TR(Ai)) ≥ 2, andhen
e, by Theorem 4.6, either Ci 
ontains at least two roots of A, or Ii 
ontainsexa
tly one real root of A and Ci ∪ Ci 
ontains a pair of 
omplex 
onjugate rootsof A.Assertion (1) holds sin
e every disk Ci 
ontains at least one root of A, and thedisks C1, . . . , Ck are pairwise disjoint.



12 WERNER KRANDICK AND KURT MEHLHORNAssertion (2) holds if A has a multiple root sin
e D = 0 in that 
ase. If all rootsare simple, de�ne, for every index i ∈ {1, . . . , k}, a set Ri of roots of A in Ci ∪Ci.If Ci 
ontains at least two roots of A, let Ri = {s, t} where s and t are either twoarbitrary distin
t real roots in Ii or two arbitrary non-real 
omplex 
onjugate rootsin Ci; otherwise, let Ri = {r, s, t} where r is the unique real root in Ii, and s and
t are two arbitrary non-real 
omplex 
onjugate roots in Ci ∪ Ci. For notational
onvenien
e let R0 = Rk+1 = ∅. Note that, for all distin
t indi
es i, j ∈ {1, . . . , k},the interse
tion of Ri and Rj is either empty or it 
onsists of two non-real 
omplex
onjugate roots and j = i − 1 or j = i + 1. Moreover, if Ri ∩ Ri+1 6= ∅ then
Ri−1 ∩Ri = ∅ and Ri+1 ∩Ri+2 = ∅. So, for all indi
es i ∈ {1, . . . , k}, the set Ri iseither disjoint from all sets Rj , j 6= i, or there is exa
tly one set Rj su
h that j 6= iand Ri ∩Rj 6= ∅.Let i ∈ {1, . . . , k}. If Ri is disjoint from all sets Rj , j 6= i, sele
t two distin
telements from Ri that are both in Ci or both in Ci or both in Ci, and label them
αi and βi so that |βi| ≤ |αi|. If there is exa
tly one set Rj su
h that j 6= i and
Ri ∩ Rj 6= ∅ then sele
t αi, βi, αj , βj ∈ Ri ∪ Rj as des
ribed in Figure 5.2 for the
ase j = i+1. Sin
e Ri∩Rj 6= ∅, at least one of the sets Ri and Rj has 3 elements,and the �gure shows how the roots are sele
ted depending on whether only Ri has
3 elements or only Rj or both Ri and Rj .

(c)(b)(a)

αj
βi = βj

αiβi = βj

αj

αi

βj

βi

αi

αj

Figure 5.2. Adja
ent intervals with 
oin
iding roots. Here,
j = i + 1. (a) |Ri| = 3 and |Rj | = 2. Note that |βi| ≤ |αi|and |βj | ≤ |αj | and αi, βi ∈ Ci and αj , βj ∈ Ci. (b) |Ri| = 2and |Rj | = 3. (
) |Ri| = 3 and |Rj | = 3. In Ci the root with thesmaller modulus is labeled βi and the other root αi; likewise for
Cj , βj and αj .By 
onstru
tion, the sele
ted roots α1, . . . , αk and β1, . . . , βk not only satisfy

βi 6∈ {α1, . . . , αi} and |βi| ≤ |αi| for all i ∈ {1, . . . , k} but also, for all i ∈ {1, . . . , k},both roots αi and βi are in one of the disks Ci, Ci, Ci, or, if i > 1, in the disk
Ci−1, so |αi − βi| < 21−h/

√
3. Now Theorem 5.4 implies

2(1−h)k3−k/2 >

k
∏

i=1

|αi − βi| ≥ 3k/2D1/2M−n+1n−k−n/2.

�Theorem 5.6. Let A be a non-zero squarefree integer polynomial of degree n ≥ 2with Eu
lidean norm d. Let h and k be as in Theorem 5.5, and let log = log2. Then(1) k ≤ n, and



NEW BOUNDS FOR THE DESCARTES METHOD 13(2) (h− 1)k < (n− 1) log d + (k + n/2) logn− k log 3, and(3) h ≤ (n− 1) log d + (n/2 + 1) log n− log 3.Proof. Assertion (1) holds due to assertion (1) of Theorem 5.5. To show asser-tion (2), 
onsider assertion (2) of Theorem 5.5, apply Remark 5.3, take loga-rithms, and multiply by −1. To show assertion (3), 
onsider assertion (2) and
olle
t all terms involving k on one side to obtain k(h − 1 − log n + log 3) <
(n − 1) log d + n/2 logn. If h − 1 − log n + log 3 < 0 then assertion (3) 
learlyholds. If, on the other hand, h − 1 − log n + log 3 ≥ 0 then k ≥ 1 implies
h − 1 − log n + log 3 < (n − 1) log d + n/2 logn, and hen
e assertion (3) holdsalso in this 
ase. �Remark 5.7. Theorem 5.6 is stronger than an earlier result of Krandi
k [23, Satz47℄, and the proof is shorter. The theorem implies the dominan
e relations hk �
n log(nd) and h � n log(nd) whi
h 
an be used in an asymptoti
 
omputing timeanalysis of Algorithm 1 when the ring S of 
oe�
ients is Z; the notation � is dueto Collins [8℄. 6. Normal Cubi
sBy Theorem 3.8 any positive polynomial whose roots are in the 
one C is normal.By Theorems 3.4 and 3.6 the 
onverse holds for linear and quadrati
 polynomials.For 
ubi
 polynomials, however, the 
onverse is false. Indeed, the normal polyno-mial x3 + 5x2 + 16x + 30 has roots −1 ± 3i /∈ C. Theorems 6.1 and 6.2 together
ompletely 
hara
terize the normal 
ubi
 polynomials.Theorem 6.1. Let A be a positive polynomial all of whose roots are real. Then Ais normal if and only if the roots are in the 
one C.Proof. If the roots of A are in the 
one C then Theorem 3.8 implies that A isnormal. Otherwise, A has a positive root. In this 
ase, var((x − 1)A(x)) > 1 byTheorem 2.2, and A is not normal by Theorem 3.3. �Theorem 6.2. Let A be a positive 
ubi
 polynomial whose roots are a and b ± icwhere a, b, c are real numbers. Then A is normal if and only if

a ≤ 0 and(6.1)
b ≤ 0 and(6.2)

c2 − 3b2 − 2ab− a2 ≤ 0 and(6.3)
c4 + 2b2c2 + 2abc2 − a2c2 + b4 + 2ab3 + 3a2b2 ≥ 0.(6.4)Proof. We may assume that A is moni
 sin
e A is normal if and only if A/ld
f(A)is normal. Hen
e,

A = (x− a) · (x − (b + ic)) · (x− (b − ic))and thus
A = x3 + a2x

2 + a1x + a0where
a2 = −a− 2b,

a1 = 2ab + b2 + c2,

a0 = −ab2 − ac2.



14 WERNER KRANDICK AND KURT MEHLHORNBy de�nition, A is normal if and only if all of the following hold.
a2 ≥ 0,(6.5)
a1 ≥ 0,(6.6)
a0 ≥ 0,(6.7)
a2
2 ≥ a1,(6.8)

a2
1 ≥ a2a0,(6.9)

a2 = 0 ⇒ a1 = a0 = 0,(6.10)
a1 = 0 ⇒ a0 = 0.(6.11)Impli
ation (6.11) is redundant sin
e it follows from (6.9), (6.5) and (6.7). Also theimpli
ation (a2 = 0 ⇒ a1 = 0) in (6.10) is redundant sin
e it follows from (6.8)and (6.6). We note the pairwise equivalen
e of (6.1) and (6.7), (6.3) and (6.8), and(6.4) and (6.9). We will show that the 
onjun
tion of (6.1)�(6.4) is equivalent tothe 
onjun
tion of (6.5)�(6.11).Assume (6.1)�(6.4). Clearly, (6.1) and (6.2) imply (6.5) and (6.6). The pairwiseequivalen
es yield (6.7), (6.8) and (6.9). The impli
ation (a2 = 0 ⇒ a0 = 0) in(6.10) holds sin
e a2 = 0 together with (6.1) and (6.2) implies a = 0.Assume now (6.5)�(6.11). The pairwise equivalen
es yield (6.1), (6.3), and (6.4).To 
omplete the proof we have to show (6.2). By (6.1) we have a ≤ 0. If a = 0then (6.2) follows from (6.5), so we may assume a < 0. Next observe that if (a, b, c)satis�es (6.5)�(6.11) then, for any t > 0, (ta, tb, tc) satis�es (6.5)�(6.11). So we mayassume a = −1. Now (6.5) implies that b ≤ 1/2, and we need to show that b ≤ 0.Figure 6.1 illustrates the situation. If b = 1/2 then, by (6.5), a2 = 0, hen
e, by(6.10), a0 = 0, and thus a = 0, a 
ontradi
tion. So, b < 1/2 and we need to show

b ≤ 0. Multiplying (6.3) and (6.6), and 
ombining the result with (6.4) we obtainthe inequalities
(c2−3b2 +2b−1)(−2b+ b2+ c2) ≤ 0 ≤ c4 +2b2c2 +2abc2−a2c2 + b4 +2ab3 +3a2b2.Colle
ting all the terms on the left hand side and fa
toring yields

−2b(2b− 1)((b− 1)2 + c2) ≤ 0,so 0 < b < 1/2 is impossible, and we have b ≤ 0 as desired. �Figure 6.1 supports the notion that Theorem 6.2 re
ognizes more normal 
ubi
sthan Theorem 3.8. In an attempt to quantify the improvement we perform extensiveexperiments that use Algorithm 1.De�nition 6.3. The max-norm of a 
omplex polynomial A = anxn + · · ·+a1x+a0is |A|∞ = max(|an|, . . . , |a0|).Let m be a positive integer. The set of all normal 
ubi
 integer polynomials ofmax-norm m 
an be e�
iently enumerated. For ea
h su
h polynomial A,
A = a3x

3 + a2x
2 + a1x + a0,we want to de
ide whether all of its roots are in the 
one C. Sin
e A is 
ubi
, either

A has one real root and two non-real 
omplex 
onjugate roots, or all the roots of Aare real. In parti
ular, if A has a multiple root then all the roots of A are real. Sin
eall the 
oe�
ients of A are non-negative, all the real roots of A are non-positiveand, hen
e, in C. Using polynomial fa
torization and Algorithm 1 we thus redu
e



NEW BOUNDS FOR THE DESCARTES METHOD 15

Figure 6.1. For a = −1 the points (b, c) that satisfy (6.1)�(6.4)are pre
isely the points in the left half-plane (6.2) between the twobran
hes of the hyperbola (6.3) and outside of the �gure �8� (6.4).For a = 0 the solution set 
oin
ides with the 
one C whi
h is de-limited by the 
urve c2−3b2 = 0. The solutions of inequality (6.6)are pre
isely the points outside the 
ir
le.the de
ision problem to the 
ase where A is irredu
ible and has a single real root
α ∈ C. The other roots of A are the roots of the polynomial

B = A(x)/(x − α) = a3x
2 + (a3α + a2)x + (a3α

2 + a2α + a1).By Theorem 3.6, these roots are in C if and only if B is normal. We de
ide thelatter by performing arithmeti
 in Z[α] on the 
oe�
ients of B.The 
omputing time of the de
ision method 
an be redu
ed by a fa
tor of about
3.5 by using �oating point 
omputations instead of exa
t arithmeti
. Indeed, weuse the �oating point interval arithmeti
 te
hniques des
ribed by Collins, Johnson,and Krandi
k [12℄, and we fall ba
k to exa
t arithmeti
 just in 
ase the �oatingpoint results are in
on
lusive. In our experiments we represent α by an isolatinginterval of width 2−40, and we use IEEE-double pre
ision arithmeti
 [20℄. For allour inputs, the �oating point method is in
on
lusive only in 
ase the roots of B lieon the boundary of C; this situation o

urs when B is normal and (a3α + a2)

2 =
a3 · (a3α

2 + a2α + a1).Table 1 shows that only about 57 per
ent of the 2, 353, 361, 850 normal 
ubi
polynomials we examined have all of their roots in the 
one C. It seems reasonableto expe
t smaller ratios when the experiment is 
arried out for polynomials of higherdegrees. The table also shows that we had to use exa
t arithmeti
 for relativelyfew polynomials.We 
an now generalize Theorem 3.9.Theorem 6.4. Let A(x) be a non-zero polynomial su
h that A(x) = B(x) · C(x)where all the roots of B(x) are in the 
one C and C(x) is a produ
t of 
ubi
 poly-nomials ea
h of whose roots are as des
ribed in Theorem 6.2 then
var((x − α)A(x)) = 1 for all real α > 0.Proof. Theorems 6.1, 6.2, 3.7, and 3.3. �It is easy to state higher-degree analogues of Theorem 6.2. The analogous the-orems result in additional improvements of Theorem 3.9, but it is not 
lear how
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m N(m) C(m) C(m)/N(m) boundary
100 780708 445288 .57036 122
200 6232898 3558002 .57084 277
300 21019770 12004290 .57110 453
400 49814320 28450698 .57113 640
500 97252440 55564678 .57134 807
600 168075834 96011988 .57124 996
700 266842438 152459384 .57135 1140
800 398334336 227573618 .57131 1355
900 567119096 324020078 .57134 1766

1000 777890010 444469060 .57138 1695Table 1. For any positive integer m, let N(m) be the number ofnormal 
ubi
 integer polynomials with max-norm m, and let C(m)be the number of those normal 
ubi
 integer polynomials of max-norm m that have all roots in the 
one C. The ratios C(m)/N(m)are rounded to �ve de
imal digits. The last 
olumn lists the numberof polynomials that have non-real roots on the boundary of C.the improvements 
an be used to obtain better general bounds for the Des
artesmethod.A
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