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Abstract

We describe a Descartes algorithm for root isolation of poiyials with real coefficients. It is assumed that
the coefficients of the polynomial can be approximated wiliitaary precision; exact computation in the

field of coefficients is not required. We refer to such coedfits as bitstream coefficients. The algorithm
is deterministic and has almost the same asymptotic cofityplag the randomized bitstream-Descartes
algorithm of Eigenwillig et al. (2005). Besides being dataristic, the algorithm is also somewhat simpler
to analyze.
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1. Introduction

The isolation of the real roots of a real polynomial is a fuméatal task in computer algebra
and numerical analysis: given a polynomialcompute for each of its real roots an interval
with rational endpoints containing it and being disjoirttrfr the intervals computed for the other
roots. There are many methods for isolating the real rootsrefal polynomial. One of the best
approachesto rootisolation is the Descartes method. hisegtion method based on Descartes’
Rule of Signs to test for roots. Its modern form goes back tbirdoand Akritas (1976), see
also Basu et al. (2006). It can be formulated to operate oynpohials given in the usual power
basis or in the Bernstein basis and works over any ring officirfts in which addition and sign
test (with result-, 0, and—) are computable.
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For integer coefficients, it is currently one of the most éffit methods (Rouillier and Zim-
mermann, 2004). We review it in Section 3 and give furtheemerfices to related and previ-
ous work along the way. For algebraic coefficients, the cbskact arithmetic may render the
method useless; hence it was suggested to replace the woaffiby small intervals and to ex-
ecute the method using interval arithmetic. The first prafm§Iohnson and Krandick, 1997;
Collins et al., 2002; Mourrain et al., 2004; Rouillier andrighermann, 2004) were incomplete;
they all had to resort to exact arithmetic in the ring of caéfits for some input polynomi-
als. In (Eigenwillig et al., 2005; Eigenwillig, 2008) it wahown that randomization leads to
a complete algorithm with no need for exact arithmetic. Théy sequirement is that coeffi-
cients can be approximated to any specified error boundowinly Eigenwillig et al. (2005);
Eigenwillig (2008), we call such coefficients bitstream fficeents. In (Eigenwillig et al., 2005;
Eigenwillig, 2008), the following result was showfo isolate the real roots of a square-free real
polynomial gx) = pnX"+ ...+ po with root separation (= the minimal distance between any two
roots) g, coefficientgpn| > 1 and|pi| < 27, the algorithm needs coefficient approximations to
O(n(log(1/0) + 1)) bits after the binary point and has an expected coQ(@f*(log(1/0) +1)?)
bit operationsThe cost statement ignores the cost of computing the appaiiins of the coef-
ficients with the required quality. The algorithm is readdisrandomized, but this increases the
running time by a factor or.

We describe a deterministic algorithm with running timénlogn + log(1/0) + 1)?); up
to the logn term, this is the same as for the randomized algorithms cériigylig et al. (2005);
Eigenwillig (2008). The precision requirement is the saméoa the randomized algorithm. Be-
sides being deterministic, the algorithm is also more tiveiand somewhat simpler to analyze.
Moreover, it works directly over the monomial basis and ¢hisrno need for conversion to the
Bernstein basis.

The roots of a polynomial depend continuously on its coefits. The algorithms of Eigen-
willig et al. (2005); Eigenwillig (2008) use this fact onlgdirectly; our new algorithm uses this
fact directly. It constructs a rational polynomigt from the input polynomiab by approxi-
mating the coefficients to some carefully chosen precisidhthen runs a variant of Descartes
algorithm onp* and determines isolating intervals for the rootpbfFinally, it returns suitably
enlarged intervals as isolating intervals for the rootg.of

This paper is organized as follows. In Section 2 we discusse@ work and in Section 3 we
review Descartes method. Section 4 discusses the extetosieal polynomials with bitstream
coefficients. Finally, Section 5 deals with a partial extento polynomials with multiple roots.

2. Related Work

Root isolation is a fundamental problem in computer algelm@ numerical analysis. For a
survey, we refer the reader to (Pan, 1997). On a top levele thee two kinds of algorithms.
Algorithms that always solve the task and algorithms thitestine task if some additional infor-
mation is available, e.g., approximations of the roots. iitie method (Aberth, 1988; Bini and
Fiorentino, 2000) is a representative of the second classaxcellent practical behavior. The ori-
gin of the first class of algorithms dates back to Descartesn$ Bundan, Fourier, and Vincent.
For modern accounts, see (Collins and Akritas, 1976), (Y889, Chapter 7), and (Tsigaridas
and Emiris, 2008). There are asymptotically faster alpari available (Pan, 2002; Schdonhage,
1982). However, the asymptotically faster algorithms arigeginvolved and no implementation
was attempted yet.



The bisection and continued fraction algorithms based @tértes’ rule of sign work well for
polynomials with integer coefficients. However, for polymials with nonrational coefficients,
the high cost of arithmetic makes the approaches lesstatgakt was therefore suggested (John-
son and Krandick, 1997; Collins et al., 2002; Mourrain et2004; Rouillier and Zimmermann,
2004) to approximate the coefficients by intervals and tointseval arithmetic instead of real
arithmetic. This led to Descartes solvers for polynomiaithwonrational coefficients or long
integer coefficients with improved efficiency. However,ratthods mentioned above have to re-
sort to exact arithmetic for some inputs, namely for inpots#hich certain decisions (counting
sign changes in a sequence of coefficients and determinggjdh of the polynomial at subdivi-
sion points) could not made reliably with interval arithimeThe first Descartes algorithm that
is guaranteed to work with approximate arithmetic was preskin (Eigenwillig et al., 2005;
Eigenwillig, 2008). Eigenwillig et al. termed their methbitistream-Descartes algorithm. It uses
randomization to overcome the problems mentioned above.chbice of random subdivision
points guarantees that the polynomial is “sufficiently &rgt subdivision points and that sign
changes in coefficient sequences can be counted with soffreikability. Kerber et. al. (Kerber,
2006; Eigenwillig et al., 2007) introduce a partial extemsio polynomials with multiple roots.
The variant works for polynomials with exactly one multipteot; it requires the numben of
distinct real roots and the vallke= deggcdp, p’) as additional inputs. The bitstream-Descartes
algorithm and its extension will become part of the algabkarnel of CGAL (CGAL, 2008) and
are key ingredients for the topology computation of algebptane curves (Eigenwillig et al.,
2007) and algebraic surfaces in space (Berberich et alg)200

In comparison to the randomized bitstream-Descartes rdetiuw new algorithm is determin-
istic, conceptually simpler, simpler to analyze, and hasosk the same running time. The gain
in simplicity stems from the fact that the algorithm runs aroacrete approximation of the input
polynomial and not on an interval polynomial that represetitpossible approximations of the
input polynomial with a certain precision.

3. Preliminaries

For a real rootz of p, let g(z p) be the minimal distance afto another root ofp. For a
nonreal rook of p, let a(z p) be the absolute value of its imaginary coordinate.dgt) be the
minimal value ofc(z p) over all roots ofp. For an interval = (a,b), letw(l) :=b—a be its
length or width.

Algorithm 1 shows the Descartes algorithm for isolating thets of a real polynomiap
in an open intervalp; see (Basu et al., 2006; Eigenwillig, 2008) for extensieatments and
references. The algorithm requires that the real rootsiafly are simple. If the requirement is
not met, the algorithm diverges. It maintains a Aadf active intervals. InitiallyA containslg,
and the algorithm stops as soonfeis empty. In each iteration, some intervat A is processed.
The action taken depends on the integg( p, | ), the outcome of Descartes’ rule of signs applied
to pandl.

Descartes’ rule of signs states that for a real polynomigl = ¥ g<j<, X", the number of
sign changes in the coefficient sequencg,dfe., the number of pairg, j) with i < j, gig; <0,
andgiy1 = ... = gj_1 = 0, is no smaller than and of the same parity as the number dgive@os
real roots ofg. Let var(g) denote the number of sign changes in the coefficient sequerge
If var(g) = 0, g has no positive real root, andvitir(q) = 1, q has exactly one positive real root.
The rule is easily extended to arbitrary open intervals hyitabkle coordinate transformation. Let



Algorithm 1 Descartes Algorithm for Isolating Real Roots

Require: p= Yo<i<n piX' is a real polynomial anth is an open interval. The real roots pfn
lp are simple.

Ensure: returns a lisiO of isolating intervals for the real roots @fin 1.

A:={lp} {list of active interval$
0:=0 {list of isolating interval}
repeat

|:= some interval irA; deletel from A;
if var(p,!) = 0 do nothing;
if var(p,l) =1 addl to O;
if var(p,l) > 2then
letl = (a,b) and sem:=(a+b)/2;
if p(m) =0 add[m,m] to O;
add(a,m) and(m,b) to A;
end if
until Ais empty
return O

| = (a,b) be an arbitrary open interval. The mappitg: (ax+b)/(x+ 1) maps(0, ») bijectively
onto(a,b) and hence the positive real roots of

q|(x)::(1+x)“-p<

correspond bijectively to the real roots pfin 1. We definevar(p,l) asvar(q;). The factor
(1+x)" in the definition ofg clears denominators and guaranteesdthét a polynomial.

Having definedvar(p,1), we continue our explanation of the algorithm. If there issign
change] contains no root op and we discard it. If there is exactly one sign changmntains
exactly one root op and hence is an isolating interval for it. We adtb the listO of isolating
intervals. If there is more than one sign change, we divideits midpoint and add the subin-
tervals to the set of active intervals. If the midpamnis a zero ofp, we add the trivial interval
[m, m] to the list of isolating intervals.

Correctness of the algorithm is obvious. Termination anth@exity analysis of Descartes
algorithm rest on the following theorem, see also Figure 1.

ax+b
x+1

Theorem 1 (Obreschkoff (1963); Obrechkoff (2003)).et p be a polynomial of degres, |

an open interval, and= var(p,l). If the Obreshkoff lent,_q (see Figure 1) contains at least
g roots (counted with multiplicity) ofo, thenv > q. If the Obreshkoff ared; (see Figure 1)
contains at mogq roots (counted with multiplicity) op, thenv < qg. In particular,

# of roots ofp in L, < var(p,l) < # of roots ofpin Ay.

Theorem 2 (Obreschkoff (1925); Ostrowski (1950)Consider a real polynomigl(x) and an

intervall = (a,b) with midpointm, = (a-+b)/2 and letv = var(p, ).

e (One-Circle Theorem) If the open disc bounded by the ci@gleentered atn and passing
through the endpoints dfcontains no root op(x), thenv = 0.

¢ (Two-Circle Theorem) If the union of the open discs boundgthke circle<C, andC, centered
atm +i(1/(2v/3))w(l) and passing through the endpointd @bntains precisely one root of
p(x), thenv= 1.
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Fig. 1. For anyg with 0 < g < n, the Obreshkoff disk€q andC for | have the endpoints dfon their
boundary; their centers see the line segnf@ii] under the angle@ = 2r1/(q+ 2). The Obreshkoff lenkg

is the interior 0fCqNC, and the Obreshkoff ared, is the interior ofCqUC,. Any point (except form and

b) on the boundary of\; seesa, b] under an angler/(q+2) (= half the angle at the center) and any point
(except fora andb) on the boundary df 4 seeqa, b] under anglet— 17/(q+ 2) (= half the complementary
angle at the center). We haklg C L1 C ... C Ly CLpandAg C Ay C ... C Ap—1 C An. The circlesCy
andC, coincide. They have their center at the midpoint.cfhe circlesC; andC; are the circumcircles of
the two equilateral triangles havings one of their edges. We cél| thetwo-circle regionof I.

The one-circle and two-circle theorems are special casEsadrem 1, namely: iy contains
no root ofp, thenvar(p,1) = 0 and ifA; contains exactly one root @ thenvar(p,|) = 1. Proofs
of the one- and two-circle theorems can be found in (Obrest925, 1963; Obrechkoff, 2003;
Ostrowski, 1950; Krandick and Mehlhorn, 2006; Eigenwil®)08). We also need the property
thatvar(p, 1) is subadditive, i.evar(p,l1)+var(p,l2) <var(p,|) whenevet; andl, are disjoint
subintervals of. For a simple self-contained proof, we refer the reader tggiwillig, 2008,
Corollary 2.27).

Theorem 3(Schoenberg (1934)) et p be a real polynomial. If the pairwise disjoint open inter-
valsJy, ..., J are subsets of the open intervathen

var(p,1) > Z var(p,J).

1<i</

Theorem 2 implies that no interviabf lengtha (p) or less is split. Such an interval, recall that
is is open, cannot contain two real roots and its two-ciretgan cannot contain any nonreal root.
Thusvar(p,l) < 1 by Theorem 2. We conclude that the depth of the recursienisreounded
by logw(lp)/o(p). The number of internal nodes in the recursion tree is bodityen times
the depth. This follows fronvar(p,l1) 4+ var(p,l2) < var(p,l), wherel; andl, are the two
subintervals of. Thus there cannot be more thaf? intervalsl with var(p,l) > 2 at any level
of the recursion.

The computation ofy from p at every node of the recursion is costly. It is better to stath
every interval = (a,b) the polynomialp, (x) := p(a+x(b—a)), whose roots irf0, 1) correspond
to the roots ofpin I. If | is split atm= (a+b)/2 intol, = (a,m) andl, = (m,b), the polynomials
associated with the subintervals are

() =2"p(x/2) and py,(x) =2"p((1+X)/2) = p,(1+X) .



Also, qi(x) = (1+x)"pi1(1/(1+x)). The polynomials,, p,, andg; can be obtained fror,
by n? additions. Also, if the coefficients are integral, the caédiits grow by @n) bits in every
node.

4. A Descartes Algorithm for Polynomials with Bitstream Codficients

We will extend the Descartes algorithm to polynomials willrcoefficients. It is assumed
that the coefficients can be approximated to any precisiangéheralize in two steps. In Sec-
tion 4.1, we assume that a lower bound for the root separatiche polynomial is known.
We remove this assumption in Section 4.2. We make use of & mfstichonhage that bounds
the change of roots in terms of a change of coefficients. Foolgnpmial p = 3 o<j<p pix,
|P| = So<i<n|pi| denotes the maximum norm pf

Theorem 4(Schonhage (1985)) et p= S p<j<n piX = pn [MN1<i<n(X—12) be a polynomial of de-
greenwith |z| < 1 for alli. Let u be a positive real witht < 2~ and letp*(X) = Y p<j<n PiX =
P Ma<i<n(X—Z") be such that

[p—p*[ <ulpl.
Then up to a permutation of the indices of tie

17—z <9YH.
4.1. Known Root Separation

The idea of our algorithm is now as follows. In order to isel#tte roots of a polynomial
P= EosignF’lx‘, we first determine an intervgj containing all real roots d®. It is well-known
that the modulus of any root &f is bounded by

B:_2max{ ﬂ; 0<i< n} .
[Pl

Let p(x) :=P(4B(x— 1/2)). Then all roots ofp are contained in the disc of radius 1/4 centered

at 1/2+ Qi. Isolating the real roots d® is equivalent to isolating the real roots pfWe achieve

the latter by isolating the real roots of in (0,1) for a suitable approximatiop* of p. i.e.,

|p* — p| < u|p| for a suitableu. Then corresponding roots pf andp are less than 91 apart.

What properties should have?

e 9/l < 1/4. This guarantees that the real rootguofare in(0,1). The condition is certainly
satisfied foru < 2=,

e 9yl < 0(p)/12; the choice of constant 12 will become clear below. Thargatees that real
roots ofp correspond to real roots @f and that nonreal roots @fcorrespond to nonreal roots
of p*. Moreovero(p*) > a(p) — 18y > (5/6)c(p) > 90/H.

We chooseu such that /i < min(o(p)/12,1/8).

We call a binary fractiora an e-approximationof a real numbex if |a— x| < €. With L =
[log1/e], we call [x2]27- and |x2L |27 e-approximatesof x. Of course, are-approximate
is an e-approximation. Moreover, iE < 1, ang-approximate has onliz bits after the binary
point and ife > 1, ane-approximate is an integer whose binary representatiors evith L
zeros. Ang-approximate of a polynomig is a polynomialp* such that each coefficiehtof

1 Of course, ife > 1, the lastL bits of every coefficient op* can be dropped.



Algorithm 2 Descartes Algorithm for a Real Polynomiaivith Root Separation Estimate

Require: pis a real polynomial with roots in the disc of radius 1/4 ceateat 32+ 0i, 0 <
o(p), u=min(2=™, (g/109"), € < u/(n+2)|p|, p* is ans-approximate op

Ensure: returns a lislO* of well-separated isolating intervals for the real rootptf

A:={(0,1)} {list of active interval$
O0*:=0 {list of isolating interval}
repeat

|:= some interval irA; deletel from A;
I =(a—2(b—a),b+2(b—a)), wherel = (a,b);
if var(p*,1") > 1 andvar(p*,1) > 1then
add(a,m) and(m,b) to Awherem= (a+h)/2;
if p*(m) =0 add[m,m| to O*;
else
if var(p*,l) =0 do nothing;
if var(p*,1) =1 addl to O;
end if
until Ais empty
return O

p* is an g-approximate of the corresponding coefficientmflf p* is an e-approximate ofp,
|p* —p| < (n+1)e. We lete < p|p|/(n+2). Then|p* — p| < p|p| and Theorem 4 applies.

For an interval, let i be its expansion by @i on both sides, i.e, if = (a,b), theni = (a—
9y/H,b+9yH) andifl = [m,m, theni’ = (m—9y/f, m+9y/H). If | is an isolating interval for a
real root ofp*, I contains the corresponding rootmfOur goal is to compute isolating intervals
for the roots ofp* such that their expansions are pairwise disjoint. €ganded intervalare
then isolating intervals for the roots pf

A simple modification of Algorithm 1 computes sufficientlypsgated isolating intervals for
the roots ofp*. We simply subdivide an interval as longear(p*,1™) > 2 andvar(p*,1) > 1,
wherel * is the interval of length &(1) enlargingl by 2w(l) on either sidé&, i.e., if| = (a,b),
1" =(a—2(b—a),b+2(b—a)). We calll* the extensionof | or anextended intervalWe
subdivide an intervalif var(p*,1*) > 1 andvar(p*,1) > 1. If | is not split, we havear(p*,1) <
var(p*,1*) < 1. We obtain Algorithm 2.

Lemma 5. Algorithm 2 splits only intervals with length greater tha(p*)/5.

Proof. Consider any intervdlwith w(l) < g(p*)/5. Thenw(l™) < o(p*) and hence either the
one- or the two-circle theorem appliesito. Thusvar(p*,1™) < 1 andl is not split. O

Let O* be the list of isolating intervals computed fgf. Any interval inO* is either a singleton
or has length at least(p*)/10. The expansions of the intervals@i are isolating intervals for
p. Let

O:={l1e0"} .

Lemma 6. Oiis a set of isolating intervals fqp.

2 We have no particular reason for enlarging by(B. Enlarging by¢w(1) for any fixed¢ € N would also work. We
have not tried to optimize the choice of



Proof. By our choice ofu, p and p* have the same number of real roots and each expanded
interval contains a real root gf. We need to argue disjointness.

Let| andJ be two intervals irD*. If | andJ are singletons, they have distance at leggt*)
from each other. Our choice of certainly guarantees(p*) > 18y/u and hence disjointness is
preserved after expanding both intervals.

So assume, that at least one of the intervals is not a simgls&y|. We may also assume
w(l) > w(J). Sincel andJ are inO*, both contain a real root gf*. If I would containd, it
would contain two real roots, and we would haxg(p*,1*) > 2. Sol would be split. Thug™
does not contaid and hence is disjoint frord (sincew(l) > w(J)). Thus the distance dfandJ
is at least 2(1). Also,

by our choice ofu and hencé andJ are disjoint. O

2w(l) >

We next turn to the complexity analysis. We first bound the sif the tree generated by
Algorithm 2 and then bound the bit complexity.

Theorem 7. Let T be the tree generated by Algorithm 2. Then

1
|T|:O<n+ Iog—) ,
zisa%otofp G(p,z)

where|T| denotes the number of nodesTof

Proof. The argument is a minor modification of an argument in (Eig#igvet al., 2006). The
nodes ofT at depthd correspond to intervals of lengthr. We usel, to denote the interval
corresponding to node If v is an internal nodesar(p*, 1) > 1 andvar(p*,ly) > 1. For a root
z=x-+iy of p* and depttd, thecanonical interval for z at depth @ such thak € [k2-9, (k+
1)2-9). Thenk = |x24]. We call a nodes of T canonicalif I, is canonical for one of the roots
contained in the two-circle figure of . If v is canonical, the parent afis too. The canonical
subtreel; of T consists of all internal canonical nodes. In order to boinedsize ofT, we show
first that|T| = O(|T¢|) and then estimate the size of the canonical subtree. Sirise binary
tree, it suffices to estimate the number of internal nodes.

We define a mapping from internal nodes to canonical intemndes. Let be any internal
node. Ifl contains a real root,is canonical and we mdpto itself. So assume thatontains no
real root. Thewar(p*,1) > 2, sincevar(p*,|) = 1 implies the existence of a real root contained in
I, and hence the two-circle figure bfontains a pair of complex roats-iy. LetK be the interval
of lengthw(l) that is canonical fok + iy. Since the projection of the two-circle figure onto the
real axis is contained in an interval of lendif3/2)w(1), K is either equal té or adjacent td.
The rootsx+ iy are clearly contained in the two-circle figurelofand hencear(p*,K) > 1. We
mapl to K. At most three intervals are mapped<dan this way.

We conclude that the number of internal nodes of the Descéme is at most 3 times the
number of internal nodes of the canonical subtree.

We will next estimate the size of the canonical subtree. @ens leafv of the canonical
subtree and let be a root ofp* corresponding to this leaf. If there are severails the root
with minimal value ofa(p*,z). Since the canonical subtree consists only of internal soflthe
Descartes tree, we havar(p*, 1) > 1 and hencer(p*,z) < w(l;") < 5w(ly). The depttdy is



equal to log ¥w(ly). Thusdy, <log5+log1l/c(p*,z). Since any root op* is associated with at
most one leaf of the canonical tree, we conclude

1 1
[Tl =0 n+ log——— ] =0(n+ log ,
‘ zisarozot ofp* U(p ’Z) zis a%otofp U(p’ Z)

where the last equality follows from the fact that corregting roots ofp and p* have distance
at most /11 from each other and thatgu < o(p)/12. O

The bound on the tree size readily translates into a boundehit complexity of Algorithm
2.

Theorem 8. Let g be be a polynomial withg,| > 1, and|q;| < 271 for all i.. If a quantityo with
v/0(q) < g < a(q) is known, the bit complexity of isolating the real rootsgpis

O(n*(t +log(1/a(9)))?) -

The coefficients of] need to be approximated with(@1 +log1/0(q))) bits after the binary
point.

Proof. All roots of g have modulus at mo&:=2". Hence the polynomigh(x) = q(4Bx— 2B)
has its real roots if1/4,3/4). The root separations are scaled B/&hd the coefficients of
have @nr) bits before the binary point. Als¢p| > 1. We sefu:=min((g/(4B))/1082-")" <
min(o(p)/1082~")" ande:=pu/(n+2) < u|p|/(n+2). Then

log(1/¢€) = O(n(t +log1/a(q))) -
So the coefficients gb* have length On(T +log1/0(q))). The size of the Descartes tree is

° <n+zis a%ot ofplogﬁ> -© (n+ n|09§) N O(n(T+ |09 1/0(q))) 7

and its depth is bounded by (@+log(1/a(q))). In each node of the tre@? additions are
performed and the coefficient size growsrbyso the total growth in coefficient lengthigt +
log1/0(q)), and hence the coefficient length i$rQr + log1/0(q))) at all nodes. We conclude
that the bit complexity is

O(|T|-n*n(t +log1/0(q))) = O(n*(t +log(1/a(q)))?) -
O

4.2. The Case of Unknown Separation

Algorithm 2 works fine as long as{@u < min(1/8,0(p)/12). How can we ensure this con-
dition (or a similar condition) or how can we learn that it i@hsatisfie®

Is the smallest length of an interval generated by the sugidivalgorithm a good indicator
of o(p)? For the standard Descartes algorithm (Algorithm 1) thisdsthe case, as the fol-
lowing example shows. Lgi(x) = (4x—4x+ 1+ 8?) = (2x—1—i5)(2x—1—id) with 6 ~ 0.
This polynomial has a pair of conjugate complex roots/@-id/2 and hence separatidn 2.
Howeveryar(p, (0,1)) =2 andvar(p, (0,1/2)) = var(p, (1/2,1)) = 0. Thus the algorithm ends
with intervals of length 12, although the separation may be arbitrarily small. Theasion is
different for Algorithm 2. For it, the length of the shortésterval produced by the algorithm is
a good indicator of the separation.



Fig. 2.1 = (a,b), I™ = (c,d), andLn denotes the Obreshkoff lehg(I ™). The height olL, at endpoint of
is at least, whereh = 2w(I)tan(r/(2(n+2))) > 2w(l)/(n+2) > w(l)/n. By Theorem lyar(p*,I ™) is
at least the number of roots pf in the rectanglé x [—hi, +hi].

Lemma 9. Algorithm 2 splits no interval of lengtlw(p*)/5 or less and refines at least one
interval to a length less tharo (p*).

Proof. We have already shown the first part. For the second part, st@gliish cases. (p*)
is equal to the distance of two real roots, ldte the separating interval computed for one of
them. Therw(l) < o(p*)/2 because otherwige would contain both roots ardvould be split.

If o(p*) is equal to the imaginary coordinate of a nonreal root, le¢ the canonical leaf for
this root. Thervar(p*,1™) < 1 and hencer(p*) > w(l)/n, see Figure 2. O

Assume now that we run Algorithm 2 with some valuguthat is known to satisfyr < 2~
but not known to satisfyu < (g(p)/108)", and the algorithm does not generate an interval of
length less than 12Qyf. Thenno(p*) > 120/ by Lemma 9 and henag(p*) > 120y/f and
o(p) > o(p*) — 18y/u > 108y/1. In other words, if the algorithm does not generate an imterv
of length less than 12Qy[i, we have a proof that the precondition forwas satisfied. Actually,
amore refined argument shows that we can use the threlshield 8n/[i. Let us call an interval
shortif its length is less thahg andlong otherwise.

Lemma 10. If Algorithm 2 generates no short interv&, is a set of isolating intervals for the
real roots ofp.

Proof. Since no shortinterval is produced, we haeg p*) > 18n/i1 and hencer (p*) > 18\/1.
Since corresponding roots pfandp* are less than 91 apart,p andp* have the same number
of real roots. Also, each interval id contains a real root gd. It remains to argue disjointness of
the expanded intervals.

Let| andJ be two intervals irO*. If | andJ are singletons, they have distance at leggt")
from each other. By the above(p*) > 18y/1.

So assume, that at least one of the intervals is not a simgls&yl. We may also assume
w(l) > w(J). Sincel andJ are inO*, both contain a real root gf*. If I would containJ, it
would contain two real roots, and we would harg(p*,17) > 2. Sol would be split. Thug™
does not contaid and hence is disjoint frord (sincew(l) > w(J)). Thus the distance dfandJ
is at least (1). Also, | is long and hencw/(l) > 18y/u. O

Algorithm 3 shows the Descartes algorithm for a real polyramwith bitstream coefficients.
It embeds Algorithm 2 into a loop that determines an appetpwvalue ofu. We initialize u to
2=, In any iteration, we run Algorithm 2 on aapproximatep* of p, wheree < u|p|/(n+2),
and start interval0, 1). If a short interval is produced, we squareand repeat. Otherwise, we
return the expanded versions of the isolating intervalg‘oHow small cary become?
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Algorithm 3 Descartes Algorithm for Real Polynomials

Require: p= Yo<i<n pix and all roots ofp lie in a disc of radius 1/4 centered at2l+ 0i. Real
roots are distinct.

Ensure: returns isolating intervals for the real rootsyf

U= 2—7n;
while (true) do
chooses < u|p|/(n+2) and letp* be ans-approximate op;
run Algorithm 2 onp* and start interval = (0, 1); //we do not guarantee < (o(p)/108)"
if the algorithm does not produce a short interttan
exit from the loop;

else
u=p
end if
end while

returnO:= { ;1 € 0*}

Lemma 11. Algorithm 3 stops with

uzmm<27m(%§%>m>.

Proof. If the algorithm stops in the first iteration, it stops with= 2~"". So assume that the
algorithm performs more than one iteration. By Lemma 9, teriral of length less thaoi(p*) /5

is split. Thus, if an iteration with a particular value pfis not the last, we must have g >
o(p")/5 orp > (o(p*)/(90M)"

Consider now any iteration with < (g (p)/(100n))" < (a(p)/200". Theno(p*) > o(p) —
181 > (9/10)a(p) and henceu < (o(p*)/(90n))". Thus the iteration must be the last and
thereforeu > (o (p)/(10n))" in the next to last iteration. Singeis squared from one iteration
to the next, we havg > (g (p)/(100n))?"in the last iteration. O

In order to determine the bit complexity of Algorithm 3 weltal the same approach as for
Algorithm 2, that is, we will first estimate the size of the oaical subtree (for the definition
see the proof of Theorem 7). Consider a leaf the canonical subtree and lebe a root ofp*
corresponding to this leaf. If there are several zlbe the one with minimal value af(p*,2).
The leafv is eitherregular, that is, the extended intervals of its children exhibit aistrone sign
variation, orforced that is, we would get a short interval if we further subdand

Consider a regular leaf first. Theris an internal node of the Descartes trea(p*, 1) > 1
and thereforer (p*,z) < w(ly") < 5w(ly). The deptid, is equal to logl/w(ly)) andw(ly) > Lo.
Thusdy < log5-+log1/ maxLo, o(p*,z)). Next consider a forced leaf. Its interval has length at
most 2 and thuso(p*,2) < w(ly") < 5w(ly) < 10Lg. The depthd, is equal to log 1L, and
hencedy < log 10+ log1l/maxLo, o(p*,2)). Since any root op* is associated with at most one
leaf of the canonical tree, we conclude

1
T =O| n+ log————— | .
’ zisarozotofp* max(Lo,o(p*,2))
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We next argue that we may replapé by p in the expression above. Fix a correspondence
between the rootg’ of p* and the rootg; of p such thaiz' —z| < 9y/u. Thena(p*,z’) > Lo
implieso(p,z) < 20(p*,z) ando(p*,z) < Lo implieso(p,z) < 2Lo. Thus we may replace
p* by p in the bound above. The following Lemma summarizes the dson.

Lemma 12. In any iteration, the size of the Descartes tree of Algorithis

1
Ofn+ log—————— |,
( zisa%otofp ma)((LOvG(va))>
wherelo = 18ny/.

Now again, letq be a polynomial withign| > 1 and|g;| < 27~ for all i. All roots of g have
modulus at mosB:=27. Sop(x) = q(4Bx— 2B) has its real roots if1/4,3/4). Also root sepa-
rations are scaled byBland the coefficients gb have Qnt) bits before the binary point.

We start withy = 2", u is squared from one iteration to the next, and we terminatie wi
u>min(2=™ (o(p)/(10M))?") (see Lemma 11).

In an iteration with a particular value of, the coefficients op* have length @t +log1/u).
The depth of the tree is bounded by lgtd = O((log1/u)/n). We use Lemma 12 to bound its
size by

1
O(n+n|ogmax(18n\n/ﬁ,o(p))) =0O(nlogl/o(p)+logl/u) .

In each node of the tree we have to perfarhadditions and the coefficient size growsty
So the total growth in coefficient length is logi, thus the coefficient length is(@rt +log 1/ )
at all nodes. We conclude that the bit complexity for a fixeld@af L is

O((nlog1/o(p)+logl/u)-n?-(nt+logl/p)) .

The quantity logl/u) starts at B, doubles in each iteration, and ends an@gn+ 7+
log(1/a(q))). Therefore the total bit complexity is(@ (logn+ 1 +log1/a(q))?). Except for
the logn term, this is the same as in the case of known separation.

Theorem 13. Letq be be a polynomial withgs| > 1, and|q;| < 27~ for all i. The bit complexity
of isolating the real roots af is

2
o) (n“ (Iogn+ r+|09%) ) .

The coefficients of] need to be approximated with(@(t +log1/0(q))) bits after the binary
point.

5. Multiple Roots: A Special Case

We give a partial extension to polynomials with multiple t®2dt requires additional inputs
mp andkg (obtained, for example, by a precomputation step) and wankier theprecondition
that p has exactlymy distinct real roots, thaty is the degree of the gcd gf and its derivative
p’, and thatmg > 2 andkg > 1. If kg = 0, p has no multiple roots and we know already how to
isolate the roots op. If mg < 1, there is no need for isolation. Tpestconditioris as follows:

(1) If the precondition holds, the algorithm either retumset ofny intervals or a failure
indicator. If intervals are returned, all but one intengaimarked as “simple root”.
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(2) If the algorithm returns a set of intervals, these indésvsolate the real roots @f More-
over, p has at most one multiple real root and the interval marked & root” contains
simple roots.

(3) If the algorithm returns a failure indicator, any reabrof p has multiplicity at moskg.

In other words, if the precondition holds apdhas a real root of multipliciti + 1 (which is then
the unique multiple real root), the algorithm must retuimiaging intervals. If the precondition
holds andp has several multiple real roots, the algorithm must retufailare indicator. If the
precondition holdsp has at most one multiple real root, and this root has mutiipliess than
ko + 1, the algorithm may either return a failure indicator ofldsimg intervals.

Why are we interested in an algorithm with this seeminglsirsgie functionality? The answer
is that it is exactly this behavior that is needed in computiylindrical algebraic decompositions
(cad for short) of (semi-)algebraic sets (Eigenwillig et @007; Berberich et al., 2008). For a
general definition and discussion of cads we refer the retaddre books (Basu et al., 2006;
Caviness and Johnson, 1998). Here, we briefly review cadddebraic curves in the plane and
how the functionality defined above is useful for computimgrh.

Let f € Z[x,y] be a polynomial in two variables and I8t= V (f) be its zero set. A cad for
consists of decompositio®of R, i = 1, 2, into semi-algebraic sets such that (1)yk@rojection
of each cell inS, projects onto a cell ir; and such that (2$is the union of cells ir5,.

The construction of a cad fdr consists of two steps. In the first step, theoordinates of the
critical points off, i.e., the points wheng-projection does not describe a local diffeomorphism,
are determined. The critical points bfare self-intersections, isolated points, points withicatt
tangents, .... Theix-coordinates are among the real roots of yhesultant off and fy, the
partial derivative off with respect toy. Let C be the set of these rootS;decomposes the real
line into singletons and open intervals between theseetiog$, see Figure 3. The decomposition
S, of R! consists of these singletons and intervals. We call thdefimgscritical cells and the
intervalsnoncritical cells In the second step, the lifting step, one constructs abagk eell of
S a stack of cells of Sand also computes adjacency information between cellsighhering
stacks.

Above each cell of5;, V(f) consists of a fixed number of connected components. For each
celll” of S, letxr be a pointin the cell. If is an interval, we may choose arbitrarily inl". The
connected components abdveorrespond to the real roots 6fxr,y). For a noncritical cell’,
f(xr,y) is square-free. Hence, we can determine its real roots bgretDescartes algorithm for
integer polynomials if we succeeded in choosing a ratigpar the approximate root isolation
algorithm described in the preceding section.

However, in case of a criticdl, we are faced with two problems: Firdt(xr,y) € R[y] may
have multiple real roots, and second, its coefficients ayelahic numbers that are nonrational
in general. Thus makin§(xr,y) square-free is a costly computationSfs in generic position
with respect to the projection direction (genericity canadehieved by a suitably chosen, e.g.,
randomly chosen, linear transformatign=x+ ay), f(xr,y) will have only one multiple root
and moreover the numbey of distinct real roots and the multiplicit + 1 of the multiple root
can be obtained in a preprocessing step; see (Eigenwilkd,2007) for details. The number
mp of distinct real roots is also valid if the projection diriect is not generic. However, for a
nongeneric projection direction, there will be more thae amultiple root. We conclude that for
resolving the nature off(x,y) abovexr, the functionality defined at the beginning of the section
is precisely what is needed. When the algorithm stops withilaré indication, the projection
direction is not generic. A different linear transformatis tried and the computation is repeated.
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Fig. 3. The critical points of the s&=V(f) are indicated as crosses. Theicoordinates arep andaj.
The a;j decompose the real line into five cells, namélyeo, ap), {ao }, (0o, a1), {01}, and (ay,+).
Above each celly(f) consists of a fixed number of connected components; in thegea there is one
component abovéap } and there are two components above each other cell. Thesyiing, and 3, are
arbitrary points in the three open intervals. Thealues of points ovef; are simple roots of the square
free polynomialf (53;,y). However, the polynomial$(aj,y) may have multiple roots. If fof (aj,y), the
numberm of points abovex; and the degreky of ged(f(aj,y), % f(aj,y)) is known, the algorithm of this
section isolates the roots éfaj,y) or returns a failure indicator in the case whé(erj,y) has more than
one multiple root; these multiple roots may be real or comple

Kerber et al. (Kerber, 2006; Eigenwillig et al., 2007; Eigeéllig, 2008) showed that a vari-
ant, which they termedtk bitstream-Descartes method, of the randomized bitstiastartes
method (Eigenwillig et al., 2005; Eigenwillig, 2008) caropide the desired functionality. How-
ever, they did not fully analyze the bit complexity of the iaat. We will show that a variant of
our algorithm can provide the desired functionality. Wepalsalyze its bit complexity.

The idea is simple. Consider a sufficiently good approxiorgi‘ of p. Then simple real roots
of p turn into simple real roots gb* and nonreal roots gb turn into nonreal roots op*. A real
root z of p of multiplicity ¢ turns into/ roots (counted with multiplicity) ofp* contained in a
discD of radius 9/ with centerz. The roots ofp* corresponding t@ may be real or nonreal,
simple or multiple. We need to discern the rootgbdfcorresponding to multiple real roots pf
from those corresponding to simple real rootgbdfIf u is small enough, we will be able to do
Sso.

Again, we assume that all roots pfare contained in a disc of radius 1/4 with cent¢2 % Oi.
and have our algorithm driven by a paramegteiWe start withu = 2-"". For a fixed value of
U, let p* be ane-approximate ofp, wheree < u|p|/(n+2). Then|p— p*| < u|p|. As in the
preceding section, lefy = 18ny/11. We call an interval long if w(l) > Lo andshortotherwise.

Consider any long subdivision interMalWhat should we expect as the valuevaf(p*,17)?
Corresponding roots gf andp* lie within 9/[i of each other and @71 is small compared thy.
Thus if a real root of multiplicity k lies inl, I shouldsee all kroots of p* corresponding ta
and hencear(p,1 ™) should be at least This suggests that we should return a failure indicator
as soon asar(p*,1™) < ko for all subdivision intervals.

Consider next a long subdivision interval that is almostshe.,Lo < w(l) < 2Lo. If 99/ <«
a(p), we might hope that™ only seeshek roots of p* corresponding ta and hencear(p,1 1)
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Fig. 4. = (a,b), 1" = (c,d), andL,, denotes the Obreshkoff lehg(1*). For anye < 2w(1) sin(1t/(2n+4)),
we havelg (1) C L whereUg (1) denotes the-neighborhood of.

should be exactlk. This suggests that we can return isolating intervals if aesfoundmny — 1
intervalsl, with var(p*,1;) = 1 and one interval with var(p*,1) = kg + 1.

Assume now that none of the two cases above arises, i.e.,dbngder all subdivision inter-
vals| with Lo <w(l) < 2L, there is still at least one that counts at ldast 1 sign changes and
there are nang — 1 yet that count only one. We should then conclude that oueatiapproxi-
mation is not good enough. So we stop, squarand start over.

The following theorem shows thaar(p*,1 ™) is strongly related to the number of rootspof
nearl and captures the intuition underlying the reasoning above.

Theorem 14. Let p be a polynomial of degre®> 2 and roots of modulus less than one and let
p* be an approximation gb with |p — p*| < p|p| andu < 2=, Let| be a long interval and let
my be its midpoint. Then

# of roots ofp in Uy /(2n) (1) < var(p*,17) < # of roots ofp in Ugnyy (m).

Roots are counted with multiplicity and, for a &tJ:(S) is thee-neighborhood o&.

Proof. Letvbe the number of roots gfin Uy 2n)(1)- ThenUy)(2n)+ 9 pp(l) contains at least
vroots of p*. Assumely)zn)+opm(l) € La(11). Thenvar(p*,1™) > v by Theorem 1. For the
inclusion, we refer to Figure 4. We hatk (1) C Lp(IT) if € < 2w(l)sin(rt/(2(n+ 2)). Since
sin(rr(/(2(n+2)) > 1/(n+2) > 1/(2n), the inclusion certainly holds whenever< w(l)/n.
Thus it holds fore = w(l)/(2n) + 9/f. This proves the first inequality.

By Theorem lyar(p*,1*) is bounded by the number of rootsgfin A,(11) and hence by the
number of roots op in X ::Ugw(Ano ™). Letr be the radius of the Obreshkoff didag for | *.
The extended sine theorem yields2w(1 ") /sin(rt/(n+2)) < (n+2)w(I ") /2 < 2n-5w(l) /2=
5nw(l). Hence the distance fromy to an arbitrary point in X is at mostrév(l) + 9y/i1. This is
at most &w(l). O

The next lemma is a consequence of Theorem 14. It tells usrumigit circumstances an
isolating interval for a real root ofp* gives rise to an isolating intervalfor a simple real root
of p.
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Lemma 15. Let | either be a long interval witlvar(p*,1™) = var(p*,1) = 1 or a singleton
interval® [m*,m*] for which p*(m*) = 0 andvar(p*,1,”) = 1= var(p*, ;") = 1 forlong intervals
l,=(,m*)andl, = (m", ) ending and starting im*, respectively. Thehcontains a unique zero
of p.

If | andl’ are disjoint long intervals satisfying one of the condis@tove| andi’ are disjoint.

Proof. In the first case| contains a zero op*, and, by Theorem 14J,,)/2q(1) contains at
most one root op. Since corresponding roots have distance less tiygma&nd 9y < w(l)/2n,
Ugpm(l) contains exactly one root gf. This root must be real and hence lied inThe second
case is also a direct consequence of Theorem 14 applied toténeall, or I, respectively.

We come to the second part.lifandl’ are singletons, they are at ledst apart and hence
[ andi” are disjoint. So assume thhtis not a singleton anek(l) > w(l’). If I+ containsl’,
var(p*,1*) > 2, a contradiction. St* does not contaih and hence andl’ are at least
apart. Thug andi’ are disjoint. O

We can now give the details of thne-k deterministic bitstream-Descartes algorittsae Al-
gorithm 4 for pseudocode. The algorithm maintains an odtgttand a candidate output list. The
candidate output list contains singleton interyaism| with p*(m) = 0 that have not been verified
yet to correspond to simple roots pf We have an approximatiopi of p with |p— p*| < u|p|
andu < 2. We proceed in rounds. At the beginning of each round alvadtitervals have
the same length. We first process the active intervalith var(p*,1*) = 1. We remove them
from the list of active intervals and addo the output list ifvar(p*,1) = 1, otherwise we dis-
card them. A singleton intervéi, m| is moved from the candidate output list to the output list
if there is no active interval either ending or startingrinThen we process the intervalsvith
var(p*,17) > 2. We splitl atmy into I, andl;. A subintervall, or I, is added to the list of active
intervals if its extensiol,” or I, counts at least one sign change. The singlétpnm;| is added
to the candidate output list, if it is a zero pf. At all times, letJ denote the minimal interval
containing all active intervals. We stop when we reach ortb@following situations:
¢ (R) When a short interval is added to the list of active intdsywe squar@ and start over.

e (F)var(p*, 1) < ko for all active intervald. We stop and return a failure indicator.

e (S)mg — 1 intervalsly,...,In,—1 have been added to the output 31, there is at least one
active intervall with var( p*,11) > ko+1, and the expanded intervals. . Imo 1, andJ are
disjoint.* We return the expanded intervals and mirio |n‘071 as S|mple root”.

We proceed to the analysis. We proceed in two steps. We fiost ginat if the precondition
holds and the algorithm stops in cases (F) or (S), the podition holds. In a second step, we
show that the algorithm terminates if the precondition kold

CorrectnessAssume that the algorithm stops. If it stops in case (F),yexetive interval counts
at mostky sign changes fol™. Thus, by Theorem 14, there is no real rootpodf multiplicity
ko+ 1.

So assume that it stops in case (S). The outpu@listontainsmg — 1 intervalsly, ..., Iy, _1,
J is nonempty and contains an intervabith var(p*,1") > ko + 1, and the extended intervals
i1,...,/m—1, andJ are disjoint. Anlj is either a singletofm, m| with p*(m) = 0 and there exists

3 Areal zerom* of p* might correspond to a multiple zero pf For such a zero, at least one of the subdivision intervals
havingm* as an endpoint counts more than one sign change.

4 The subdivision intervals containing a multiple rootfre contained id. As long asO* has fewer thammy — 1
elements of is not disjoint from the extended intervals@t, there might be more than one multiple real root.
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Algorithm 4 m-k deterministic bitstream-Descartes Algorithm

Require: p=Yo<i<n pix and all roots ofp lie in a disc of radius 1/4 centered at2L+ Oi; p has
exactlymy distinct real roots anéy = deggcdp, p') > 1.

Ensure: postcondition is as stated at the beginning of Section 5

U= 2—7n;
while (true) do
chooses < u|p|/(n+2) and letp* be ans-approximate op;
O*:=0;CO":=0; output and candidate output list
A:={(0,1) }; Anew:=0; Anewis the A of the next iteration
while (true) do
all intervals in A have the same length
remove alll with var(p*,1*) = 1 from A; move the ones withar(p*,1) = 1 to O*;
move anyim, m| from CO* to O* for which there is no active interval with endpoimt
if var(p*,1") <k forall | € Athen
return a failure indicator; Case (F)
end if
LetJ be a minimal interval containing all active intervals;
if O* contains exactlyny — 1 intervalsly to Im,_1, var(p*,17) > ko + 1 for at least one
active interval, andiy is disjoint fromJ for all ¢ then
returniy to i, 1 andJ; Case (S)
end if
while (A # 0) do
let| € A be arbitrary; remové from A;
addl, to Anewif var(p*, I,T) > 1; addl; to Anewif var(p*,1") > 1; add[m;,m] to CO*

if p*(m) =0;
end while
A:=Anew; Anew:=0;

if A contains a short intervahen
U = p?; break from the inner while loop and restart with a betterragjmation;
end if
end while
end while

no active interval with endpoimh or it satisfiesvar(p*, ;) = var(p*, Ij+) = 1. Then according to
Lemma 15, eachy contains exactly one real root pf By the preconditionp has exactlyn real
roots. Letzy be the remaining real root gf and letk be its multiplicity. Then I< k < kg + 1 by
assumption. We need to show tlgis contained inJ. By definition,zg ¢ ljforl1<j<mg—1.
Consider the chaiKg, K1, ... of subdivision intervals containirg in their closure. All of them
are long and hencear(p*,K;") > k for all i by Theorem 14. If some interval containizgin

its closure is active when the algorithm terminat®s; J. So assume, there is no active interval
containingzy in its closure when the algorithm terminates. Thes 1 and either an interval
containingzy was added t®* or the singletoriz, z)] was added t€O* and then moved t®*.

In either case, we have a contradiction.
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Termination:The approximation parametgris calledsmallif

U< min((7;(2p5)n2)n,27”).

If uis smallanch > 2, we have:

o 4o =72y < 0(p)/(25n) < o(p)/50.

e 9/l < o(p)/2. Hence nonreal roots @fcorrespond to nonreal roots pf, simple real roots
of p correspond to simple real roots pf, and a real roat of p of multiplicity k corresponds
to k roots ofp* in a disk of radius /i with centerz.

e 4Lg-6n+2Lo < a(p)/4 and hence C Ugny) (1) € Ug/a(my) for anyl with w(l) < 4L,.

Theorem 16. Let p be a polynomial of degree and roots with modulus less than one. Let
ko = deggcdp, p'), let u be small, and lep* be such thatp* — p| < | p|. Then for any interval

I with Lo < w(l) < 4Lg, var(p*,1") <k, wherek is the multiplicity of the unique real root qf
inUg/4(mr); k=0, if the disk contains no real root.

Proof. Sincep is small andw(l) < 4Lo, we haveUgny) (M) € Ug/a(my). The latter disk can
contain at most one root gf. The root must be real and, by Theorem #dr(p*, 1) is at most
its multiplicity. O

Theorem 17. Let p be a polynomial of degree and roots of modulus at most onghas ex-
actly mp distinct real roots an#ly = deggcdp, p). If u is small, Algorithm 4 terminates. The

algorithm terminates with
- a®) \*" o
> .
“_mm<(72-25n2> 2

Proof. If the algorithm does not terminate, a short interval is athdethe list of active intervals.
Just before this happens, any active intervdas length. with Lo < L < 2L andvar(p*,17) is
at least two. We argue that the algorithm would have terraphat this iteration.

If p has no real root of multiplicitikg + 1, var(p*,1™) < ko for all intervals of length_ by
Theorem 16 and the algorithm terminates in case (F).

So assume that has exactlyny — 1 simple real rootg;, ..., zn,—1 and one real root, saz,
of multiplicity ko + 1 with kg > 1. Fori with 1 <i < mp— 1, letz" be the simple real root gf*
corresponding t@. Then under the given assumptions the following Lemma holds

Lemma 18. The output list contains exactiyg — 1 intervalsly to I,—1. The extended intervals
Ij contain one real root op each and are disjoint. Each proper interval on the outpuhés
length at least ;.

Proof. Foriwith 1 <i <mg—1, letK; be a subdivision interval of lengtiLZontainingz" in its
closure. Thervar(p*,K") < 1 by Theorem 16. I£* € K;, var(p*,K;) = 1 and hence some an-
cestor ofK; was added to the output list.2f is an endpoint oK;, var(p*,K;) = 0 = var(p*,K/),
whereK/ is the other subdivision interval of lengt. 2vith endpointz* and hencgz*,z‘] was
added to the output list. We conclude that the output listaios at leasing — 1 elements. Also,
by Lemma 15, each extended interval contains exactly oneaetof p and the extended inter-
vals are disjoint. The same Lemma shows that the outpu#istat contaimyy or more elements,
as the extension of each of them would contain a simple ropt ofd
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The preceding Lemma shows that the inter\fgli < j <mg—1,isolate the simple roots of
p. It remains to show that containszg and is disjoint from thd?j 's.

Lemma 19. J containszg and is disjoint from anij on the output list.

Proof. Let Iy be a subdivision interval of length containingzy in its closure; ifz, is a sub-
division point, there is a choice of two intervals flgr otherwise it is uniquely defined. Then
var(p*, IO+) > ko+ 1 by Theorem 14. Thulg is active and hencé containsz.

Now consider any active intervéj U, 4(m) contains at most one root gfandvar(p*, | )
is at most the multiplicity of this root (Theorem 16). Aar(p*,1 ) > 1, this root has to ba,.
Thus|m — 2| < 0/4 and hencev(J) < o/4+w(l)/2+ 180yl < 0/4+36nyYH < 0. If J
would contain an intervél; from the output list, thed would contain the simple real roat of
p. But this contradict® > |z — zj| asJ also containgy andw(J) < o.

We must still exclude the case thhshares an endpoint with any proper interarom the
output list. So assume thhtshares an endpoint with some active intefvalhenw(l) =L <
2Lo <w(lj). Thusl* C 1} and hencear(1}") > var(1*) > 1, a contradiction. O

It remains to prove the bound gn If the algorithm terminates in the first iteration, it stops
with u = 2= If  is small in an iteration, the iteration is the last. So if thgoaithm requires
more than one iteration is not small in the next to last iteration. The boundiofollows. O

We turn to the complexity analysis. The analysis of AlgaritB essentially carries over. Both
algorithms start with logl/u) = 7n and doubleu in every iteration. For any fixed value of,
they generate the same subdivision tree and hence incuanhe sost of

O((nlog1/o(p) +logl/u) -n?- (nt+logl/u))

bit operations, as shown in Section 4.2. Algorithm 3 stogh wi> min((a(p)/(100n))2", 2=,

the algorithm of this section stops witla > min((o(p)/(72-25n%))?",2="). In both cases,
log(1/u) stops at @n(logn+ Tt +1log(1/0(q))). Therefore we obtain the same bit complexity as
for Algorithm 3.

Theorem 20. Let g be a polynomial with root separatiarn(q), || > 1, and|q;| < 27~ for all
i. Furthermore, letny be the number of distinct real roots gfandky = deggcdqg,q’). The bit
complexity of them-k deterministic bitstream-Descartes algorithm is

2
o) <n4 (Iogn+ T+Iogﬁ) ) .

The coefficients of] need to be approximated with(@(t +log1/0(q))) bits after the binary
point.

We remark that no bound on the bit complexity of thek randomized bitstream-Descartes
algorithm of Eigenwillig et al. (2007) is available. As thaggorithm is the main workhorse in
the algorithms of (Eigenwillig et al., 2007; Berberich et 2008) for determining the topology
of algebraic curves and surfaces, our complexity result paye the way for determining the
complexity of the entire topology computation.
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6. Conclusions

The randomized bitstream-Descartes method as present&dgienwillig et al., 2005) has
already shown its effectiveness and strength in practiég ai main ingredient of the algorithms
of (Eigenwillig et al., 2007; Berberich et al., 2008) for c@dylindrical Algebraic Decompo-
sition) computation. An implementation will become avhlin (CGAL, 2008). It remains to
be seen, whether our deterministic algorithm is competitwth its randomized cousin. A first
implementation is encouraging.

Collins and Krandick (1992) have described a natural eitersf the Descartes algorithm for
isolating all (complex) roots of a polynomial. Does theig@lithm generalize to the bitstream
model and can it be extended to the situation where multipisrare allowed and the number
of distinct complex roots is given as an additional input?

The continued fraction method (Akritas, 1980; Tsigaridad Bmiris, 2008) is an alternative
to the Descartes method for root isolation. It would be eg&ng to generalize it to the bitstream
model and to then-k scenario.
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