NEW BOUNDS FOR THE DESCARTES METHOD

WERNER KRANDICK AND KURT MEHLHORN

ABsTrRACT. We give a new bound for the number of recursive subdivisions
in the Descartes method for polynomial real root isolation. Our proof uses
Ostrowski’s theory of normal power series from 1950 which has so far been
overlooked in the literature. We combine Ostrowski’s results with a theorem
of Davenport from 1985 to obtain our bound. We also characterize normal-
ity of cubic polynomials by explicit conditions on their roots and derive a
generalization of one of Ostrowski’s theorems.

1. INTRODUCTION

Polynomial real root isolation is the task of computing disjoint intervals, each
containing a single root, for all the real roots of a given univariate polynomial
with real coefficients. In the 1830s, Vincent [36] showed that polynomial real root
isolation can be performed using a test based on the Descartes Rule of Signs. The
test evaluates a condition that implies that a given interval contains a single root,
and another condition that implies that the interval does not contain any roots. If
neither condition is satisfied, the interval is bisected and each subinterval is tested
recursively. It is not obvious that Vincent’s method terminates.

In 1976, Collins and Akritas [10] proposed a method with a much better worst-
case computing time than Vincent’s method. We will refer to the improved method
as “Descartes method”. A study by Johnson [21] shows that the Descartes method
typically outperforms Sturm’s method and other methods for real root isolation.
Johnson’s findings are confirmed in experiments by Rouillier and Zimmermann [32,
Figures 2,3]. Recent versions of the Descartes method use floating point arith-
metic [22, 12, 33|, parallel computation [15, 16], or they minimize space require-
ments [33].

We give a new bound (Theorem 5.5) for the number of recursive subdivisions
in the Descartes method. Our proof uses Ostrowski’s theory [29] of normal power
series from 1950 which has so far been overlooked in the literature. We combine
Ostrowski’s results with a theorem of Davenport [14] from 1985 to obtain our bound.
We also characterize normality of cubic polynomials by explicit conditions on their
roots and derive a generalization (Theorem 6.4) of one of Ostrowski’s theorems.

The history of termination proofs starts in the 1830s with Vincent [36]. Alesina
and Galuzzi [2] present Vincent’s original proof in modern mathematical language
and provide extensive historical information on related earlier and later results. It
seems that Vincent’s method was forgotten until 1948 when Uspensky [34] mod-
ified Vincent’s proof and bounded the number of recursive steps required by the
method. In 1950, Ostrowski [29] used a result from his earlier work [31] to improve
Uspensky’s bound. Ostrowski’s contribution, though summarized in Mathematical
Reviews [26], was completely overlooked in later literature until it became acces-
sible through an electronic database [3]. When Collins and Akritas [10] improved
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Vincent’s algorithm in 1976 they based their analysis, later elaborated by Collins
and Loos [7], on Uspensky’s work. Collins and Johnson [6] improved the analysis
significantly, but also their result is strictly weaker than Ostrowski’s. Eventually,
one of Ostrowski’s theorems, the present Theorem 3.9, was independently rediscov-
ered by Alesina and Galuzzi [2, Corollary 8.2]. These authors give a concise and
direct proof, but their approach cannot be used to prove the stronger Theorem 6.4
of this paper.

In Section 2 we review the Descartes method. In Section 3 we present Ostrowski’s
theory of normal power series and strengthen one of his results that links normality
of polynomials and termination of the Descartes method (Theorem 3.3). We also
present Ostrowski’s sufficient condition on the roots of a polynomial to guarantee
normality (Theorem 3.8). We use these results in Section 4 to prove Theorem 4.6 on
the proximity of complex roots to those intervals on which the Descartes method
recurs. In Section 5 we combine Theorem 4.6 with Davenport’s root separation
theorem to obtain new bounds for the recursion tree of the Descartes method. In
Section 6 we use Theorem 3.3 to characterize the normal cubic polynomials by
explicit conditions on their roots. We gauge the extent of the improvement by
applying the Descartes method to 2.3 billion cubic polynomials. We use the new
result to prove Theorem 6.4—thus strengthening Theorem 3.9.

2. REVIEW OF THE DESCARTES METHOD

Definition 2.1. Let a = (ag,...,a,) be a finite sequence of real numbers. The
number of sign variations in a, var(a), is the number of pairs (4,j) with 0 < i <
j < nand aa; < 0and 41 = -+ = aj—1 = 0. Let A be the polynomial

ap +arx + - + apx”.

var(a).

The number of coefficient sign variations in A, var(A), is

Theorem 2.2. [Descartes Rule of Signs| For any non-zero real polynomial the
number of coefficient sign variations exceeds the nmumber of positive real roots—
counting multiplicities—by a non-negative, even integer.

Proof. Let A(x) be a non-zero real polynomial. If 2% is the highest power of z that
divides A, the polynomial A/z* has the same number of coefficient sign variations
and positive real roots as A, and its constant term is non-zero. Hence, we may
assume that the constant term of A is non-zero. Let ag be this constant term, let
n be the degree of A, and let a,, be the leading coefficient. Let v = var(A4), and let
p be the number of positive real roots of A, counting multiplicities.

To show that v and p have the same parity we use an argument given by
Conkwright [13]. Let z1,..., 2, € C be the roots of A. Then

(2.1) Alx) =an(z —21) - (x — zn),

and hence ag = A(0) = (—1)"anz21 ... z,. Since the non-real roots occur in complex
conjugate pairs, their product is positive. The product of the positive roots is
likewise positive, no root is zero since ag is non-zero, and the product of the negative
real roots has the sign (—1)"7P. It follows that the sign of ag/a, is (—1)?. Hence
v and p have the same parity.

Gauss [18] proves v > p by showing that, for any non-zero real polynomial B(x)
and any positive real number a,

(2.2) var(B) < var((z — a) - B).
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So, in equation (2.1), every positive root of A contributes at least one sign variation.

To show inequality (2.2) let B = b,z™ + -+ + by, let a > 0, and let C' =
(x —a)B = cpy12™ + -+ ¢o. If var(B) > 0 let (i,7) be an index pair that
contributes to var(B). Then 0 < i < j < m and b;b; < 0 and either j =i+ 1 or
bit1 =0. If 0 : R — {—1,0,1} denotes the sign function then

O’(CH_l) == O'(bl — abi+1) = O'(bl)
So, if (i1,71),- .-, (ik,jr) are all the index pairs that contribute to var(B), and if
0<i <1 < < < Jk <m, then
Var(Ci 41y - -+ Cip4+15 Cmt1) = var(bi,, ..., bi,, b)) = var(B).
Now let i be the smallest index for which b; # 0. Then 0 < i < 47 and o(¢;) =
o(—ab;) = —o(b;)) = —o(b;;) = —o(ci;+1), and so
var(C) > var(ci, Ciy+1, - -+ Cip+1, Cm+1) = 1 + var(B).

If var(B) = 0 then var(C) > var(c¢;, ¢m+1) = var(—ab;, by,) > 1. O

Theorem 2.2 is named after Descartes although he merely stated that there can
be as many positive real roots as there are coefficient sign variations [17]. The
assertion that there are at least as many sign variations as there are positive roots
was first stated and proved by Gauss [5]. Some modern authors [1, 37| seem to be
unaware of Gauss’s contribution.

Theorem 2.3. Let A be a non-zero real polynomial. If var(A) = 0 then A does not
have any positive real root; if var(A) = 1 then A has ezactly one positive real root.

Definition 2.4. Let S be a subring of R with 1 € S. We define three polynomial
transformations S[x] — S[z]. Let A = a,z™ 4+ -+ + a1 + ap be an element of
Sl].

(1) The homothetic transformation of A is the polynomial
H(A) =ana™ + Qap_12" 4+ 2" g + 2%y
(2) The Taylor shift by 1 of A is the polynomial

T(A) =byx™ + -+ bz +by

where b, = 377, ( i: )aj for k € {0,...,n}.

(3) The reciprocal transformation of A is the polynomial
R(A) =apz" + -+ ap—12 + an.

Note that R(A) = 0 if and only if A = 0, and that = | A implies R(A4) =
R(A/x).

The Descartes method can now be stated as Algorithm 1.

To show that Algorithm 1 is partially correct we relate the roots of transformed
real polynomials to the roots of the untransformed polynomials. Since we want to
use bijective mappings we add the point co to C.
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Algorithm 1 [Descartes method] This version is specialized to root counting in
I =(0,1). The algorithm can easily be modified to perform real root isolation.
int roots_in_ I (A € S[z], A non-zero and squarefree, S C R subring, 1 € 5)
d — var(TR(A));
if d <1 return d;
B H(A); C — T(B);
if 2|C m <« 1;elsem < 0; Note: m =1 if and only if A(1/2) =0.
return roots_in_ I (B) + m + roots_in__I (C);

Definition 2.5. Let C = CU {oc} be the Riemann sphere. We define three

functions C — C.
he) = {2/2, if z€C;

oo, if z=c0.

z+1, ifzeC;
=) = {oo, if 2 = oo.

1/z, if z€ C—{0};
r(z) = oo, ifz=0;

0, if z = 0.

The functions h, ¢, and r are elements of the group of Mdbius transformations.
These are all functions C — C given by
az+b
—
cz+d
with a,b,¢,d € C and ad — be # 0. Anderson [4] explains how formula (2.3) handles

division by 0 and evaluation at oo; he also discusses the properties of Mdbius
transformations.

(2.3)

Remark 2.6. Let A € R[z], and let n = deg(A); we adopt the convention that
deg(0) = 0 and 1dcf(0) = 0. Then, for all z € C,

H(A)(2) 2" A(h(2)),

T(A)(z) = Alt(2),
2"A(r(z)), if z#0;
RA)(=) = { ldef(A),  ifz=0.
So, for all z € C,
TH(A)(z) = 2"A((hot)(2)),

(t(2)"A((r o t)(2)), if 2 # —1;
TR(A)() = { 1dcf(A), if 2= 1.

Remark 2.7. By Remark 2.6, the following statements hold for all polynomials
A € R[z].
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(1) The function h maps the roots of H(A) one-to-one onto the roots of A;
in particular, the roots of H(A) in (0,1) correspond to the roots of A in
(0,1/2).

(2) The function ¢ maps the roots of T(A) one-to-one onto the roots of A.

(3) The function r maps the non-zero roots of R(A) one-to-one onto the non-
zero roots of A; the roots of R(A) are non-zero unless A = 0.

(4) The function h ot maps the roots of TH(A) one-to-one onto the roots of
A; in particular, the roots of TH(A) in (0, 1) correspond to the roots of A
in (1/2,1).

(5) The function r o t maps those roots of TR(A) that are different from —1
one-to-one onto the non-zero roots of A; the roots of TR(A) are different
from —1 unless A = 0. The positive real roots of TR(A) correspond to the
roots of A in (0,1).

Observations (1), (4), and (5) of Remark 2.7 combined with Theorem 2.3 prove

the partial correctness of Algorithm 1.

3. OSTROWSKI’'S THEORY

Definition 3.1. A power series

—+oo
E akzk

k=—oc0
with non-negative real coefficients is normal [31] if

(1) a2 > ax—1ak+1 for all indices k, and
(2) ap > 0 and a; > 0 for indices h < j implies ap41,...,a;—1 > 0.

In 1950, Ostrowski linked the normality of a polynomial and the Descartes rule.
He stated his result [29, Lemma 1] for polynomials all of whose coefficients are
positive. Generalizing slightly we show in Theorem 3.3 that it suffices to require
that the leading coefficient be positive.

Definition 3.2. A polynomial with real coefficients is positive if its leading coeffi-
cient is positive.

Theorem 3.3. A positive polynomial A(x) is normal if and only if var((z —
a)A(z)) =1 for all positive real numbers a.

Proof. (i) Let A(z) be positive and normal, and let « be a positive real number.
There is a non-negative integer m such that A(x) = B(z)-2™ where B(x) is normal
and all the coefficients of B(z) are positive. Let B(z) = bpa™+---+ b1z +by. Then

b1 > bn—2 >0 > b_O
bn o bnfl o - bl
and hence
bn—l bn—2 bO
—a> o> > 29
e N T
Since also b, > 0 and —aby < 0, the polynomial

bnf 1
bn

(x—a)B(z):bn:c”+1+bn( —a)x”+~~+b1(z—ofoz)zfozbo

1
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has exactly 1 coefficient sign variation. And so,
1 =var((x — a)B(x)) = var((x — a)B(x) - ™) = var((z — a) A(x)).

(ii) Conversely, let A(z) be positive but not normal. There is a non-negative inte-
ger m such that A = B(z)-2™ where B(x) has a non-zero constant term. Moreover,
the polynomial B(x) is positive and not normal—and hence non-constant. For any
real number « let C(®)(z) = (2 — a)B(x). Then var((z — a)A(x)) = var(C(®)(z))
and it suffices to find a positive number « such that var(C(®)(x)) # 1.

Let B(xz) = bpa™ 4+ -+ + bix + bg. Then n > 1 and b, > 0 and by # 0. Let

Y

O (x) = cffﬁl:c”“ too+ 2 4+ M Then ¢§ = —ab, ¢ = b1 — aby, for
1<k<mn,and %, =b,.

If var(B(z)) > 2 choose « so small that, for all k¥ with 1 < k < n, the signs of
cgf) and by,_; are equal whenever by_; # 0; then var(C(®)(z)) > var(B(z)) > 2.

If var(B(z)) = 1 the polynomial B(z) has exactly one positive real root by the
Descartes rule. So, for any o > 0, the polynomial C(®) () has two positive real
roots, and, again by the Descartes rule, var(C(®) (z)) > 2.

Finally, assume var(B(z)) = 0. Then, since b, > 0, all the coefficients of B(x)
are non-negative. If all the coefficients of B(x) are positive, then, since B(z) is not
normal, there is an index k with 1 < k < n — 1 such that 0 < by /bg+1 < bg—1/bs.
Choose « such that by /bg+1 < a < bg—1/bg. Now a > 0 and cff_fl =b, > 0,
cffjr)l = by — abry1 < 0 and cgf) = by_1 — aby, > 0, and hence var(C(®)(z)) > 2.
If not all the coefficients of B(z) are positive, there is a zero-coefficient. Let by be

,(cojr)l < 0. Since by > 0 there is an
index j < k such that ;11 = 0 and b; > 0; then cg-i)l > 0. Now c((Ja) < 0 implies

var(C(®)(z)) > 2 also in this case. O

the zero-coefficient with the highest index; then ¢

By Theorem 3.3, the Descartes rule will reveal the existence of a single positive
root of a positive polynomial if the other—possibly non-real—roots «aq,...,a,_1
are such that

(z =) (z = an)

is a normal polynomial.

Theorem 3.4. A positive linear polynomial is normal if and only if its root is
negative or zero.

Proof. Let A be a positive linear polynomial, and let « € R be its root. Then there
is a positive real number a such that A(z) = a(z — @) = ax — ac. Now A is normal
if and only if —aa > 0, that is, if and only if o < 0. O

Definition 3.5. Let
C= {aJrib’agOand b < |a|\/§} .

For an illustration see Figure 4.1(a); the cone contains its bordering rays and
the vertex 0.

Theorem 3.6. A positive quadratic polynomial is normal if and only if its roots
are elements of the cone C.



NEW BOUNDS FOR THE DESCARTES METHOD 7

Proof. Let A be a positive quadratic polynomial, and let ¢ > 0 be its leading
coefficient.

If the roots of A are complex conjugates a + ib and a — ib with real numbers a, b
then A(z) = ¢(z — (a +1ib))(z — (a — ib)). Now A(z) = ca? — 2acz + ¢ (a® + b?) is
normal if and only if —2ac > 0 and c(a® + %) > 0 and (—2ac)? > c¢-c(a® +b?), that
is, if and only if @ < 0 and 4a? > a? 4 b2, or, equivalently, if and only if a +14b € C.

Otherwise, the roots of A are real numbers « and (3, and we have A(zx) =
c(z—a)(z—p) = cx®—c(a+p)z+caf. Now A is normal if and only if —c(a+3) > 0
and caf8 > 0 and (—c(a + 3))? > ¢ caf, that is, if and only if o + 3 < 0 and
af >0 and (a + 3)% > af, or, equivalently, if and only if o, 8 < 0. O

In Section 6 we will characterize normal cubic polynomials. The “if’-direction
of Theorems 3.4 and 3.6 can be generalized to polynomials of any degree using
an earlier result of Ostrowski. Ostrowski showed in 1939 that the product of two
normal series, if it exists, is normal [31]. In 1950, he gave a simpler proof for the
case of polynomials [29].

Theorem 3.7. The product of two normal polynomials is normal.

Proof. Let A = > ;" apz" and B = > im0 bjz? be normal polynomials. Any
normal polynomial can be written as P - 2* where k is a non-negative integer and
P is a normal polynomial and all the coefficients of P are positive. Hence it suffices
to consider the case where all the coefficients of A and B are positive.

Let C =A-B= ZZ:FO" cpxh. Write ¢, = >, anbi—p, where h and k range over
the set of all integers and all aj, with h ¢ {0,...,m}, all b; with j ¢ {0,...,n}, and
all ¢, with k ¢ {0,...,m + n} are taken as zero. Clearly, all the coefficients of C
are positive; it remains to show that ¢? — cx_1ck41 > 0 for all k.

Using the following decomposition of the set of summation indices

{(h,j)eZ? |h>j}={(+1Lh-1)€Z® | h<j}U{(h,h—1) € Z}
we obtain, for any index k,

2
Cr — Ck—1Ck+1
= E ana;br_pbr_; + E ana;bp—pbir—;

h<j h>j
- g anaiby_py1br_j_1 — g anajby_py1br_j_1
h<j h>j
= g ana;bg_pbr_j; + E aj410n—1bp—j_1bp_py1 + E anap—1bk_nbp_nt1
h<j h<j h
- E apajbr_py1br—j-1 — E ajr1ap—1bg—jbp_p — E anap—1bg—hy1br—n
h<j h<j h
= E (ana; — ap—1aj41)(bk—jbp—n — bo—j—1bp—h+1),
h<j
that is,
2
(3.1) Cp — Ck—1Cky1 = g (ana; — ap—10j41)(br—jbr—n — br—j—1bgp—n41)-

h<j
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Since A is normal and ao, ..., a,, are positive, one has
Ay — A — Q

moL > S s> 20

Qm Gm—1 ai

and hence apa; —ap—1a541 > 0 for all A < j; the analogous statement holds for the
coefficients of B. Hence each summand on the right hand side of equation (3.1) is
non-negative, and thus ci — Cg—1¢k+1 > 0 for all k. [l

Theorem 3.8. If the roots of a positive polynomial are in the cone C then the
polynomial is normal.

Proof. Let A be a positive polynomial all of whose roots are elements of the cone
C. The complete factorization of A over the field of real numbers is a product of
linear and quadratic factors. We may assume that all these factors are positive.
Since all the roots are in the cone C, Theorems 3.4 and 3.6 apply, and each factor
is normal. Thus, by Theorem 3.7, the polynomial A is normal. (]

Of all the theorems in this section, we will invoke only Theorem 3.9 in Sections 4
and 5.

Theorem 3.9. If the roots of a non-zero polynomial A(xz) are in the cone C then
var((z — a)A(z)) = 1 for all positive real numbers a.

Proof. Theorems 3.8 and 3.3. O

4. THREE CIRCLES

By Theorem 3.9, Algorithm 1 will stop calling itself when it encounters a polyno-
mial TR(A) that has exactly one positive root and whose other roots are elements
of the cone C. We want to state this condition in terms of the roots of the polyno-
mial A. Since A is non-zero, Remark 2.7 (5) implies that the function r o ¢t maps
the roots of T R(A) one-to-one onto the non-zero roots of A. But much more is true
since r ot is a M&bius transformation.

Remark 4.1. Anderson [4] reviews some properties of Mobius transformations.
These transformations are homeomorphisms of the Riemann sphere C = C U {oo}
that map circles in C to circles. In particular, circles and lines in C are mapped
to circles and lines. To identify the image of a given circle or line K under a given
Mabius transformation it suffices to select three distinct points on K, to compute
their images under the transformation, and to determine the unique circle or line L
that contains those images. The sets C — K and C — L each have exactly two con-
nected components. Each component of C — K is mapped to a different component
of C — L since Mobius transformations are homeomorphisms of C. By applying
the transformation to a single point in C — K one can determine the image of each
component of C — K.

Definition 4.2. We define three circular disks.

- {.ecC |z7(1/27i\/§/6))\<\/§/3},
= {:zecC ]z—(1/2+i\/§/6)]<\/§/3},
= {zec |z—1/2|<1/2}.

Q Qlla



NEW BOUNDS FOR THE DESCARTES METHOD 9

Remark 4.3. The Mébius transformation r o ¢ maps the cone C one-to-one onto
C — (C U ) and the half-plane {z € C|Re(z) < 0} one-to-one onto C — C. Both
statements can be verified using the method described in Remark 4.1.

Figure 4.1(a) shows the cone C. Figure 4.1(b) shows the boundaries of the open
disks C and C. Figure 4.1(c) shows how the Mdbius transformation r operates on
the boundary of C. If z traverses the boundary of C clockwise from 1 towards 0,
the reciprocal 7(z) traverses the ray {1 — s+ v/3si|s > 0} upwards starting at 1.
Similarly, if z traverses the boundary of C' counterclockwise from 1 towards 0, the
reciprocal r(z) traverses the ray {1 — s — /3si|s > 0} downwards starting at 1.
The point z = 0 is mapped to r(0) = co ¢ C. Thus the figure illustrates how the
function t~! o7 = (r o t)~! maps C — (C U C) one-to-one onto C.

(a) (b) (c)

FIGURE 4.1. (a) A positive quadratic polynomial is normal if and
only if its roots are in the cone C. (b) If a polynomial A has
a simple root in the interval (0,1) and no other real or non-real
roots in C UC then var(TR(A)) = 1. (c) The image of C under 7.

Theorem 4.4. [Two—Circle Theorem] Let A be a real polynomial with a single,
simple root in the interval (0,1) and no other real or non-real roots in the open
disks C and C'. Then var(TR(A)) = 1.

Proof. Let A be as described. Then A # 0 and, by Remark 2.7 (5), the roots of
B = TR(A) are all different from —1. Therefore, the function (r o ¢)~! maps the
non-zero roots of A one-to-one onto the roots of B. Hence, B has a single, simple
root in (rot)71((0,1)) = (0,00), and its other roots are in (rot)~}(C — (CUC))
which equals C by Remark 4.3. Now Theorem 3.9 yields var(B) = 1. O

The two-circle condition is not necessary for the termination of the Descartes
method. Indeed, the polynomial A = 3223 — 1622 4+ 22 — 1 has the single, simple
root 1/2 in the interval (0,1), the pair of complex conjugate roots +i/4 inside the
open disks C and C, and var(TR(A)) = 1.

Our two-circle theorem improves upon a two-circle theorem of Collins and John-
son [6]. They use the disks D; = {z € C| |z| <1} and Dy ={z€C| |z - 1] < 1}
instead of C and C. But CUC is a proper subset of D; U D5, and the area of CUC
is exactly one-third of the area of D1 U Ds. Indeed, the M6bius transformation

maps D; U Dy onto CUC.
The following well-known theorem completes our converse of Theorem 2.3.

Theorem 4.5. If a polynomial A does not have any roots in the open disk C' then
var(TR(A)) = 0.
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Proof. Let A be as described. Then A # 0 and, by Remark 2.7 (5), the roots of
B = TR(A) are all different from —1. Therefore, the function (r o ¢)~! maps the
non-zero roots of A one-to-one onto the roots of B. But since the roots of A are all
in C — C, the roots of B have non-positive real parts by Remark 4.3. Hence, in the
decomposition of B into a product of a constant and monic linear and quadratic
factors, every linear factor is of the form x — o where a < 0, and every quadratic
factor is of the form (z — (a +1b))(x — (a —ib)) = 2? — 2ax + (a® + b?) where a < 0.
Since all the non-zero coefficients of all the linear and quadratic factors of B have
the same sign, the non-zero coefficients of B all have the same sign. O

When we bound the recursion depth of the Descartes method we will use Theo-
rem 4.6 which summarizes the preceding results.

Theorem 4.6. Let A be a real polynomial with var(TR(A)) > 2. Then either the
open disk C' contains at least two roots of A, or the interval (0,1) contains exactly
one real root and the union of the open disks C and C contains a pair of complex
conjugate roots.

Proof. If A has no root in C' then var(TR(A)) = 0 by Theorem 4.5. Thus, A has
at least one root in C. If this is the only root in C, the root is real and it is, in
fact, the only real root in the interval (0,1). Then C U C must contain a pair of
complex conjugate roots because otherwise var(TR(A)) = 1 by Theorem 4.4. O

5. BOUNDS FOR THE RECURSION TREE

For any input polynomial A the recursion tree of Algorithm 1 is a full binary
tree; Figure 5.1 shows an example. With every node of the tree we associate a pair
(B, I) consisting of a polynomial B and an interval I. With the root of the tree we
associate the pair (4, (0,1)). If an internal node is associated with the pair (B, I)
we associate one child with the pair (By,I;) where By, = H(B) and I, is the
open left half of I, and we associate the other child with the pair (Bgr, Ir) where
Br =TH(B) and Iy, is the open right half of I.

Remark 5.1. By Remarks 2.7 (1) and (4), the function h maps the roots of By, in
(0,1) onto the roots of B in Iy, and the function hot maps the roots of By in (0,1)
onto the roots of B in Ig. Thus, there is a sequence of elements of {h,t} whose
composition m maps the roots of B in (0, 1) onto the roots of the input polynomial A
in I. When m maps the interval (0, 1) onto the interval I it transforms at the same
time the disks C, C and C of Section 4. These disks are the circumscribing disks of
isosceles triangles with base (0,1) and base angles 45°, —60° and 60°, respectively,
as shown in Figure 5.1. But A, t and, hence, m are M6bius transformations and thus
preserve angles [4]. Moreover, the transformations h, ¢ and, hence, m map straight
lines in C onto straight lines in C and circles in C onto circles in C. Therefore, the
images m(C), m(C) and m(C) are the circumscribing disks of the isosceles triangles
with base I and base angles 45°, —60° and 60°, respectively. Figure 5.1 shows the
disks that are considered at the leaf nodes of a particular recursion tree.

The depth of the recursion tree can be bounded using Mahler’s root separation
theorem [25]. To obtain a bound that also covers the width of the tree we use
Davenport’s generalization [14] of Mahler’s theorem in a form due to Johnson [21].

Definition 5.2. Let A = a 2"+ - -+ a1x + ag be a non-zero polynomial of degree
n with complex coefficients and the complex roots aq, ..., a,. The Euclidean norm
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o~ c

45° 60° \'2
oKt 1 0 AT

@ () (© (d)

FiGURE 5.1. (a) Recursion tree for A = 27648z% — 4608022 +
252512 — 4321. (b),(c) Triangles with circumscribing disks C, C.
(d) Circumscribing disks for the intervals at the leaf nodes of the
tree in (a). Also shown are 1/3 and 2/3 £ -5/32, the roots of A.

§é,)

of Ais |Als = (a2 +---+a2)/?, the measure of Ais M(A) = |a,|-[]}—, max(1, o)),
and the discriminant of A is D(A) = a7 [, (i — o).

Remark 5.3. A theorem of Landau [24] implies M (A) < |A|2. The inequality was
independently rediscovered more than once. Ostrowski [30] summarizes its history
until 1961 and proves a generalization. Mignotte [27, 28] gives a short elementary
proof. The discriminant D(A) is known [35] to be a polynomial in the coefficients
of A; hence D(A) > 1if A is a squarefree integer polynomial.

Theorem 5.4. Let A be a non-zero complex polynomial of degree n with the roots
a1,...,0n. Let k be an integer, 1 < k < n, and let (B1,...,0k) be a sequence of
roots of A such that

Bi € {en,...,ait and |G| <lay| for all i€ {l,... k}.
Then
k
H |04i - 6z| > 3k/2D(A)1/2M(A)fn+1n7kfn/2.
i=1

Proof. See [21]. O

Theorem 5.5. Let A be a non-zero real polynomial of degree n, measure M, and
discriminant D. Let the integers h > 0 and k > 1 be such that k is the number of
internal nodes of depth h in the recursion tree of Algorithm 1 with input A where
depth is the distance from the root. Then

(1) kK <n, and

(2) 2(17h)k > 3kD1/2M7n+1n7k7n/2.

Proof. Let I} < ... < I be the open subintervals of (0,1) that are associated with
the internal nodes of depth h, and let Ay, ..., A be the corresponding polynomials.
The intervals have width 27", For every index i € {1,...,k} let C;, C, and C; be
the circumscribing disks of the isosceles triangles with base I; and base angles 45°,
—60° and 60°, respectively. By Remark 5.1 the roots of A; in the disks C, C' and
O, correspond, respectively, to the roots of A in the disks C;, C; and C;. But the
polynomials A; are at internal nodes of the recursion tree, so var(T'R(A;)) > 2, and
hence, by Theorem 4.6, either C; contains at least two roots of A, or I; contains
exactly one real root of A and C,; U C; contains a pair of complex conjugate roots
of A.

Assertion (1) holds since every disk C; contains at least one root of A, and the
disks C1, ..., C} are pairwise disjoint.
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Assertion (2) holds if A has a multiple root since D = 0 in that case. If all roots
are simple, define, for every index i € {1,...,k}, a set R; of roots of A in C, UC;.
If C; contains at least two roots of A, let R; = {s,t} where s and ¢ are either two
arbitrary distinct real roots in I; or two arbitrary non-real complex conjugate roots
in C;; otherwise, let R; = {r,s,t} where r is the unique real root in I;, and s and
t are two arbitrary non-real complex conjugate roots in C; U C;. For notational
convenience let Ry = Ri1+1 = (0. Note that, for all distinct indices 7,5 € {1,...,k},
the intersection of R; and R; is either empty or it consists of two non-real complex
conjugate roots and j = i — 1 or j = i + 1. Moreover, if R; N R;11 # 0 then
Ri_1NR; =0 and R;+1 N Riya = 0. So, for all indices 7 € {1,...,k}, the set R; is
either disjoint from all sets R;, j # ¢, or there is exactly one set R; such that j # i
and R; N R; # 0.

Let ¢ € {1,...,k}. If R; is disjoint from all sets R;, j # 1, select two distinct
elements from R, that are both in C; or both in C; or both in 61-, and label them
a; and §; so that |5;] < |ay|. If there is exactly one set R; such that j # ¢ and
R, N R; # 0 then select «;, 3;,a;,8; € R; UR; as described in Figure 5.2 for the
case j =i+ 1. Since R; N R; # (), at least one of the sets R; and R; has 3 elements,
and the figure shows how the roots are selected depending on whether only R; has
3 elements or only R; or both R; and R;.

@ (b) (©)

FicURE 5.2. Adjacent intervals with coinciding roots. Here,
j=1i+1 (a) |Ri = 3 and |R;| = 2. Note that |G| < |a]
and |ﬁ]| < |Oéj| and «;, 3; € 61 and aj,ﬁj S Qz (b) |Rz| =2
and |R;| = 3. (c) |[R;| = 3 and |R;| = 3. In C; the root with the
smaller modulus is labeled 3; and the other root «;; likewise for
Qj? 6j and Qy.

By construction, the selected roots aq,...,ar and (5q,..., 0, not only satisfy
Bi & {a1,...,a;} and |5;| < |ay| for all i € {1,...,k} but also, for all i € {1,...,k},
both roots a; and j3; are in one of the disks C;, C;, C;, or, if i > 1, in the disk
Ci_1, 50 |a; — Bi] < 217" /+/3. Now Theorem 5.4 implies

k
2(1—h)k3—k/2 > H |ai _ le Z 3k/2D1/2M—n+1n—k‘—n/2-
i=1

O

Theorem 5.6. Let A be a non-zero squarefree integer polynomial of degree n > 2
with Euclidean norm d. Let h and k be as in Theorem 5.5, and let log = log,. Then

(1) kK <n, and
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(2) (h—1)k < (n—1)logd+ (k+n/2)logn — klog3, and
(3) h<(n—1)logd+ (n/2+1)logn —log3.

Proof. Assertion (1) holds due to assertion (1) of Theorem 5.5. To show asser-
tion (2), consider assertion (2) of Theorem 5.5, apply Remark 5.3, take loga-
rithms, and multiply by —1. To show assertion (3), consider assertion (2) and
collect all terms involving k on one side to obtain k(h — 1 — logn + log3) <
(n—1)logd + n/2logn. If h — 1 —logn + log3 < 0 then assertion (3) clearly
holds. If, on the other hand, h — 1 — logn + log3 > 0 then & > 1 implies
h—1—1logn +log3 < (n — 1)logd + n/2logn, and hence assertion (3) holds
also in this case. O

Remark 5.7. Theorem 5.6 is stronger than an earlier result of Krandick [23, Satz
47], and the proof is shorter. The theorem implies the dominance relations hk <
nlog(nd) and h < nlog(nd) which can be used in an asymptotic computing time
analysis of Algorithm 1 when the ring S of coefficients is Z; the notation =< is due
to Collins [8].

6. NorMmAL CUBICS

By Theorem 3.8 any positive polynomial whose roots are in the cone C is normal.
By Theorems 3.4 and 3.6 the converse holds for linear and quadratic polynomials.
For cubic polynomials, however, the converse is false. Indeed, the normal polyno-
mial 2% + 522 + 162 + 30 has roots —1 + 3i ¢ C. Theorems 6.1 and 6.2 together
completely characterize the normal cubic polynomials.

Theorem 6.1. Let A be a positive polynomial all of whose roots are real. Then A
is normal if and only if the roots are in the cone C.

Proof. If the roots of A are in the cone C then Theorem 3.8 implies that A is
normal. Otherwise, A has a positive root. In this case, var((z — 1)A(z)) > 1 by
Theorem 2.2, and A is not normal by Theorem 3.3. O

Theorem 6.2. Let A be a positive cubic polynomial whose roots are a and b + ic
where a, b, ¢ are real numbers. Then A is normal if and only if

6.1 a < 0 and
(

6.2 < 0 and
(

(6.3) -3 —2ab—-0a> < 0 and
(6.4) 4 20%¢% 4 2abc® — A + bt + 2ab® + 34%H* > 0.

Proof. We may assume that A is monic since A is normal if and only if A/ldcf(A)
is normal. Hence,

A=(x—a) - (x— (b+ic)) - (x— (b—1ic))

and thus
A =2+ az® + a1z + ao
where
as = —a—2b,
a1 = 2ab+b+2

apg = —ab®—ac®.
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By definition, A is normal if and only if all of the following hold.

(6.5) a > 0,

(6.6) o > 0,

(6.7) aw > 0,

(6.8) as > ay,

(6.9) a% > asap,

(6.10) az=0 = a1 =ap=0,
(6.11) a1=0 = ao=0.

Implication (6.11) is redundant since it follows from (6.9), (6.5) and (6.7). Also the
implication (a2 = 0 = a1 = 0) in (6.10) is redundant since it follows from (6.8)
and (6.6). We note the pairwise equivalence of (6.1) and (6.7), (6.3) and (6.8), and
(6.4) and (6.9). We will show that the conjunction of (6.1)—(6.4) is equivalent to
the conjunction of (6.5)—(6.11).

Assume (6.1)—(6.4). Clearly, (6.1) and (6.2) imply (6.5) and (6.6). The pairwise
equivalences yield (6.7), (6.8) and (6.9). The implication (a2 = 0 = a9 = 0) in
(6.10) holds since az = 0 together with (6.1) and (6.2) implies a = 0.

Assume now (6.5)—(6.11). The pairwise equivalences yield (6.1), (6.3), and (6.4).
To complete the proof we have to show (6.2). By (6.1) we have a < 0. If a = 0
then (6.2) follows from (6.5), so we may assume a < 0. Next observe that if (a, b, ¢)
satisfies (6.5)—(6.11) then, for any t > 0, (ta, tb, tc) satisfies (6.5)—(6.11). So we may
assume a = —1. Now (6.5) implies that b < 1/2, and we need to show that b < 0.
Figure 6.1 illustrates the situation. If b = 1/2 then, by (6.5), az = 0, hence, by
(6.10), ap = 0, and thus a = 0, a contradiction. So, b < 1/2 and we need to show
b < 0. Multiplying (6.3) and (6.6), and combining the result with (6.4) we obtain
the inequalities

(> =302 +2b—1)(=2b+ b+ ¢?) < 0 < 4+ 20%¢% + 2abc® — a*c® + b* + 2ab® + 3a2b%,
Collecting all the terms on the left hand side and factoring yields
—2b(2b—1)((b—1)*> 4+ ¢?) <0,
so 0 < b < 1/2is impossible, and we have b < 0 as desired. O
Figure 6.1 supports the notion that Theorem 6.2 recognizes more normal cubics

than Theorem 3.8. In an attempt to quantify the improvement we perform extensive
experiments that use Algorithm 1.

Definition 6.3. The maz-norm of a complex polynomial A = a,z"+---+a1z+ag
is |Aloo = max(|an], ..., |aol).

Let m be a positive integer. The set of all normal cubic integer polynomials of
max-norm m can be efficiently enumerated. For each such polynomial A,

A = aza® + asx® + a1z + ao,

we want to decide whether all of its roots are in the cone C. Since A is cubic, either
A has one real root and two non-real complex conjugate roots, or all the roots of A
are real. In particular, if A has a multiple root then all the roots of A are real. Since
all the coefficients of A are non-negative, all the real roots of A are non-positive
and, hence, in C. Using polynomial factorization and Algorithm 1 we thus reduce
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2

FIGURE 6.1. For a = —1 the points (b, ¢) that satisfy (6.1)—(6.4)
are precisely the points in the left half-plane (6.2) between the two
branches of the hyperbola (6.3) and outside of the figure “8” (6.4).
For a = 0 the solution set coincides with the cone C which is de-
limited by the curve ¢ —3b? = 0. The solutions of inequality (6.6)
are precisely the points outside the circle.

the decision problem to the case where A is irreducible and has a single real root
a € C. The other roots of A are the roots of the polynomial

B = A(x)/(x — &) = azz? + (aza + az)z + (aza’ + aza + ap).

By Theorem 3.6, these roots are in C if and only if B is normal. We decide the
latter by performing arithmetic in Z[a] on the coefficients of B.

The computing time of the decision method can be reduced by a factor of about
3.5 by using floating point computations instead of exact arithmetic. Indeed, we
use the floating point interval arithmetic techniques described by Collins, Johnson,
and Krandick [12], and we fall back to exact arithmetic just in case the floating
point results are inconclusive. In our experiments we represent o by an isolating
interval of width 274°, and we use IEEE-double precision arithmetic [20]. For all
our inputs, the floating point method is inconclusive only in case the roots of B lie
on the boundary of C; this situation occurs when B is normal and (aza + az2)? =
asz - (a3a® + asa + ay).

Table 1 shows that only about 57 percent of the 2,353,361,850 normal cubic
polynomials we examined have all of their roots in the cone C. It seems reasonable
to expect smaller ratios when the experiment is carried out for polynomials of higher
degrees. The table also shows that we had to use exact arithmetic for relatively
few polynomials.

We can now generalize Theorem 3.9.

Theorem 6.4. Let A(x) be a non-zero polynomial such that A(x) = B(z) - C(z)
where all the roots of B(x) are in the cone C and C(x) is a product of cubic poly-
nomials each of whose roots are as described in Theorem 6.2 then

var((z — a)A(x)) =1 for all real o > 0.
Proof. Theorems 6.1, 6.2, 3.7, and 3.3. O

It is easy to state higher-degree analogues of Theorem 6.2. The analogous the-
orems result in additional improvements of Theorem 3.9, but it is not clear how



16 WERNER KRANDICK AND KURT MEHLHORN

m N(m) C(m) C(m)/N(m) boundary
100 780708 445288 .57036 122
200 6232898 3558002 57084 277
300 | 21019770 12004290 57110 453
400 | 49814320 28450698 57113 640
500 | 97252440 55564678 57134 807
600 | 168075834 96011988 57124 996
700 | 266842438 152459384 57135 1140
800 | 398334336 227573618 57131 1355
900 | 567119096 324020078 57134 1766
1000 | 777890010 444469060 57138 1695

TABLE 1. For any positive integer m, let N(m) be the number of
normal cubic integer polynomials with max-norm m, and let C(m)
be the number of those normal cubic integer polynomials of max-
norm m that have all roots in the cone C. The ratios C(m)/N(m)
are rounded to five decimal digits. The last column lists the number
of polynomials that have non-real roots on the boundary of C.

the improvements can be used to obtain better general bounds for the Descartes
method.
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