
NEW BOUNDS FOR THE DESCARTES METHODWERNER KRANDICK AND KURT MEHLHORNAbstrat. We give a new bound for the number of reursive subdivisionsin the Desartes method for polynomial real root isolation. Our proof usesOstrowski's theory of normal power series from 1950 whih has so far beenoverlooked in the literature. We ombine Ostrowski's results with a theoremof Davenport from 1985 to obtain our bound. We also haraterize normal-ity of ubi polynomials by expliit onditions on their roots and derive ageneralization of one of Ostrowski's theorems.1. IntrodutionPolynomial real root isolation is the task of omputing disjoint intervals, eahontaining a single root, for all the real roots of a given univariate polynomialwith real oe�ients. In the 1830s, Vinent [36℄ showed that polynomial real rootisolation an be performed using a test based on the Desartes Rule of Signs. Thetest evaluates a ondition that implies that a given interval ontains a single root,and another ondition that implies that the interval does not ontain any roots. Ifneither ondition is satis�ed, the interval is biseted and eah subinterval is testedreursively. It is not obvious that Vinent's method terminates.In 1976, Collins and Akritas [10℄ proposed a method with a muh better worst-ase omputing time than Vinent's method. We will refer to the improved methodas �Desartes method�. A study by Johnson [21℄ shows that the Desartes methodtypially outperforms Sturm's method and other methods for real root isolation.Johnson's �ndings are on�rmed in experiments by Rouillier and Zimmermann [32,Figures 2,3℄. Reent versions of the Desartes method use �oating point arith-meti [22, 12, 33℄, parallel omputation [15, 16℄, or they minimize spae require-ments [33℄.We give a new bound (Theorem 5.5) for the number of reursive subdivisionsin the Desartes method. Our proof uses Ostrowski's theory [29℄ of normal powerseries from 1950 whih has so far been overlooked in the literature. We ombineOstrowski's results with a theorem of Davenport [14℄ from 1985 to obtain our bound.We also haraterize normality of ubi polynomials by expliit onditions on theirroots and derive a generalization (Theorem 6.4) of one of Ostrowski's theorems.The history of termination proofs starts in the 1830s with Vinent [36℄. Alesinaand Galuzzi [2℄ present Vinent's original proof in modern mathematial languageand provide extensive historial information on related earlier and later results. Itseems that Vinent's method was forgotten until 1948 when Uspensky [34℄ mod-i�ed Vinent's proof and bounded the number of reursive steps required by themethod. In 1950, Ostrowski [29℄ used a result from his earlier work [31℄ to improveUspensky's bound. Ostrowski's ontribution, though summarized in MathematialReviews [26℄, was ompletely overlooked in later literature until it beame aes-sible through an eletroni database [3℄. When Collins and Akritas [10℄ improved1



2 WERNER KRANDICK AND KURT MEHLHORNVinent's algorithm in 1976 they based their analysis, later elaborated by Collinsand Loos [7℄, on Uspensky's work. Collins and Johnson [6℄ improved the analysissigni�antly, but also their result is stritly weaker than Ostrowski's. Eventually,one of Ostrowski's theorems, the present Theorem 3.9, was independently redisov-ered by Alesina and Galuzzi [2, Corollary 8.2℄. These authors give a onise anddiret proof, but their approah annot be used to prove the stronger Theorem 6.4of this paper.In Setion 2 we review the Desartes method. In Setion 3 we present Ostrowski'stheory of normal power series and strengthen one of his results that links normalityof polynomials and termination of the Desartes method (Theorem 3.3). We alsopresent Ostrowski's su�ient ondition on the roots of a polynomial to guaranteenormality (Theorem 3.8). We use these results in Setion 4 to prove Theorem 4.6 onthe proximity of omplex roots to those intervals on whih the Desartes methodreurs. In Setion 5 we ombine Theorem 4.6 with Davenport's root separationtheorem to obtain new bounds for the reursion tree of the Desartes method. InSetion 6 we use Theorem 3.3 to haraterize the normal ubi polynomials byexpliit onditions on their roots. We gauge the extent of the improvement byapplying the Desartes method to 2.3 billion ubi polynomials. We use the newresult to prove Theorem 6.4�thus strengthening Theorem 3.9.2. Review of the Desartes MethodDe�nition 2.1. Let a = (a0, . . . , an) be a �nite sequene of real numbers. Thenumber of sign variations in a, var(a), is the number of pairs (i, j) with 0 ≤ i <
j ≤ n and aiaj < 0 and ai+1 = · · · = aj−1 = 0. Let A be the polynomial
a0 + a1x + · · · + anxn. The number of oe�ient sign variations in A, var(A), is
var(a).Theorem 2.2. [Desartes Rule of Signs℄ For any non-zero real polynomial thenumber of oe�ient sign variations exeeds the number of positive real roots�ounting multipliities�by a non-negative, even integer.Proof. Let A(x) be a non-zero real polynomial. If xk is the highest power of x thatdivides A, the polynomial A/xk has the same number of oe�ient sign variationsand positive real roots as A, and its onstant term is non-zero. Hene, we mayassume that the onstant term of A is non-zero. Let a0 be this onstant term, let
n be the degree of A, and let an be the leading oe�ient. Let v = var(A), and let
p be the number of positive real roots of A, ounting multipliities.To show that v and p have the same parity we use an argument given byConkwright [13℄. Let z1, . . . , zn ∈ C be the roots of A. Then(2.1) A(x) = an(x− z1) · · · (x− zn),and hene a0 = A(0) = (−1)nanz1 . . . zn. Sine the non-real roots our in omplexonjugate pairs, their produt is positive. The produt of the positive roots islikewise positive, no root is zero sine a0 is non-zero, and the produt of the negativereal roots has the sign (−1)n−p. It follows that the sign of a0/an is (−1)p. Hene
v and p have the same parity.Gauss [18℄ proves v ≥ p by showing that, for any non-zero real polynomial B(x)and any positive real number a,(2.2) var(B) < var((x − a) · B).



NEW BOUNDS FOR THE DESCARTES METHOD 3So, in equation (2.1), every positive root of A ontributes at least one sign variation.To show inequality (2.2) let B = bmxm + · · · + b0, let a > 0, and let C =
(x − a)B = cm+1x

m+1 + · · · + c0. If var(B) > 0 let (i, j) be an index pair thatontributes to var(B). Then 0 ≤ i < j ≤ m and bibj < 0 and either j = i + 1 or
bi+1 = 0. If σ : R −→ {−1, 0, 1} denotes the sign funtion then

σ(ci+1) = σ(bi − abi+1) = σ(bi).So, if (i1, j1), . . . , (ik, jk) are all the index pairs that ontribute to var(B), and if
0 ≤ i1 < j1 ≤ · · · ≤ ik < jk ≤ m, then

var(ci1+1, . . . , cik+1, cm+1) = var(bi1 , . . . , bik
, bm) = var(B).Now let i be the smallest index for whih bi 6= 0. Then 0 ≤ i ≤ i1 and σ(ci) =

σ(−abi) = −σ(bi) = −σ(bi1) = −σ(ci1+1), and so
var(C) ≥ var(ci, ci1+1, . . . , cik+1, cm+1) = 1 + var(B).If var(B) = 0 then var(C) ≥ var(ci, cm+1) = var(−abi, bm) ≥ 1. �Theorem 2.2 is named after Desartes although he merely stated that there anbe as many positive real roots as there are oe�ient sign variations [17℄. Theassertion that there are at least as many sign variations as there are positive rootswas �rst stated and proved by Gauss [5℄. Some modern authors [1, 37℄ seem to beunaware of Gauss's ontribution.Theorem 2.3. Let A be a non-zero real polynomial. If var(A) = 0 then A does nothave any positive real root; if var(A) = 1 then A has exatly one positive real root.De�nition 2.4. Let S be a subring of R with 1 ∈ S. We de�ne three polynomialtransformations S[x] −→ S[x]. Let A = anxn + · · · + a1x + a0 be an element of

S[x].(1) The homotheti transformation of A is the polynomial
H(A) = anxn + 2an−1x

n−1 + · · ·+ 2n−1a1x + 2na0.(2) The Taylor shift by 1 of A is the polynomial
T (A) = bnxn + · · ·+ b1x + b0where bk =

∑n
j=k

( j
k

)

aj for k ∈ {0, . . . , n}.(3) The reiproal transformation of A is the polynomial
R(A) = a0x

n + · · ·+ an−1x + an.Note that R(A) = 0 if and only if A = 0, and that x | A implies R(A) =
R(A/x).The Desartes method an now be stated as Algorithm 1.To show that Algorithm 1 is partially orret we relate the roots of transformedreal polynomials to the roots of the untransformed polynomials. Sine we want touse bijetive mappings we add the point ∞ to C.



4 WERNER KRANDICK AND KURT MEHLHORNAlgorithm 1 [Desartes method℄ This version is speialized to root ounting in
I = (0, 1). The algorithm an easily be modi�ed to perform real root isolation.int roots in I (A ∈ S[x], A non-zero and squarefree, S ⊂ R subring, 1 ∈ S)

d← var(TR(A));if d ≤ 1 return d;
B ← H(A); C ← T (B);if x |C m← 1; else m← 0; Note: m = 1 if and only if A(1/2) = 0.return roots in I (B) + m + roots in I (C);De�nition 2.5. Let C = C ∪ {∞} be the Riemann sphere. We de�ne threefuntions C −→ C.

h(z) =

{

z/2, if z ∈ C ;
∞, if z =∞.

t(z) =

{

z + 1, if z ∈ C ;
∞, if z =∞.

r(z) =







1/z, if z ∈ C− {0} ;
∞, if z = 0 ;
0, if z =∞.The funtions h, t, and r are elements of the group of Möbius transformations.These are all funtions C −→ C given by(2.3) z 7−→ az + b

cz + dwith a, b, c, d ∈ C and ad− bc 6= 0. Anderson [4℄ explains how formula (2.3) handlesdivision by 0 and evaluation at ∞; he also disusses the properties of Möbiustransformations.Remark 2.6. Let A ∈ R[x], and let n = deg(A); we adopt the onvention that
deg(0) = 0 and ldf(0) = 0. Then, for all z ∈ C,

H(A)(z) = 2nA(h(z)),

T (A)(z) = A(t(z)),

R(A)(z) =

{

znA(r(z)), if z 6= 0 ;ldf(A), if z = 0 .So, for all z ∈ C,
TH(A)(z) = 2nA((h ◦ t)(z)),

TR(A)(z) =

{

(t(z))nA((r ◦ t)(z)), if z 6= −1 ;ldf(A), if z = −1 .Remark 2.7. By Remark 2.6, the following statements hold for all polynomials
A ∈ R[x].



NEW BOUNDS FOR THE DESCARTES METHOD 5(1) The funtion h maps the roots of H(A) one-to-one onto the roots of A;in partiular, the roots of H(A) in (0, 1) orrespond to the roots of A in
(0, 1/2).(2) The funtion t maps the roots of T (A) one-to-one onto the roots of A.(3) The funtion r maps the non-zero roots of R(A) one-to-one onto the non-zero roots of A; the roots of R(A) are non-zero unless A = 0.(4) The funtion h ◦ t maps the roots of TH(A) one-to-one onto the roots of
A; in partiular, the roots of TH(A) in (0, 1) orrespond to the roots of Ain (1/2, 1).(5) The funtion r ◦ t maps those roots of TR(A) that are di�erent from −1one-to-one onto the non-zero roots of A; the roots of TR(A) are di�erentfrom −1 unless A = 0. The positive real roots of TR(A) orrespond to theroots of A in (0, 1).Observations (1), (4), and (5) of Remark 2.7 ombined with Theorem 2.3 provethe partial orretness of Algorithm 1.3. Ostrowski's TheoryDe�nition 3.1. A power series

+∞
∑

k=−∞

akzkwith non-negative real oe�ients is normal [31℄ if(1) a2
k ≥ ak−1ak+1 for all indies k, and(2) ah > 0 and aj > 0 for indies h < j implies ah+1, . . . , aj−1 > 0.In 1950, Ostrowski linked the normality of a polynomial and the Desartes rule.He stated his result [29, Lemma 1℄ for polynomials all of whose oe�ients arepositive. Generalizing slightly we show in Theorem 3.3 that it su�es to requirethat the leading oe�ient be positive.De�nition 3.2. A polynomial with real oe�ients is positive if its leading oe�-ient is positive.Theorem 3.3. A positive polynomial A(x) is normal if and only if var((x −

α)A(x)) = 1 for all positive real numbers α.Proof. (i) Let A(x) be positive and normal, and let α be a positive real number.There is a non-negative integer m suh that A(x) = B(x) ·xm where B(x) is normaland all the oe�ients of B(x) are positive. Let B(x) = bnxn + · · ·+b1x+b0. Then
bn−1

bn
≥ bn−2

bn−1
≥ · · · ≥ b0

b1and hene
bn−1

bn
− α ≥ bn−2

bn−1
− α ≥ · · · ≥ b0

b1
− α.Sine also bn > 0 and −αb0 < 0, the polynomial

(x− α)B(x) = bnxn+1 + bn

(bn−1

bn
− α

)

xn + · · ·+ b1

(b0

b1
− α

)

x− αb0



6 WERNER KRANDICK AND KURT MEHLHORNhas exatly 1 oe�ient sign variation. And so,
1 = var((x − α)B(x)) = var((x − α)B(x) · xm) = var((x − α)A(x)).(ii) Conversely, let A(x) be positive but not normal. There is a non-negative inte-ger m suh that A = B(x)·xm where B(x) has a non-zero onstant term. Moreover,the polynomial B(x) is positive and not normal�and hene non-onstant. For anyreal number α let C(α)(x) = (x− α)B(x). Then var((x− α)A(x)) = var(C(α)(x)),and it su�es to �nd a positive number α suh that var(C(α)(x)) 6= 1.Let B(x) = bnxn + · · · + b1x + b0. Then n ≥ 1 and bn > 0 and b0 6= 0. Let

C(α)(x) = c
(α)
n+1x

n+1 + · · ·+ c
(α)
1 x + c

(α)
0 . Then c

(α)
0 = −αb0, c

(α)
k = bk−1 − αbk for

1 ≤ k ≤ n, and c
(α)
n+1 = bn.If var(B(x)) ≥ 2 hoose α so small that, for all k with 1 ≤ k ≤ n, the signs of

c
(α)
k and bk−1 are equal whenever bk−1 6= 0; then var(C(α)(x)) ≥ var(B(x)) ≥ 2.If var(B(x)) = 1 the polynomial B(x) has exatly one positive real root by theDesartes rule. So, for any α > 0, the polynomial C(α)(x) has two positive realroots, and, again by the Desartes rule, var(C(α)(x)) ≥ 2.Finally, assume var(B(x)) = 0. Then, sine bn > 0, all the oe�ients of B(x)are non-negative. If all the oe�ients of B(x) are positive, then, sine B(x) is notnormal, there is an index k with 1 ≤ k ≤ n − 1 suh that 0 < bk/bk+1 < bk−1/bk.Choose α suh that bk/bk+1 < α < bk−1/bk. Now α > 0 and c

(α)
n+1 = bn > 0,

c
(α)
k+1 = bk − αbk+1 < 0 and c

(α)
k = bk−1 − αbk > 0, and hene var(C(α)(x)) ≥ 2.If not all the oe�ients of B(x) are positive, there is a zero-oe�ient. Let bk bethe zero-oe�ient with the highest index; then c

(α)
k+1 < 0. Sine b0 > 0 there is anindex j < k suh that bj+1 = 0 and bj > 0; then c

(α)
j+1 > 0. Now c

(α)
0 < 0 implies

var(C(α)(x)) ≥ 2 also in this ase. �By Theorem 3.3, the Desartes rule will reveal the existene of a single positiveroot of a positive polynomial if the other�possibly non-real�roots α1, . . . , αn−1are suh that
(x − α1) · · · (x− αn−1)is a normal polynomial.Theorem 3.4. A positive linear polynomial is normal if and only if its root isnegative or zero.Proof. Let A be a positive linear polynomial, and let α ∈ R be its root. Then thereis a positive real number a suh that A(x) = a(x−α) = ax− aα. Now A is normalif and only if −aα ≥ 0, that is, if and only if α ≤ 0. �De�nition 3.5. Let

C =
{

a + ib
∣

∣a ≤ 0 and |b| ≤ |a|√3
}

.For an illustration see Figure 4.1(a); the one ontains its bordering rays andthe vertex 0.Theorem 3.6. A positive quadrati polynomial is normal if and only if its rootsare elements of the one C.



NEW BOUNDS FOR THE DESCARTES METHOD 7Proof. Let A be a positive quadrati polynomial, and let c > 0 be its leadingoe�ient.If the roots of A are omplex onjugates a + ib and a− ib with real numbers a, bthen A(x) = c(x − (a + ib))(x− (a− ib)). Now A(x) = cx2 − 2acx + c
(

a2 + b2
) isnormal if and only if −2ac ≥ 0 and c(a2 + b2) ≥ 0 and (−2ac)2 ≥ c · c(a2 + b2), thatis, if and only if a ≤ 0 and 4a2 ≥ a2 + b2, or, equivalently, if and only if a± ib ∈ C.Otherwise, the roots of A are real numbers α and β, and we have A(x) =

c(x−α)(x−β) = cx2−c(α+β)x+cαβ. Now A is normal if and only if −c(α+β) ≥ 0and cαβ ≥ 0 and (−c(α + β))2 ≥ c · cαβ, that is, if and only if α + β ≤ 0 and
αβ ≥ 0 and (α + β)2 ≥ αβ, or, equivalently, if and only if α, β ≤ 0. �In Setion 6 we will haraterize normal ubi polynomials. The �if�-diretionof Theorems 3.4 and 3.6 an be generalized to polynomials of any degree usingan earlier result of Ostrowski. Ostrowski showed in 1939 that the produt of twonormal series, if it exists, is normal [31℄. In 1950, he gave a simpler proof for thease of polynomials [29℄.Theorem 3.7. The produt of two normal polynomials is normal.Proof. Let A =

∑m
h=0 ahxh and B =

∑n
j=0 bjx

j be normal polynomials. Anynormal polynomial an be written as P · xk where k is a non-negative integer and
P is a normal polynomial and all the oe�ients of P are positive. Hene it su�esto onsider the ase where all the oe�ients of A and B are positive.Let C = A · B =

∑m+n
k=0 ckxk. Write ck =

∑

h ahbk−h where h and k range overthe set of all integers and all ah with h /∈ {0, . . . , m}, all bj with j /∈ {0, . . . , n}, andall ck with k /∈ {0, . . . , m + n} are taken as zero. Clearly, all the oe�ients of Care positive; it remains to show that c2
k − ck−1ck+1 ≥ 0 for all k.Using the following deomposition of the set of summation indies

{

(h, j) ∈ Z
2

∣

∣ h > j
}

=
{

(j + 1, h− 1) ∈ Z
2

∣

∣ h ≤ j
}

∪
{

(h, h− 1) ∈ Z
2
}we obtain, for any index k,

c2
k − ck−1ck+1

=
∑

h≤j

ahajbk−hbk−j +
∑

h>j

ahajbk−hbk−j

−
∑

h≤j

ahajbk−h+1bk−j−1 −
∑

h>j

ahajbk−h+1bk−j−1

=
∑

h≤j

ahajbk−hbk−j +
∑

h≤j

aj+1ah−1bk−j−1bk−h+1 +
∑

h

ahah−1bk−hbk−h+1

−
∑

h≤j

ahajbk−h+1bk−j−1 −
∑

h≤j

aj+1ah−1bk−jbk−h −
∑

h

ahah−1bk−h+1bk−h

=
∑

h≤j

(ahaj − ah−1aj+1)(bk−jbk−h − bk−j−1bk−h+1),that is,(3.1) c2
k − ck−1ck+1 =

∑

h≤j

(ahaj − ah−1aj+1)(bk−jbk−h − bk−j−1bk−h+1).



8 WERNER KRANDICK AND KURT MEHLHORNSine A is normal and a0, . . . , am are positive, one has
am−1

am
≥ am−2

am−1
≥ · · · ≥ a0

a1
,and hene ahaj −ah−1aj+1 ≥ 0 for all h ≤ j; the analogous statement holds for theoe�ients of B. Hene eah summand on the right hand side of equation (3.1) isnon-negative, and thus c2

k − ck−1ck+1 ≥ 0 for all k. �Theorem 3.8. If the roots of a positive polynomial are in the one C then thepolynomial is normal.Proof. Let A be a positive polynomial all of whose roots are elements of the one
C. The omplete fatorization of A over the �eld of real numbers is a produt oflinear and quadrati fators. We may assume that all these fators are positive.Sine all the roots are in the one C, Theorems 3.4 and 3.6 apply, and eah fatoris normal. Thus, by Theorem 3.7, the polynomial A is normal. �Of all the theorems in this setion, we will invoke only Theorem 3.9 in Setions 4and 5.Theorem 3.9. If the roots of a non-zero polynomial A(x) are in the one C then
var((x− α)A(x)) = 1 for all positive real numbers α.Proof. Theorems 3.8 and 3.3. �4. Three CirlesBy Theorem 3.9, Algorithm 1 will stop alling itself when it enounters a polyno-mial TR(A) that has exatly one positive root and whose other roots are elementsof the one C. We want to state this ondition in terms of the roots of the polyno-mial A. Sine A is non-zero, Remark 2.7 (5) implies that the funtion r ◦ t mapsthe roots of TR(A) one-to-one onto the non-zero roots of A. But muh more is truesine r ◦ t is a Möbius transformation.Remark 4.1. Anderson [4℄ reviews some properties of Möbius transformations.These transformations are homeomorphisms of the Riemann sphere C = C ∪ {∞}that map irles in C to irles. In partiular, irles and lines in C are mappedto irles and lines. To identify the image of a given irle or line K under a givenMöbius transformation it su�es to selet three distint points on K, to omputetheir images under the transformation, and to determine the unique irle or line Lthat ontains those images. The sets C−K and C−L eah have exatly two on-neted omponents. Eah omponent of C−K is mapped to a di�erent omponentof C − L sine Möbius transformations are homeomorphisms of C. By applyingthe transformation to a single point in C−K one an determine the image of eahomponent of C−K.De�nition 4.2. We de�ne three irular disks.

C =
{

z ∈ C

∣

∣

∣

∣

∣z −
(

1/2− i
√

3/6)
)∣

∣ <
√

3/3
}

,

C =
{

z ∈ C

∣

∣

∣

∣

∣z −
(

1/2 + i
√

3/6
)∣

∣ <
√

3/3
}

,

C =
{

z ∈ C

∣

∣

∣
|z − 1/2| < 1/2

}

.



NEW BOUNDS FOR THE DESCARTES METHOD 9Remark 4.3. The Möbius transformation r ◦ t maps the one C one-to-one onto
C− (C ∪ C) and the half-plane {z ∈ C |Re(z) ≤ 0} one-to-one onto C − C. Bothstatements an be veri�ed using the method desribed in Remark 4.1.Figure 4.1(a) shows the one C. Figure 4.1(b) shows the boundaries of the opendisks C and C. Figure 4.1() shows how the Möbius transformation r operates onthe boundary of C. If z traverses the boundary of C lokwise from 1 towards 0,the reiproal r(z) traverses the ray {1 − s +

√
3si | s ≥ 0} upwards starting at 1.Similarly, if z traverses the boundary of C ounterlokwise from 1 towards 0, thereiproal r(z) traverses the ray {1 − s −

√
3si | s ≥ 0} downwards starting at 1.The point z = 0 is mapped to r(0) = ∞ /∈ C. Thus the �gure illustrates how thefuntion t−1 ◦ r = (r ◦ t)−1 maps C− (C ∪ C) one-to-one onto C.

(b) C

C

0 1

C(a) ()Figure 4.1. (a) A positive quadrati polynomial is normal if andonly if its roots are in the one C. (b) If a polynomial A hasa simple root in the interval (0, 1) and no other real or non-realroots in C ∪C then var(TR(A)) = 1. () The image of C under r.Theorem 4.4. [Two�Cirle Theorem℄ Let A be a real polynomial with a single,simple root in the interval (0, 1) and no other real or non-real roots in the opendisks C and C. Then var(TR(A)) = 1.Proof. Let A be as desribed. Then A 6= 0 and, by Remark 2.7 (5), the roots of
B = TR(A) are all di�erent from −1. Therefore, the funtion (r ◦ t)−1 maps thenon-zero roots of A one-to-one onto the roots of B. Hene, B has a single, simpleroot in (r ◦ t)−1((0, 1)) = (0,∞), and its other roots are in (r ◦ t)−1(C− (C ∪ C))whih equals C by Remark 4.3. Now Theorem 3.9 yields var(B) = 1. �The two-irle ondition is not neessary for the termination of the Desartesmethod. Indeed, the polynomial A = 32x3 − 16x2 + 2x − 1 has the single, simpleroot 1/2 in the interval (0, 1), the pair of omplex onjugate roots ±i/4 inside theopen disks C and C, and var(TR(A)) = 1.Our two-irle theorem improves upon a two-irle theorem of Collins and John-son [6℄. They use the disks D1 = {z ∈ C | |z| < 1} and D2 = {z ∈ C | |z − 1| < 1}instead of C and C. But C ∪C is a proper subset of D1∪D2, and the area of C ∪Cis exatly one-third of the area of D1 ∪D2. Indeed, the Möbius transformation

z 7−→ i
√

3

3
z +

(1

2
− i

√
3

6

)maps D1 ∪D2 onto C ∪ C.The following well-known theorem ompletes our onverse of Theorem 2.3.Theorem 4.5. If a polynomial A does not have any roots in the open disk C then
var(TR(A)) = 0.



10 WERNER KRANDICK AND KURT MEHLHORNProof. Let A be as desribed. Then A 6= 0 and, by Remark 2.7 (5), the roots of
B = TR(A) are all di�erent from −1. Therefore, the funtion (r ◦ t)−1 maps thenon-zero roots of A one-to-one onto the roots of B. But sine the roots of A are allin C−C, the roots of B have non-positive real parts by Remark 4.3. Hene, in thedeomposition of B into a produt of a onstant and moni linear and quadratifators, every linear fator is of the form x − α where α ≤ 0, and every quadratifator is of the form (x− (a + ib))(x− (a− ib)) = x2− 2ax+(a2 + b2) where a ≤ 0.Sine all the non-zero oe�ients of all the linear and quadrati fators of B havethe same sign, the non-zero oe�ients of B all have the same sign. �When we bound the reursion depth of the Desartes method we will use Theo-rem 4.6 whih summarizes the preeding results.Theorem 4.6. Let A be a real polynomial with var(TR(A)) ≥ 2. Then either theopen disk C ontains at least two roots of A, or the interval (0, 1) ontains exatlyone real root and the union of the open disks C and C ontains a pair of omplexonjugate roots.Proof. If A has no root in C then var(TR(A)) = 0 by Theorem 4.5. Thus, A hasat least one root in C. If this is the only root in C, the root is real and it is, infat, the only real root in the interval (0, 1). Then C ∪ C must ontain a pair ofomplex onjugate roots beause otherwise var(TR(A)) = 1 by Theorem 4.4. �5. Bounds for the Reursion TreeFor any input polynomial A the reursion tree of Algorithm 1 is a full binarytree; Figure 5.1 shows an example. With every node of the tree we assoiate a pair
(B, I) onsisting of a polynomial B and an interval I. With the root of the tree weassoiate the pair (A, (0, 1)). If an internal node is assoiated with the pair (B, I)we assoiate one hild with the pair (BL, IL) where BL = H(B) and IL is theopen left half of I, and we assoiate the other hild with the pair (BR, IR) where
BR = TH(B) and IR is the open right half of I.Remark 5.1. By Remarks 2.7 (1) and (4), the funtion h maps the roots of BL in
(0, 1) onto the roots of B in IL, and the funtion h◦ t maps the roots of BR in (0, 1)onto the roots of B in IR. Thus, there is a sequene of elements of {h, t} whoseompositionm maps the roots of B in (0, 1) onto the roots of the input polynomialAin I. When m maps the interval (0, 1) onto the interval I it transforms at the sametime the disks C, C and C of Setion 4. These disks are the irumsribing disks ofisoseles triangles with base (0, 1) and base angles 45◦, −60◦ and 60◦, respetively,as shown in Figure 5.1. But h, t and, hene, m are Möbius transformations and thuspreserve angles [4℄. Moreover, the transformations h, t and, hene, m map straightlines in C onto straight lines in C and irles in C onto irles in C. Therefore, theimages m(C), m(C) and m(C) are the irumsribing disks of the isoseles triangleswith base I and base angles 45◦, −60◦ and 60◦, respetively. Figure 5.1 shows thedisks that are onsidered at the leaf nodes of a partiular reursion tree.The depth of the reursion tree an be bounded using Mahler's root separationtheorem [25℄. To obtain a bound that also overs the width of the tree we useDavenport's generalization [14℄ of Mahler's theorem in a form due to Johnson [21℄.De�nition 5.2. Let A = anxn + · · ·+ a1x+ a0 be a non-zero polynomial of degree
n with omplex oe�ients and the omplex roots α1, . . . , αn. The Eulidean norm
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(a) (b) (c) (d)

10

C
45

◦

0 1

C
60

◦

0 1Figure 5.1. (a) Reursion tree for A = 27648x3 − 46080x2 +
25251x− 4321. (b),() Triangles with irumsribing disks C, C.(d) Cirumsribing disks for the intervals at the leaf nodes of thetree in (a). Also shown are 1/3 and 2/3± i · 5/32, the roots of A.of A is |A|2 = (a2

n+· · ·+a2
0)

1/2, the measure of A is M(A) = |an|·
∏n

i=1 max(1, |αi|),and the disriminant of A is D(A) = a2n−2
n

∏

i<j(αi − αj)
2.Remark 5.3. A theorem of Landau [24℄ implies M(A) ≤ |A|2. The inequality wasindependently redisovered more than one. Ostrowski [30℄ summarizes its historyuntil 1961 and proves a generalization. Mignotte [27, 28℄ gives a short elementaryproof. The disriminant D(A) is known [35℄ to be a polynomial in the oe�ientsof A; hene D(A) ≥ 1 if A is a squarefree integer polynomial.Theorem 5.4. Let A be a non-zero omplex polynomial of degree n with the roots

α1, . . . , αn. Let k be an integer, 1 ≤ k ≤ n, and let (β1, . . . , βk) be a sequene ofroots of A suh that
βi 6∈ {α1, . . . , αi} and |βi| ≤ |αi| for all i ∈ {1, . . . , k}.Then

k
∏

i=1

|αi − βi| ≥ 3k/2D(A)1/2M(A)−n+1n−k−n/2.Proof. See [21℄. �Theorem 5.5. Let A be a non-zero real polynomial of degree n, measure M , anddisriminant D. Let the integers h ≥ 0 and k ≥ 1 be suh that k is the number ofinternal nodes of depth h in the reursion tree of Algorithm 1 with input A wheredepth is the distane from the root. Then(1) k ≤ n, and(2) 2(1−h)k > 3kD1/2M−n+1n−k−n/2.Proof. Let I1 < . . . < Ik be the open subintervals of (0, 1) that are assoiated withthe internal nodes of depth h, and let A1, . . . , Ak be the orresponding polynomials.The intervals have width 2−h. For every index i ∈ {1, . . . , k} let Ci, Ci and Ci bethe irumsribing disks of the isoseles triangles with base Ii and base angles 45◦,
−60◦ and 60◦, respetively. By Remark 5.1 the roots of Ai in the disks C, C and
C, orrespond, respetively, to the roots of A in the disks Ci, Ci and Ci. But thepolynomials Ai are at internal nodes of the reursion tree, so var(TR(Ai)) ≥ 2, andhene, by Theorem 4.6, either Ci ontains at least two roots of A, or Ii ontainsexatly one real root of A and Ci ∪ Ci ontains a pair of omplex onjugate rootsof A.Assertion (1) holds sine every disk Ci ontains at least one root of A, and thedisks C1, . . . , Ck are pairwise disjoint.



12 WERNER KRANDICK AND KURT MEHLHORNAssertion (2) holds if A has a multiple root sine D = 0 in that ase. If all rootsare simple, de�ne, for every index i ∈ {1, . . . , k}, a set Ri of roots of A in Ci ∪Ci.If Ci ontains at least two roots of A, let Ri = {s, t} where s and t are either twoarbitrary distint real roots in Ii or two arbitrary non-real omplex onjugate rootsin Ci; otherwise, let Ri = {r, s, t} where r is the unique real root in Ii, and s and
t are two arbitrary non-real omplex onjugate roots in Ci ∪ Ci. For notationalonveniene let R0 = Rk+1 = ∅. Note that, for all distint indies i, j ∈ {1, . . . , k},the intersetion of Ri and Rj is either empty or it onsists of two non-real omplexonjugate roots and j = i − 1 or j = i + 1. Moreover, if Ri ∩ Ri+1 6= ∅ then
Ri−1 ∩Ri = ∅ and Ri+1 ∩Ri+2 = ∅. So, for all indies i ∈ {1, . . . , k}, the set Ri iseither disjoint from all sets Rj , j 6= i, or there is exatly one set Rj suh that j 6= iand Ri ∩Rj 6= ∅.Let i ∈ {1, . . . , k}. If Ri is disjoint from all sets Rj , j 6= i, selet two distintelements from Ri that are both in Ci or both in Ci or both in Ci, and label them
αi and βi so that |βi| ≤ |αi|. If there is exatly one set Rj suh that j 6= i and
Ri ∩ Rj 6= ∅ then selet αi, βi, αj , βj ∈ Ri ∪ Rj as desribed in Figure 5.2 for thease j = i+1. Sine Ri∩Rj 6= ∅, at least one of the sets Ri and Rj has 3 elements,and the �gure shows how the roots are seleted depending on whether only Ri has
3 elements or only Rj or both Ri and Rj .

(c)(b)(a)

αj
βi = βj

αiβi = βj

αj

αi

βj

βi

αi

αj

Figure 5.2. Adjaent intervals with oiniding roots. Here,
j = i + 1. (a) |Ri| = 3 and |Rj | = 2. Note that |βi| ≤ |αi|and |βj | ≤ |αj | and αi, βi ∈ Ci and αj , βj ∈ Ci. (b) |Ri| = 2and |Rj | = 3. () |Ri| = 3 and |Rj | = 3. In Ci the root with thesmaller modulus is labeled βi and the other root αi; likewise for
Cj , βj and αj .By onstrution, the seleted roots α1, . . . , αk and β1, . . . , βk not only satisfy

βi 6∈ {α1, . . . , αi} and |βi| ≤ |αi| for all i ∈ {1, . . . , k} but also, for all i ∈ {1, . . . , k},both roots αi and βi are in one of the disks Ci, Ci, Ci, or, if i > 1, in the disk
Ci−1, so |αi − βi| < 21−h/

√
3. Now Theorem 5.4 implies

2(1−h)k3−k/2 >

k
∏

i=1

|αi − βi| ≥ 3k/2D1/2M−n+1n−k−n/2.

�Theorem 5.6. Let A be a non-zero squarefree integer polynomial of degree n ≥ 2with Eulidean norm d. Let h and k be as in Theorem 5.5, and let log = log2. Then(1) k ≤ n, and



NEW BOUNDS FOR THE DESCARTES METHOD 13(2) (h− 1)k < (n− 1) log d + (k + n/2) logn− k log 3, and(3) h ≤ (n− 1) log d + (n/2 + 1) log n− log 3.Proof. Assertion (1) holds due to assertion (1) of Theorem 5.5. To show asser-tion (2), onsider assertion (2) of Theorem 5.5, apply Remark 5.3, take loga-rithms, and multiply by −1. To show assertion (3), onsider assertion (2) andollet all terms involving k on one side to obtain k(h − 1 − log n + log 3) <
(n − 1) log d + n/2 logn. If h − 1 − log n + log 3 < 0 then assertion (3) learlyholds. If, on the other hand, h − 1 − log n + log 3 ≥ 0 then k ≥ 1 implies
h − 1 − log n + log 3 < (n − 1) log d + n/2 logn, and hene assertion (3) holdsalso in this ase. �Remark 5.7. Theorem 5.6 is stronger than an earlier result of Krandik [23, Satz47℄, and the proof is shorter. The theorem implies the dominane relations hk �
n log(nd) and h � n log(nd) whih an be used in an asymptoti omputing timeanalysis of Algorithm 1 when the ring S of oe�ients is Z; the notation � is dueto Collins [8℄. 6. Normal CubisBy Theorem 3.8 any positive polynomial whose roots are in the one C is normal.By Theorems 3.4 and 3.6 the onverse holds for linear and quadrati polynomials.For ubi polynomials, however, the onverse is false. Indeed, the normal polyno-mial x3 + 5x2 + 16x + 30 has roots −1 ± 3i /∈ C. Theorems 6.1 and 6.2 togetherompletely haraterize the normal ubi polynomials.Theorem 6.1. Let A be a positive polynomial all of whose roots are real. Then Ais normal if and only if the roots are in the one C.Proof. If the roots of A are in the one C then Theorem 3.8 implies that A isnormal. Otherwise, A has a positive root. In this ase, var((x − 1)A(x)) > 1 byTheorem 2.2, and A is not normal by Theorem 3.3. �Theorem 6.2. Let A be a positive ubi polynomial whose roots are a and b ± icwhere a, b, c are real numbers. Then A is normal if and only if

a ≤ 0 and(6.1)
b ≤ 0 and(6.2)

c2 − 3b2 − 2ab− a2 ≤ 0 and(6.3)
c4 + 2b2c2 + 2abc2 − a2c2 + b4 + 2ab3 + 3a2b2 ≥ 0.(6.4)Proof. We may assume that A is moni sine A is normal if and only if A/ldf(A)is normal. Hene,

A = (x− a) · (x − (b + ic)) · (x− (b − ic))and thus
A = x3 + a2x

2 + a1x + a0where
a2 = −a− 2b,

a1 = 2ab + b2 + c2,

a0 = −ab2 − ac2.



14 WERNER KRANDICK AND KURT MEHLHORNBy de�nition, A is normal if and only if all of the following hold.
a2 ≥ 0,(6.5)
a1 ≥ 0,(6.6)
a0 ≥ 0,(6.7)
a2
2 ≥ a1,(6.8)

a2
1 ≥ a2a0,(6.9)

a2 = 0 ⇒ a1 = a0 = 0,(6.10)
a1 = 0 ⇒ a0 = 0.(6.11)Impliation (6.11) is redundant sine it follows from (6.9), (6.5) and (6.7). Also theimpliation (a2 = 0 ⇒ a1 = 0) in (6.10) is redundant sine it follows from (6.8)and (6.6). We note the pairwise equivalene of (6.1) and (6.7), (6.3) and (6.8), and(6.4) and (6.9). We will show that the onjuntion of (6.1)�(6.4) is equivalent tothe onjuntion of (6.5)�(6.11).Assume (6.1)�(6.4). Clearly, (6.1) and (6.2) imply (6.5) and (6.6). The pairwiseequivalenes yield (6.7), (6.8) and (6.9). The impliation (a2 = 0 ⇒ a0 = 0) in(6.10) holds sine a2 = 0 together with (6.1) and (6.2) implies a = 0.Assume now (6.5)�(6.11). The pairwise equivalenes yield (6.1), (6.3), and (6.4).To omplete the proof we have to show (6.2). By (6.1) we have a ≤ 0. If a = 0then (6.2) follows from (6.5), so we may assume a < 0. Next observe that if (a, b, c)satis�es (6.5)�(6.11) then, for any t > 0, (ta, tb, tc) satis�es (6.5)�(6.11). So we mayassume a = −1. Now (6.5) implies that b ≤ 1/2, and we need to show that b ≤ 0.Figure 6.1 illustrates the situation. If b = 1/2 then, by (6.5), a2 = 0, hene, by(6.10), a0 = 0, and thus a = 0, a ontradition. So, b < 1/2 and we need to show

b ≤ 0. Multiplying (6.3) and (6.6), and ombining the result with (6.4) we obtainthe inequalities
(c2−3b2 +2b−1)(−2b+ b2+ c2) ≤ 0 ≤ c4 +2b2c2 +2abc2−a2c2 + b4 +2ab3 +3a2b2.Colleting all the terms on the left hand side and fatoring yields

−2b(2b− 1)((b− 1)2 + c2) ≤ 0,so 0 < b < 1/2 is impossible, and we have b ≤ 0 as desired. �Figure 6.1 supports the notion that Theorem 6.2 reognizes more normal ubisthan Theorem 3.8. In an attempt to quantify the improvement we perform extensiveexperiments that use Algorithm 1.De�nition 6.3. The max-norm of a omplex polynomial A = anxn + · · ·+a1x+a0is |A|∞ = max(|an|, . . . , |a0|).Let m be a positive integer. The set of all normal ubi integer polynomials ofmax-norm m an be e�iently enumerated. For eah suh polynomial A,
A = a3x

3 + a2x
2 + a1x + a0,we want to deide whether all of its roots are in the one C. Sine A is ubi, either

A has one real root and two non-real omplex onjugate roots, or all the roots of Aare real. In partiular, if A has a multiple root then all the roots of A are real. Sineall the oe�ients of A are non-negative, all the real roots of A are non-positiveand, hene, in C. Using polynomial fatorization and Algorithm 1 we thus redue
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Figure 6.1. For a = −1 the points (b, c) that satisfy (6.1)�(6.4)are preisely the points in the left half-plane (6.2) between the twobranhes of the hyperbola (6.3) and outside of the �gure �8� (6.4).For a = 0 the solution set oinides with the one C whih is de-limited by the urve c2−3b2 = 0. The solutions of inequality (6.6)are preisely the points outside the irle.the deision problem to the ase where A is irreduible and has a single real root
α ∈ C. The other roots of A are the roots of the polynomial

B = A(x)/(x − α) = a3x
2 + (a3α + a2)x + (a3α

2 + a2α + a1).By Theorem 3.6, these roots are in C if and only if B is normal. We deide thelatter by performing arithmeti in Z[α] on the oe�ients of B.The omputing time of the deision method an be redued by a fator of about
3.5 by using �oating point omputations instead of exat arithmeti. Indeed, weuse the �oating point interval arithmeti tehniques desribed by Collins, Johnson,and Krandik [12℄, and we fall bak to exat arithmeti just in ase the �oatingpoint results are inonlusive. In our experiments we represent α by an isolatinginterval of width 2−40, and we use IEEE-double preision arithmeti [20℄. For allour inputs, the �oating point method is inonlusive only in ase the roots of B lieon the boundary of C; this situation ours when B is normal and (a3α + a2)

2 =
a3 · (a3α

2 + a2α + a1).Table 1 shows that only about 57 perent of the 2, 353, 361, 850 normal ubipolynomials we examined have all of their roots in the one C. It seems reasonableto expet smaller ratios when the experiment is arried out for polynomials of higherdegrees. The table also shows that we had to use exat arithmeti for relativelyfew polynomials.We an now generalize Theorem 3.9.Theorem 6.4. Let A(x) be a non-zero polynomial suh that A(x) = B(x) · C(x)where all the roots of B(x) are in the one C and C(x) is a produt of ubi poly-nomials eah of whose roots are as desribed in Theorem 6.2 then
var((x − α)A(x)) = 1 for all real α > 0.Proof. Theorems 6.1, 6.2, 3.7, and 3.3. �It is easy to state higher-degree analogues of Theorem 6.2. The analogous the-orems result in additional improvements of Theorem 3.9, but it is not lear how
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m N(m) C(m) C(m)/N(m) boundary
100 780708 445288 .57036 122
200 6232898 3558002 .57084 277
300 21019770 12004290 .57110 453
400 49814320 28450698 .57113 640
500 97252440 55564678 .57134 807
600 168075834 96011988 .57124 996
700 266842438 152459384 .57135 1140
800 398334336 227573618 .57131 1355
900 567119096 324020078 .57134 1766

1000 777890010 444469060 .57138 1695Table 1. For any positive integer m, let N(m) be the number ofnormal ubi integer polynomials with max-norm m, and let C(m)be the number of those normal ubi integer polynomials of max-norm m that have all roots in the one C. The ratios C(m)/N(m)are rounded to �ve deimal digits. The last olumn lists the numberof polynomials that have non-real roots on the boundary of C.the improvements an be used to obtain better general bounds for the Desartesmethod.Aknowledgement. We thank G. E. Collins for referenes [13℄ and [37℄, A. Eigen-willig for improvements of the presentation, M. Mignotte for referene [19℄ whihled us to referene [30℄, and D. G. Rihardson for developing a leak-free memorymanagement system for salib that allowed us to perform the experiments in Se-tion 6. The program qepad developed by H. Hong and others was used to onstrutthe example polynomials in Setions 4, 5 and 6 from sample points in a ylindrialalgebrai deomposition [9, 11℄, and to obtain the quanti�er-free formula in Theo-rem 6.2. The seond author aknowledges partial support by the IST Programme ofthe EU under ontrat IST-2000-26473 (ECG�E�etive Computational Geometryfor Curves and Surfaes). Referenes[1℄ A. A. Albert. An indutive proof of Desartes' rule of signs. The Amerian MathematialMonthly, 50(3):178�180, 1943.[2℄ Alberto Alesina and Massimo Galuzzi. A new proof of Vinent's theorem. L'EnseignementMathématique, 44:219�256, 1998.[3℄ Alberto Alesina and Massimo Galuzzi. Addendum to the paper �A new proof of Vinent'stheorem�. L'Enseignement Mathématique, 45:379�380, 1999.[4℄ James W. Anderson. Hyperboli Geometry. Springer-Verlag London, 1999.[5℄ Margherita Bartolozzi and Ra�aella Frani. La regola dei segni dall' enuniato di R. Desartes(1637) alla dimostrazione di C. F. Gauss (1828). Arhive for History of Exat Sienes,45(4):335�374, 1993.[6℄ G. E. Collins and J. R. Johnson. Quanti�er elimination and the sign variation method for realroot isolation. In International Symposium on Symboli and Algebrai Computation, pages264�271. ACM Press, 1989.[7℄ G. E. Collins and R. Loos. Real zeros of polynomials. In B. Buhberger, G. E. Collins, andR. Loos, editors, Computer Algebra: Symboli and Algebrai Computation, pages 83�94.Springer-Verlag, 2nd edition, 1982.



NEW BOUNDS FOR THE DESCARTES METHOD 17[8℄ George E. Collins. The omputing time of the Eulidean algorithm. SIAM Journal on Com-puting, 3(1):1�10, 1974.[9℄ George E. Collins. Quanti�er elimination for real losed �elds by ylindrial algebrai de-omposition. In H. Brakhage, editor, Automata Theory and Formal Languages, volume 33 ofLeture Notes in Computer Siene, pages 134�183. Springer-Verlag, Berlin, 1975. Reprinted(with orretions by the author) in: B. F. Caviness and J. R. Johnson, editors, Quanti�erElimination and Cylindrial Algebrai Deomposition, Springer-Verlag, 1998, pages 85�121.[10℄ George E. Collins and Alkiviadis G. Akritas. Polynomial real root isolation using Desartes'rule of signs. In R. D. Jenks, editor, Proeedings of the 1976 ACM Symposium on Symboliand Algebrai Computation, pages 272�275. ACM Press, 1976.[11℄ George E. Collins and Hoon Hong. Partial ylindrial algebrai deomposition for quanti-�er elimination. Journal of Symboli Computation, 12(3):299�328, 1991. Reprinted in: B. F.Caviness, J. R. Johnson, editors, Quanti�er Elimination and Cylindrial Algebrai Deom-position, Springer-Verlag, 1998, pages 174�200.[12℄ George E. Collins, Jeremy R. Johnson, andWerner Krandik. Interval arithmeti in ylindrialalgebrai deomposition. Journal of Symboli Computation, 34(2):143�155, 2002.[13℄ N. B. Conkwright. Introdution to the Theory of Equations. Ginn and Co., 1941.[14℄ J. H. Davenport. Computer algebra for ylindrial algebrai deomposition. Tehnial report,The Royal Institute of Tehnology, Department of Numerial Analysis and Computing Si-ene, S-100 44, Stokholm, Sweden, 1985. Reprinted as: Tehnial Report 88-10, Shool ofMathematial Sienes, University of Bath, Claverton Down, Bath BA2 7AY, England.[15℄ Thomas Deker and Werner Krandik. Parallel real root isolation using the Desartes method.In P. Banerjee, V. K. Prasanna, and B. P. Sinha, editors, High Performane Computing �HiPC'99, volume 1745 of Leture Notes in Computer Siene, pages 261�268. Springer-Verlag,1999.[16℄ Thomas Deker and Werner Krandik. Isoe�ieny and the parallel Desartes method. InG. Alefeld, J. Rohn, S. Rump, and T. Yamamoto, editors, Symboli Algebrai Methods andVeri�ation Methods, Springer Mathematis, pages 55�67. Springer-Verlag, 2001.[17℄ René Desartes. The Geometry. Dover Publiations, New York, 1954. Translated from theFrenh and Latin by D. E. Smith and M. L. Latham. With a fasimile of the �rst edition,1637.[18℄ Carl Friedrih Gauss. Beweis eines algebraishen Lehrsatzes. Journal für die reine und ange-wandte Mathematik, 3(1):1�4, 1828. Reprinted in: Carl Friedrih Gauss, Werke, vol. 3,Königlihe Gesellshaft der Wissenshaften, Dieterih, Göttingen, 1866, pages 65�70.[19℄ Viente Gonçalves. L'inégalité de W. Speht. Revista da Fauldade de Ciênias da Univer-sidade de Lisboa A�2nd series, 1:167�171, 1950.[20℄ The Institute of Eletrial and Eletronis Engineers, In., 345 East 47th Street, New York,NY 10017, USA. ANSI/IEEE Std 754-1985. An Amerian National Standard: IEEE Stan-dard for Binary Floating-Point Arithmeti, 1985. Reprinted as: ANSI/IEEE Standard 754-1985 for binary �oating-point arithmeti. ACM SIGPLAN Noties, 22(2):9�25, 1987.[21℄ J. R. Johnson. Algorithms for polynomial real root isolation. In B. F. Caviness and J. R.Johnson, editors, Quanti�er Elimination and Cylindrial Algebrai Deomposition, Textsand Monographs in Symboli Computation, pages 269�299. Springer, 1998.[22℄ J. R. Johnson and W. Krandik. Polynomial real root isolation using approximate arithmeti.In W. W. Kühlin, editor, International Symposium on Symboli and Algebrai Computation,pages 225�232. ACM Press, 1997.[23℄ Werner Krandik. Isolierung reeller Nullstellen von Polynomen. In J. Herzberger, editor,Wissenshaftlihes Rehnen, pages 105�154. Akademie Verlag, Berlin, 1995.[24℄ M[onsieur℄ E. Landau. Sur quelques théorèmes de M. Petrovith relatifs aux zéros desfontions analytiques. Bulletin de la Soiété Mathématique de Frane, 33:251�261, 1905.Reprinted in: Edmund Landau: Colleted Works, L. Mirsky, I. J. Shoenberg, W. Shwarz,H. Wefelsheid, editors, vol. 2, Thales Verlag, Essen, 1986, pages 180�190.[25℄ K. Mahler. An inequality for the disriminant of a polynomial. The Mihigan MathematialJournal, 11(3):257�262, 1964.[26℄ M. Marden. Ostrowski A. M.: Note on Vinent's theorem. Mathematial Reviews, 12(6):408�409, 1951.[27℄ M. Mignotte. An inequality about fators of polynomials. Mathematis of Computation,28(128):1153�1157, 1974.
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