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Abstract

We describe a Descartes algorithm for root isolation of polynomials with real coefficients. It is assumed that
the coefficients of the polynomial can be approximated with arbitrary precision; exact computation in the
field of coefficients is not required. We refer to such coefficients as bitstream coefficients. The algorithm
is deterministic and has almost the same asymptotic complexity as the randomized bitstream-Descartes
algorithm of Eigenwillig et al. (2005). Besides being deterministic, the algorithm is also somewhat simpler
to analyze.
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1. Introduction

The isolation of the real roots of a real polynomial is a fundamental task in computer algebra
and numerical analysis: given a polynomialp, compute for each of its real roots an interval
with rational endpoints containing it and being disjoint from the intervals computed for the other
roots. There are many methods for isolating the real roots ofa real polynomial. One of the best
approaches to root isolation is the Descartes method. It is abisection method based on Descartes’
Rule of Signs to test for roots. Its modern form goes back to Collins and Akritas (1976), see
also Basu et al. (2006). It can be formulated to operate on polynomials given in the usual power
basis or in the Bernstein basis and works over any ring of coefficients in which addition and sign
test (with result+, 0, and−) are computable.
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For integer coefficients, it is currently one of the most efficient methods (Rouillier and Zim-
mermann, 2004). We review it in Section 3 and give further references to related and previ-
ous work along the way. For algebraic coefficients, the cost of exact arithmetic may render the
method useless; hence it was suggested to replace the coefficients by small intervals and to ex-
ecute the method using interval arithmetic. The first proposals (Johnson and Krandick, 1997;
Collins et al., 2002; Mourrain et al., 2004; Rouillier and Zimmermann, 2004) were incomplete;
they all had to resort to exact arithmetic in the ring of coefficients for some input polynomi-
als. In (Eigenwillig et al., 2005; Eigenwillig, 2008) it wasshown that randomization leads to
a complete algorithm with no need for exact arithmetic. The only requirement is that coeffi-
cients can be approximated to any specified error bound. Following Eigenwillig et al. (2005);
Eigenwillig (2008), we call such coefficients bitstream coefficients. In (Eigenwillig et al., 2005;
Eigenwillig, 2008), the following result was shown:To isolate the real roots of a square-free real
polynomial p(x) = pnxn+ . . .+ p0 with root separation (= the minimal distance between any two
roots) σ , coefficients|pn| ≥ 1 and |pi | < 2τ , the algorithm needs coefficient approximations to
O(n(log(1/σ)+τ)) bits after the binary point and has an expected cost ofO(n4(log(1/σ)+τ)2)
bit operations.The cost statement ignores the cost of computing the approximations of the coef-
ficients with the required quality. The algorithm is readilyderandomized, but this increases the
running time by a factor ofn.

We describe a deterministic algorithm with running time O(n4(logn+ log(1/σ)+ τ)2); up
to the logn term, this is the same as for the randomized algorithms of Eigenwillig et al. (2005);
Eigenwillig (2008). The precision requirement is the same as for the randomized algorithm. Be-
sides being deterministic, the algorithm is also more intuitive and somewhat simpler to analyze.
Moreover, it works directly over the monomial basis and there is no need for conversion to the
Bernstein basis.

The roots of a polynomial depend continuously on its coefficients. The algorithms of Eigen-
willig et al. (2005); Eigenwillig (2008) use this fact only indirectly; our new algorithm uses this
fact directly. It constructs a rational polynomialp∗ from the input polynomialp by approxi-
mating the coefficients to some carefully chosen precisionε. It then runs a variant of Descartes
algorithm onp∗ and determines isolating intervals for the roots ofp∗. Finally, it returns suitably
enlarged intervals as isolating intervals for the roots ofp.

This paper is organized as follows. In Section 2 we discuss related work and in Section 3 we
review Descartes method. Section 4 discusses the extensionto real polynomials with bitstream
coefficients. Finally, Section 5 deals with a partial extension to polynomials with multiple roots.

2. Related Work

Root isolation is a fundamental problem in computer algebraand numerical analysis. For a
survey, we refer the reader to (Pan, 1997). On a top level, there are two kinds of algorithms.
Algorithms that always solve the task and algorithms that solve the task if some additional infor-
mation is available, e.g., approximations of the roots. Aberth’s method (Aberth, 1988; Bini and
Fiorentino, 2000) is a representative of the second class with excellent practical behavior. The ori-
gin of the first class of algorithms dates back to Descartes, Sturm, Bundan, Fourier, and Vincent.
For modern accounts, see (Collins and Akritas, 1976), (Yap,1999, Chapter 7), and (Tsigaridas
and Emiris, 2008). There are asymptotically faster algorithms available (Pan, 2002; Schönhage,
1982). However, the asymptotically faster algorithms are quite involved and no implementation
was attempted yet.
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The bisection and continued fraction algorithms based on Descartes’ rule of sign work well for
polynomials with integer coefficients. However, for polynomials with nonrational coefficients,
the high cost of arithmetic makes the approaches less attractive. It was therefore suggested (John-
son and Krandick, 1997; Collins et al., 2002; Mourrain et al., 2004; Rouillier and Zimmermann,
2004) to approximate the coefficients by intervals and to useinterval arithmetic instead of real
arithmetic. This led to Descartes solvers for polynomials with nonrational coefficients or long
integer coefficients with improved efficiency. However, allmethods mentioned above have to re-
sort to exact arithmetic for some inputs, namely for inputs for which certain decisions (counting
sign changes in a sequence of coefficients and determining the sign of the polynomial at subdivi-
sion points) could not made reliably with interval arithmetic. The first Descartes algorithm that
is guaranteed to work with approximate arithmetic was presented in (Eigenwillig et al., 2005;
Eigenwillig, 2008). Eigenwillig et al. termed their methodbitstream-Descartes algorithm. It uses
randomization to overcome the problems mentioned above. The choice of random subdivision
points guarantees that the polynomial is “sufficiently large” at subdivision points and that sign
changes in coefficient sequences can be counted with sufficient reliability. Kerber et. al. (Kerber,
2006; Eigenwillig et al., 2007) introduce a partial extension to polynomials with multiple roots.
The variant works for polynomials with exactly one multipleroot; it requires the numberm of
distinct real roots and the valuek = deggcd(p, p′) as additional inputs. The bitstream-Descartes
algorithm and its extension will become part of the algebraic kernel of CGAL (CGAL, 2008) and
are key ingredients for the topology computation of algebraic plane curves (Eigenwillig et al.,
2007) and algebraic surfaces in space (Berberich et al., 2008).

In comparison to the randomized bitstream-Descartes method, our new algorithm is determin-
istic, conceptually simpler, simpler to analyze, and has almost the same running time. The gain
in simplicity stems from the fact that the algorithm runs on aconcrete approximation of the input
polynomial and not on an interval polynomial that represents all possible approximations of the
input polynomial with a certain precision.

3. Preliminaries

For a real rootz of p, let σ(z, p) be the minimal distance ofz to another root ofp. For a
nonreal rootzof p, let σ(z, p) be the absolute value of its imaginary coordinate. Letσ(p) be the
minimal value ofσ(z, p) over all roots ofp. For an intervalI = (a,b), let w(I) := b− a be its
length or width.

Algorithm 1 shows the Descartes algorithm for isolating theroots of a real polynomialp
in an open intervalI0; see (Basu et al., 2006; Eigenwillig, 2008) for extensive treatments and
references. The algorithm requires that the real roots ofp in I0 are simple. If the requirement is
not met, the algorithm diverges. It maintains a setA of active intervals. Initially,A containsI0,
and the algorithm stops as soon asA is empty. In each iteration, some intervalI ∈ A is processed.
The action taken depends on the integervar(p, I), the outcome of Descartes’ rule of signs applied
to p andI .

Descartes’ rule of signs states that for a real polynomialq(x) = ∑0≤i≤nqixn, the number of
sign changes in the coefficient sequence ofq, i.e., the number of pairs(i, j) with i < j, qiq j < 0,
andqi+1 = . . . = q j−1 = 0, is no smaller than and of the same parity as the number of positive
real roots ofq. Let var(q) denote the number of sign changes in the coefficient sequenceof q.
If var(q) = 0, q has no positive real root, and ifvar(q) = 1, q has exactly one positive real root.
The rule is easily extended to arbitrary open intervals by a suitable coordinate transformation. Let
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Algorithm 1 Descartes Algorithm for Isolating Real Roots

Require: p = ∑0≤i≤n pixi is a real polynomial andI0 is an open interval. The real roots ofp in
I0 are simple.

Ensure: returns a listO of isolating intervals for the real roots ofp in I .

A :={ I0} {list of active intervals}
O := /0 {list of isolating intervals}
repeat

I := some interval inA; deleteI from A;
if var(p, I) = 0 do nothing;
if var(p, I) = 1 addI to O;
if var(p, I) ≥ 2 then

let I = (a,b) and setm:=(a+b)/2;
if p(m) = 0 add[m,m] to O;
add(a,m) and(m,b) to A;

end if
until A is empty
return O

I = (a,b) be an arbitrary open interval. The mappingx 7→ (ax+b)/(x+1) maps(0,∞) bijectively
onto(a,b) and hence the positive real roots of

qI (x) :=(1+x)n · p

(

ax+b
x+1

)

correspond bijectively to the real roots ofp in I . We definevar(p, I) as var(qI ). The factor
(1+x)n in the definition ofqI clears denominators and guarantees thatqI is a polynomial.

Having definedvar(p, I), we continue our explanation of the algorithm. If there is nosign
change,I contains no root ofp and we discard it. If there is exactly one sign change,I contains
exactly one root ofp and hence is an isolating interval for it. We addI to the listO of isolating
intervals. If there is more than one sign change, we divideI at its midpoint and add the subin-
tervals to the set of active intervals. If the midpointm is a zero ofp, we add the trivial interval
[m,m] to the list of isolating intervals.

Correctness of the algorithm is obvious. Termination and complexity analysis of Descartes
algorithm rest on the following theorem, see also Figure 1.

Theorem 1 (Obreschkoff (1963); Obrechkoff (2003)). Let p be a polynomial of degreen, I
an open interval, andv = var(p, I). If the Obreshkoff lensLn−q (see Figure 1) contains at least
q roots (counted with multiplicity) ofp, thenv ≥ q. If the Obreshkoff areaAq (see Figure 1)
contains at mostq roots (counted with multiplicity) ofp, thenv≤ q. In particular,

# of roots ofp in Ln ≤ var(p, I) ≤ # of roots ofp in An.

Theorem 2 (Obreschkoff (1925); Ostrowski (1950)). Consider a real polynomialp(x) and an
intervalI = (a,b) with midpointmI = (a+b)/2 and letv = var(p, I).
• (One-Circle Theorem) If the open disc bounded by the circleC0 centered atmI and passing

through the endpoints ofI contains no root ofp(x), thenv = 0.
• (Two-Circle Theorem) If the union of the open discs bounded by the circlesC1 andC1 centered

at mI ± i(1/(2
√

3))w(I) and passing through the endpoints ofI contains precisely one root of
p(x), thenv = 1.
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Fig. 1. For anyq with 0 ≤ q ≤ n, the Obreshkoff disksCq andCq for I have the endpoints ofI on their
boundary; their centers see the line segment[a,b] under the angle 2α = 2π/(q+2). The Obreshkoff lensLq

is the interior ofCq∩Cq and the Obreshkoff areaAq is the interior ofCq∪Cq. Any point (except fora and
b) on the boundary ofAq sees[a,b] under an angleπ/(q+2) (= half the angle at the center) and any point
(except fora andb) on the boundary ofLq sees[a,b] under angleπ −π/(q+2) (= half the complementary
angle at the center). We haveLn ⊂ Ln−1 ⊂ . . . ⊂ L1 ⊂ L0 andA0 ⊂ A1 ⊂ . . . ⊂ An−1 ⊂ An. The circlesC0
andC0 coincide. They have their center at the midpoint ofI . The circlesC1 andC1 are the circumcircles of
the two equilateral triangles havingI as one of their edges. We callA1 the two-circle regionof I .

The one-circle and two-circle theorems are special cases ofTheorem 1, namely: ifA0 contains
no root ofp, thenvar(p, I) = 0 and ifA1 contains exactly one root ofp, thenvar(p, I) = 1. Proofs
of the one- and two-circle theorems can be found in (Obreschkoff, 1925, 1963; Obrechkoff, 2003;
Ostrowski, 1950; Krandick and Mehlhorn, 2006; Eigenwillig, 2008). We also need the property
thatvar(p, I) is subadditive, i.e.,var(p, I1)+var(p, I2)≤ var(p, I) wheneverI1 andI2 are disjoint
subintervals ofI . For a simple self-contained proof, we refer the reader to (Eigenwillig, 2008,
Corollary 2.27).

Theorem 3(Schoenberg (1934)). Let p be a real polynomial. If the pairwise disjoint open inter-
valsJ1, . . . ,Jl are subsets of the open intervalI , then

var(p, I) ≥ ∑
1≤i≤ℓ

var(p,Ji).

Theorem 2 implies that no intervalI of lengthσ(p) or less is split. Such an interval, recall that
is is open, cannot contain two real roots and its two-circle region cannot contain any nonreal root.
Thusvar(p, I) ≤ 1 by Theorem 2. We conclude that the depth of the recursion tree is bounded
by logw(I0)/σ(p). The number of internal nodes in the recursion tree is bounded by n times
the depth. This follows fromvar(p, I1) + var(p, I2) ≤ var(p, I), whereI1 and I2 are the two
subintervals ofI . Thus there cannot be more thann/2 intervalsI with var(p, I) ≥ 2 at any level
of the recursion.

The computation ofqI from p at every node of the recursion is costly. It is better to storewith
every intervalI = (a,b) the polynomialpI (x) := p(a+x(b−a)), whose roots in(0,1) correspond
to the roots ofp in I . If I is split atm= (a+b)/2 into Iℓ = (a,m) andIr = (m,b), the polynomials
associated with the subintervals are

pIℓ(x) = 2npI (x/2) and pIr (x) = 2npI ((1+x)/2) = pIℓ(1+x) .
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Also, qI (x) = (1+ x)npI (1/(1+ x)). The polynomialspIℓ , pIr , andqI can be obtained frompI

by n2 additions. Also, if the coefficients are integral, the coefficients grow by O(n) bits in every
node.

4. A Descartes Algorithm for Polynomials with Bitstream Coefficients

We will extend the Descartes algorithm to polynomials with real coefficients. It is assumed
that the coefficients can be approximated to any precision. We generalize in two steps. In Sec-
tion 4.1, we assume that a lower bound for the root separationof the polynomial is known.
We remove this assumption in Section 4.2. We make use of a result of Schönhage that bounds
the change of roots in terms of a change of coefficients. For a polynomial p = ∑0≤i≤n pixi ,
|p| = ∑0≤i≤n |pi | denotes the maximum norm ofp.

Theorem 4(Schönhage (1985)). Let p= ∑0≤i≤n pixi = pn∏1≤i≤n(x−zi) be a polynomial of de-
green with |zi |< 1 for all i. Let µ be a positive real withµ ≤ 2−7n and letp∗(x) = ∑0≤i≤n p∗i xi =
p∗n ∏1≤i≤n(x−z∗i ) be such that

|p− p∗| < µ |p| .
Then up to a permutation of the indices of thez∗i

|z∗i −zi | < 9 n
√

µ .

4.1. Known Root Separation

The idea of our algorithm is now as follows. In order to isolate the roots of a polynomial
P = ∑0≤i≤nPixi , we first determine an intervalI0 containing all real roots ofP. It is well-known
that the modulus of any root ofP is bounded by

B :=2max

{ |Pi|
|Pn|

; 0≤ i < n

}

.

Let p(x) :=P(4B(x−1/2)). Then all roots ofp are contained in the disc of radius 1/4 centered
at 1/2+0i. Isolating the real roots ofP is equivalent to isolating the real roots ofp. We achieve
the latter by isolating the real roots ofp∗ in (0,1) for a suitable approximationp∗ of p. i.e.,
|p∗− p| < µ |p| for a suitableµ . Then corresponding roots ofp∗ andp are less than 9n

√µ apart.
What properties shouldµ have?
• 9 n

√µ < 1/4. This guarantees that the real roots ofp∗ are in(0,1). The condition is certainly
satisfied forµ ≤ 2−7n.

• 9 n
√µ ≤ σ(p)/12; the choice of constant 12 will become clear below. This guarantees that real

roots ofp correspond to real roots ofp∗ and that nonreal roots ofp correspond to nonreal roots
of p∗. Moreover,σ(p∗) ≥ σ(p)−18 n

√µ ≥ (5/6)σ(p)≥ 90 n
√µ .

We chooseµ such that 9n
√µ ≤ min(σ(p)/12,1/8).

We call a binary fractiona an ε-approximationof a real numberx if |a− x| ≤ ε. With L =
⌈log1/ε⌉, we call ⌈x2L⌉2−L and⌊x2L⌋2−L ε-approximatesof x. Of course, anε-approximate
is an ε-approximation. Moreover, ifε < 1, anε-approximate has onlyL bits after the binary
point and if ε > 1, an ε-approximate is an integer whose binary representation ends with L
zeros. Anε-approximate of a polynomialp is a polynomialp∗ such that each coefficient1 of

1 Of course, ifε > 1, the lastL bits of every coefficient ofp∗ can be dropped.
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Algorithm 2 Descartes Algorithm for a Real Polynomialp with Root Separation Estimateσ
Require: p is a real polynomial with roots in the disc of radius 1/4 centered at 1/2+ 0i, σ ≤

σ(p), µ = min(2−7n,(σ/108)n), ε ≤ µ/(n+2)|p|, p∗ is anε-approximate ofp

Ensure: returns a listO∗ of well-separated isolating intervals for the real roots ofp∗.

A :={(0,1)} {list of active intervals}
O∗ := /0 {list of isolating intervals}
repeat

I := some interval inA; deleteI from A;
I+ = (a−2(b−a),b+2(b−a)), whereI = (a,b);
if var(p∗, I+) > 1 andvar(p∗, I) ≥ 1 then

add(a,m) and(m,b) to A wherem= (a+b)/2;
if p∗(m) = 0 add[m,m] to O∗;

else
if var(p∗, I) = 0 do nothing;
if var(p∗, I) = 1 addI to O∗;

end if
until A is empty
return O∗

p∗ is anε-approximate of the corresponding coefficient ofp. If p∗ is anε-approximate ofp,
|p∗− p| ≤ (n+1)ε. We letε ≤ µ |p|/(n+2). Then|p∗− p|< µ |p| and Theorem 4 applies.

For an intervalI , let Ĩ be its expansion by 9n
√µ on both sides, i.e, ifI = (a,b), thenĨ = (a−

9 n
√µ,b+9 n

√µ) and if I = [m,m], thenĨ = (m−9 n
√µ ,m+9 n

√µ). If I is an isolating interval for a
real root ofp∗, Ĩ contains the corresponding root ofp. Our goal is to compute isolating intervals
for the roots ofp∗ such that their expansions are pairwise disjoint. Theexpanded intervalsare
then isolating intervals for the roots ofp.

A simple modification of Algorithm 1 computes sufficiently separated isolating intervals for
the roots ofp∗. We simply subdivide an interval as long asvar(p∗, I+) ≥ 2 andvar(p∗, I) ≥ 1,
whereI+ is the interval of length 5w(I) enlargingI by 2w(I) on either side2 , i.e., if I = (a,b),
I+ = (a− 2(b− a),b+ 2(b− a)). We call I+ the extensionof I or an extended interval. We
subdivide an intervalI if var(p∗, I+) > 1 andvar(p∗, I)≥ 1. If I is not split, we havevar(p∗, I)≤
var(p∗, I+) ≤ 1. We obtain Algorithm 2.

Lemma 5. Algorithm 2 splits only intervals with length greater thanσ(p∗)/5.

Proof. Consider any intervalI with w(I) ≤ σ(p∗)/5. Thenw(I+) ≤ σ(p∗) and hence either the
one- or the two-circle theorem applies toI+. Thusvar(p∗, I+) ≤ 1 andI is not split. 2

LetO∗ be the list of isolating intervals computed forp∗. Any interval inO∗ is either a singleton
or has length at leastσ(p∗)/10. The expansions of the intervals inO∗ are isolating intervals for
p. Let

O :=
{

Ĩ ; I ∈ O∗} .

Lemma 6. O is a set of isolating intervals forp.

2 We have no particular reason for enlarging by 2w(I). Enlarging byℓw(I) for any fixedℓ ∈ N would also work. We
have not tried to optimize the choice ofℓ.
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Proof. By our choice ofµ , p and p∗ have the same number of real roots and each expanded
interval contains a real root ofp. We need to argue disjointness.

Let I andJ be two intervals inO∗. If I andJ are singletons, they have distance at leastσ(p∗)
from each other. Our choice ofµ certainly guaranteesσ(p∗) ≥ 18 n

√µ and hence disjointness is
preserved after expanding both intervals.

So assume, that at least one of the intervals is not a singleton, sayI . We may also assume
w(I) ≥ w(J). SinceI andJ are inO∗, both contain a real root ofp∗. If I+ would containJ, it
would contain two real roots, and we would havevar(p∗, I+) ≥ 2. SoI would be split. ThusI+

does not containJ and hence is disjoint fromJ (sincew(I) ≥ w(J)). Thus the distance ofI andJ
is at least 2w(I). Also,

2w(I) ≥ σ(p∗)
5

≥ σ(p)−18 n
√µ

5
≥ 18 n

√
µ

by our choice ofµ and hencẽI andJ̃ are disjoint. 2

We next turn to the complexity analysis. We first bound the size of the tree generated by
Algorithm 2 and then bound the bit complexity.

Theorem 7. Let T be the tree generated by Algorithm 2. Then

|T| = O

(

n+ ∑
z is a root ofp

log
1

σ(p,z)

)

,

where|T| denotes the number of nodes ofT.

Proof. The argument is a minor modification of an argument in (Eigenwillig et al., 2006). The
nodes ofT at depthd correspond to intervals of length 2−d. We useIv to denote the interval
corresponding to nodev. If v is an internal node,var(p∗, I+

v ) > 1 andvar(p∗, Iv) ≥ 1. For a root
z= x+ iy of p∗ and depthd, thecanonical interval for z at depth dis such thatx∈ [k2−d,(k+
1)2−d). Thenk = ⌊x2d⌋. We call a nodev of T canonicalif Iv is canonical for one of the roots
contained in the two-circle figure ofI+

v . If v is canonical, the parent ofv is too. The canonical
subtreeTc of T consists of all internal canonical nodes. In order to bound the size ofT, we show
first that |T| = O(|Tc|) and then estimate the size of the canonical subtree. SinceT is a binary
tree, it suffices to estimate the number of internal nodes.

We define a mapping from internal nodes to canonical internalnodes. LetI be any internal
node. IfI contains a real root,I is canonical and we mapI to itself. So assume thatI contains no
real root. Thenvar(p∗, I)≥ 2, sincevar(p∗, I) = 1 implies the existence of a real root contained in
I , and hence the two-circle figure ofI contains a pair of complex rootsx± iy. LetK be the interval
of lengthw(I) that is canonical forx± iy. Since the projection of the two-circle figure onto the
real axis is contained in an interval of length(

√
3/2)w(I), K is either equal toI or adjacent toI .

The rootsx± iy are clearly contained in the two-circle figure ofK and hencevar(p∗,K) > 1. We
mapI to K. At most three intervals are mapped toK in this way.

We conclude that the number of internal nodes of the Descartes tree is at most 3 times the
number of internal nodes of the canonical subtree.

We will next estimate the size of the canonical subtree. Consider a leafv of the canonical
subtree and letz be a root ofp∗ corresponding to this leaf. If there are several,z is the root
with minimal value ofσ(p∗,z). Since the canonical subtree consists only of internal nodes of the
Descartes tree, we havevar(p∗, I+

v ) > 1 and henceσ(p∗,z) ≤ w(I+
v ) ≤ 5w(Iv). The depthdv is
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equal to log1/w(Iv). Thusdv ≤ log5+ log1/σ(p∗,z). Since any root ofp∗ is associated with at
most one leaf of the canonical tree, we conclude

|Tc| = O

(

n+ ∑
z is a root ofp∗

log
1

σ(p∗,z)

)

= O

(

n+ ∑
z is a root ofp

log
1

σ(p,z)

)

,

where the last equality follows from the fact that corresponding roots ofp andp∗ have distance
at most 9n

√µ from each other and that 9n
√µ ≤ σ(p)/12. 2

The bound on the tree size readily translates into a bound on the bit complexity of Algorithm
2.

Theorem 8. Let q be be a polynomial with|qn| ≥ 1, and|qi | ≤ 2τ−1 for all i. If a quantityσ with
√

σ(q) ≤ σ ≤ σ(q) is known, the bit complexity of isolating the real roots ofq is

O(n4(τ + log(1/σ(q)))2) .

The coefficients ofq need to be approximated with O(n(τ + log1/σ(q))) bits after the binary
point.

Proof. All roots of q have modulus at mostB :=2τ . Hence the polynomialp(x) = q(4Bx−2B)
has its real roots in(1/4,3/4). The root separations are scaled by 4B and the coefficients ofp
have O(nτ) bits before the binary point. Also,|p| ≥ 1. We setµ :=min((σ/(4B))/108,2−7)n ≤
min(σ(p)/108,2−7)n andε := µ/(n+2)≤ µ |p|/(n+2). Then

log(1/ε) = O(n(τ + log1/σ(q))) .

So the coefficients ofp∗ have length O(n(τ + log1/σ(q))). The size of the Descartes tree is

O

(

n+ ∑
z is a root ofp

log
1

σ(p,z)

)

= O

(

n+nlog
B
σ

)

= O(n(τ + log1/σ(q))) ,

and its depth is bounded by O(τ + log(1/σ(q))). In each node of the tree,n2 additions are
performed and the coefficient size grows byn. So the total growth in coefficient length isn(τ +
log1/σ(q)), and hence the coefficient length is O(n(τ + log1/σ(q))) at all nodes. We conclude
that the bit complexity is

O(|T| ·n2 ·n(τ + log1/σ(q))) = O(n4(τ + log(1/σ(q)))2) .

2

4.2. The Case of Unknown Separation

Algorithm 2 works fine as long as 9n
√µ ≤ min(1/8,σ(p)/12). How can we ensure this con-

dition (or a similar condition) or how can we learn that it is not satisfied?
Is the smallest length of an interval generated by the subdivision algorithm a good indicator

of σ(p)? For the standard Descartes algorithm (Algorithm 1) this isnot the case, as the fol-
lowing example shows. Letp(x) = (4x−4x+1+ δ 2) = (2x−1− iδ )(2x−1− iδ ) with δ ≈ 0.
This polynomial has a pair of conjugate complex roots at 1/2± iδ/2 and hence separationδ/2.
However,var(p,(0,1)) = 2 andvar(p,(0,1/2)) = var(p,(1/2,1)) = 0. Thus the algorithm ends
with intervals of length 1/2, although the separation may be arbitrarily small. The situation is
different for Algorithm 2. For it, the length of the shortestinterval produced by the algorithm is
a good indicator of the separation.

9
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Fig. 2.I = (a,b), I+ = (c,d), andLn denotes the Obreshkoff lensLn(I+). The height ofLn at endpoint ofI
is at leasth, whereh = 2w(I) tan(π/(2(n+2))) ≥ 2w(I)/(n+2) ≥ w(I)/n. By Theorem 1,var(p∗, I+) is
at least the number of roots ofp∗ in the rectangleI × [−hi,+hi].

Lemma 9. Algorithm 2 splits no interval of lengthσ(p∗)/5 or less and refines at least one
interval to a length less thannσ(p∗).

Proof. We have already shown the first part. For the second part, we distinguish cases. Ifσ(p∗)
is equal to the distance of two real roots, letI be the separating interval computed for one of
them. Thenw(I)≤ σ(p∗)/2 because otherwiseI+ would contain both roots andI would be split.

If σ(p∗) is equal to the imaginary coordinate of a nonreal root, letI be the canonical leaf for
this root. Thenvar(p∗, I+) ≤ 1 and henceσ(p∗) ≥ w(I)/n, see Figure 2. 2

Assume now that we run Algorithm 2 with some value ofµ that is known to satisfyµ ≤ 2−7n,
but not known to satisfyµ ≤ (σ(p)/108)n, and the algorithm does not generate an interval of
length less than 120n n

√µ. Thennσ(p∗) > 120n n
√µ by Lemma 9 and henceσ(p∗) > 120 n

√µ and
σ(p) > σ(p∗)−18 n

√µ > 108n
√µ . In other words, if the algorithm does not generate an interval

of length less than 120n n
√µ , we have a proof that the precondition forµ was satisfied. Actually,

a more refined argument shows that we can use the thresholdL0 = 18n n
√µ. Let us call an interval

short if its length is less thanL0 andlongotherwise.

Lemma 10. If Algorithm 2 generates no short interval,O is a set of isolating intervals for the
real roots ofp.

Proof. Since no short interval is produced, we havenσ(p∗)> 18n n
√µ and henceσ(p∗)> 18 n

√µ.
Since corresponding roots ofp andp∗ are less than 9n

√µ apart,p andp∗ have the same number
of real roots. Also, each interval inO contains a real root ofp. It remains to argue disjointness of
the expanded intervals.

Let I andJ be two intervals inO∗. If I andJ are singletons, they have distance at leastσ(p∗)
from each other. By the above,σ(p∗) > 18 n

√µ .
So assume, that at least one of the intervals is not a singleton, sayI . We may also assume

w(I) ≥ w(J). SinceI andJ are inO∗, both contain a real root ofp∗. If I+ would containJ, it
would contain two real roots, and we would havevar(p∗, I+) ≥ 2. SoI would be split. ThusI+

does not containJ and hence is disjoint fromJ (sincew(I) ≥ w(J)). Thus the distance ofI andJ
is at least 2w(I). Also, I is long and hencew(I) ≥ 18 n

√µ . 2

Algorithm 3 shows the Descartes algorithm for a real polynomial pwith bitstream coefficients.
It embeds Algorithm 2 into a loop that determines an appropriate value ofµ . We initializeµ to
2−7n. In any iteration, we run Algorithm 2 on anε-approximatep∗ of p, whereε ≤ µ |p|/(n+2),
and start interval(0,1). If a short interval is produced, we squareµ and repeat. Otherwise, we
return the expanded versions of the isolating intervals ofp∗. How small canµ become?

10



Algorithm 3 Descartes Algorithm for Real Polynomials

Require: p = ∑0≤i≤n pixi and all roots ofp lie in a disc of radius 1/4 centered at 1/2+0i. Real
roots are distinct.

Ensure: returns isolating intervals for the real roots ofp.

µ = 2−7n;
while (true) do

chooseε ≤ µ |p|/(n+2) and letp∗ be anε-approximate ofp;
run Algorithm 2 onp∗ and start intervalI = (0,1); //we do not guaranteeµ ≤ (σ(p)/108)n

if the algorithm does not produce a short intervalthen
exit from the loop;

else
µ = µ2;

end if
end while
returnO :=

{

Ĩ ; I ∈ O∗}

Lemma 11. Algorithm 3 stops with

µ ≥ min

(

2−7n,

(

σ(p)

100n

)2n
)

.

Proof. If the algorithm stops in the first iteration, it stops withµ = 2−7n. So assume that the
algorithm performs more than one iteration. By Lemma 9, no interval of length less thanσ(p∗)/5
is split. Thus, if an iteration with a particular value ofµ is not the last, we must have 18n n

√µ ≥
σ(p∗)/5 or µ ≥ (σ(p∗)/(90n))n.

Consider now any iteration withµ < (σ(p)/(100n))n ≤ (σ(p)/200)n. Thenσ(p∗)≥ σ(p)−
18 n

√µ ≥ (9/10)σ(p) and henceµ < (σ(p∗)/(90n))n. Thus the iteration must be the last and
thereforeµ ≥ (σ(p)/(100n))n in the next to last iteration. Sinceµ is squared from one iteration
to the next, we haveµ ≥ (σ(p)/(100n))2n in the last iteration. 2

In order to determine the bit complexity of Algorithm 3 we follow the same approach as for
Algorithm 2, that is, we will first estimate the size of the canonical subtree (for the definition
see the proof of Theorem 7). Consider a leafv of the canonical subtree and letz be a root ofp∗

corresponding to this leaf. If there are several, letz be the one with minimal value ofσ(p∗,z).
The leafv is eitherregular, that is, the extended intervals of its children exhibit at most one sign
variation, orforced, that is, we would get a short interval if we further subdividev.

Consider a regular leaf first. Thenv is an internal node of the Descartes tree,var(p∗, I+
v ) > 1

and thereforeσ(p∗,z) ≤ w(I+
v ) ≤ 5w(Iv). The depthdv is equal to log(1/w(Iv)) andw(Iv) ≥ L0.

Thusdv ≤ log5+ log1/max(L0,σ(p∗,z)). Next consider a forced leaf. Its interval has length at
most 2L0 and thusσ(p∗,z) ≤ w(I+

v ) ≤ 5w(Iv) ≤ 10L0. The depthdv is equal to log1/L0, and
hencedv ≤ log10+ log1/max(L0,σ(p∗,z)). Since any root ofp∗ is associated with at most one
leaf of the canonical tree, we conclude

|Tc| = O

(

n+ ∑
z is a root ofp∗

log
1

max(L0,σ(p∗,z))

)

.

11



We next argue that we may replacep∗ by p in the expression above. Fix a correspondence
between the rootsz∗i of p∗ and the rootszi of p such that|z∗i − zi | ≤ 9 n

√µ. Thenσ(p∗,z∗i ) > L0
impliesσ(p,zi) ≤ 2σ(p∗,z∗i ) andσ(p∗,z∗i ) < L0 impliesσ(p,zi) ≤ 2L0. Thus we may replace
p∗ by p in the bound above. The following Lemma summarizes the discussion.

Lemma 12. In any iteration, the size of the Descartes tree of Algorithm3 is

O

(

n+ ∑
z is a root ofp

log
1

max(L0,σ(p,z))

)

,

whereL0 = 18n n
√µ.

Now again, letq be a polynomial with|qn| ≥ 1 and|qi | ≤ 2τ−1 for all i. All roots of q have
modulus at mostB :=2τ . Sop(x) = q(4Bx−2B) has its real roots in(1/4,3/4). Also root sepa-
rations are scaled by 4B and the coefficients ofp have O(nτ) bits before the binary point.

We start withµ = 2−7n, µ is squared from one iteration to the next, and we terminate with
µ ≥ min(2−7n,(σ(p)/(100n))2n) (see Lemma 11).

In an iteration with a particular value ofµ , the coefficients ofp∗ have length O(nτ + log1/µ).
The depth of the tree is bounded by log1/L0 = O((log1/µ)/n). We use Lemma 12 to bound its
size by

O

(

n+nlog
1

max(18n n
√µ ,σ(p))

)

= O(nlog1/σ(p)+ log1/µ) .

In each node of the tree we have to performn2 additions and the coefficient size grows byn.
So the total growth in coefficient length is log1/µ , thus the coefficient length is O(nτ + log1/µ)
at all nodes. We conclude that the bit complexity for a fixed value of µ is

O
(

(nlog1/σ(p)+ log1/µ) ·n2 · (nτ + log1/µ)
)

.

The quantity log(1/µ) starts at 7n, doubles in each iteration, and ends at O(n(logn+ τ +
log(1/σ(q))). Therefore the total bit complexity is O(n4(logn+ τ + log1/σ(q))2). Except for
the logn term, this is the same as in the case of known separation.

Theorem 13. Let q be be a polynomial with|qn| ≥ 1, and|qi | ≤ 2τ−1 for all i. The bit complexity
of isolating the real roots ofq is

O

(

n4
(

logn+ τ + log
1

σ(q)

)2
)

.

The coefficients ofq need to be approximated with O(n(τ + log1/σ(q))) bits after the binary
point.

5. Multiple Roots: A Special Case

We give a partial extension to polynomials with multiple roots. It requires additional inputs
m0 andk0 (obtained, for example, by a precomputation step) and worksunder theprecondition
that p has exactlym0 distinct real roots, thatk0 is the degree of the gcd ofp and its derivative
p′, and thatm0 ≥ 2 andk0 ≥ 1. If k0 = 0, p has no multiple roots and we know already how to
isolate the roots ofp. If m0 ≤ 1, there is no need for isolation. Thepostconditionis as follows:

(1) If the precondition holds, the algorithm either returnsa set ofm0 intervals or a failure
indicator. If intervals are returned, all but one interval is marked as “simple root”.

12



(2) If the algorithm returns a set of intervals, these intervals isolate the real roots ofp. More-
over,p has at most one multiple real root and the interval marked “simple root” contains
simple roots.

(3) If the algorithm returns a failure indicator, any real root of p has multiplicity at mostk0.
In other words, if the precondition holds andp has a real root of multiplicityk0+1 (which is then
the unique multiple real root), the algorithm must return isolating intervals. If the precondition
holds andp has several multiple real roots, the algorithm must return afailure indicator. If the
precondition holds,p has at most one multiple real root, and this root has multiplicity less than
k0 +1, the algorithm may either return a failure indicator or isolating intervals.

Why are we interested in an algorithm with this seemingly strange functionality? The answer
is that it is exactly this behavior that is needed in computing cylindrical algebraic decompositions
(cad for short) of (semi-)algebraic sets (Eigenwillig et al., 2007; Berberich et al., 2008). For a
general definition and discussion of cads we refer the readerto the books (Basu et al., 2006;
Caviness and Johnson, 1998). Here, we briefly review cads foralgebraic curves in the plane and
how the functionality defined above is useful for computing them.

Let f ∈ Z[x,y] be a polynomial in two variables and letS= V( f ) be its zero set. A cad forf
consists of decompositionsSi of R

i , i = 1,2, into semi-algebraic sets such that (1) they-projection
of each cell inS2 projects onto a cell inS1 and such that (2)S is the union of cells inS2.

The construction of a cad forf consists of two steps. In the first step, thex-coordinates of the
critical points of f , i.e., the points wherey-projection does not describe a local diffeomorphism,
are determined. The critical points off are self-intersections, isolated points, points with vertical
tangents, . . . . Theirx-coordinates are among the real roots of they-resultant of f and fy, the
partial derivative off with respect toy. Let C be the set of these roots;C decomposes the real
line into singletons and open intervals between these singletons, see Figure 3. The decomposition
S1 of R

1 consists of these singletons and intervals. We call the singletonscritical cells and the
intervalsnoncritical cells. In the second step, the lifting step, one constructs above each cell of
S1 a stack of cells of S2 and also computes adjacency information between cells in neighboring
stacks.

Above each cell ofS1, V( f ) consists of a fixed number of connected components. For each
cell Γ of S1, letxΓ be a point in the cell. IfΓ is an interval, we may choosexΓ arbitrarily inΓ. The
connected components aboveΓ correspond to the real roots off (xΓ,y). For a noncritical cellΓ,
f (xΓ,y) is square-free. Hence, we can determine its real roots by either a Descartes algorithm for
integer polynomials if we succeeded in choosing a rationalxΓ or the approximate root isolation
algorithm described in the preceding section.

However, in case of a criticalΓ, we are faced with two problems: First,f (xΓ,y) ∈ R[y] may
have multiple real roots, and second, its coefficients are algebraic numbers that are nonrational
in general. Thus makingf (xΓ,y) square-free is a costly computation. IfS is in generic position
with respect to the projection direction (genericity can beachieved by a suitably chosen, e.g.,
randomly chosen, linear transformationx := x+ ay), f (xΓ,y) will have only one multiple root
and moreover the numberm0 of distinct real roots and the multiplicityk0+1 of the multiple root
can be obtained in a preprocessing step; see (Eigenwillig etal., 2007) for details. The number
m0 of distinct real roots is also valid if the projection direction is not generic. However, for a
nongeneric projection direction, there will be more than one multiple root. We conclude that for
resolving the nature off (x,y) abovexΓ, the functionality defined at the beginning of the section
is precisely what is needed. When the algorithm stops with a failure indication, the projection
direction is not generic. A different linear transformation is tried and the computation is repeated.
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Fig. 3. The critical points of the setS= V( f ) are indicated as crosses. Theirx-coordinates areα0 andα1.
The αi decompose the real line into five cells, namely(−∞,α0), {α0}, (α0,α1), {α1}, and (α1,+∞).
Above each cell,V( f ) consists of a fixed number of connected components; in the example, there is one
component above{α0} and there are two components above each other cell. The points β0, β1 andβ2 are
arbitrary points in the three open intervals. They-values of points overβi are simple roots of the square
free polynomial f (βi ,y). However, the polynomialsf (α j ,y) may have multiple roots. If forf (α j ,y), the

numbermof points aboveα j and the degreek0 of gcd( f (α j ,y),
∂
∂y f (α j ,y)) is known, the algorithm of this

section isolates the roots off (α j ,y) or returns a failure indicator in the case wheref (α j ,y) has more than
one multiple root; these multiple roots may be real or complex.

Kerber et al. (Kerber, 2006; Eigenwillig et al., 2007; Eigenwillig, 2008) showed that a vari-
ant, which they termedm-k bitstream-Descartes method, of the randomized bitstream-Descartes
method (Eigenwillig et al., 2005; Eigenwillig, 2008) can provide the desired functionality. How-
ever, they did not fully analyze the bit complexity of the variant. We will show that a variant of
our algorithm can provide the desired functionality. We also analyze its bit complexity.

The idea is simple. Consider a sufficiently good approximationp∗ of p. Then simple real roots
of p turn into simple real roots ofp∗ and nonreal roots ofp turn into nonreal roots ofp∗. A real
root z of p of multiplicity ℓ turns intoℓ roots (counted with multiplicity) ofp∗ contained in a
discD of radius 9n

√µ with centerz. The roots ofp∗ corresponding toz may be real or nonreal,
simple or multiple. We need to discern the roots ofp∗ corresponding to multiple real roots ofp
from those corresponding to simple real roots ofp∗. If µ is small enough, we will be able to do
so.

Again, we assume that all roots ofp are contained in a disc of radius 1/4 with center 1/2+0i.
and have our algorithm driven by a parameterµ . We start withµ = 2−7n. For a fixed value of
µ , let p∗ be anε-approximate ofp, whereε ≤ µ |p|/(n+ 2). Then|p− p∗| < µ |p|. As in the
preceding section, letL0 = 18n n

√µ. We call an intervalI long if w(I) ≥ L0 andshortotherwise.
Consider any long subdivision intervalI . What should we expect as the value ofvar(p∗, I+)?

Corresponding roots ofp andp∗ lie within 9 n
√µ of each other and 9n

√µ is small compared toL0.
Thus if a real rootz of multiplicity k lies in I , I+ shouldsee all kroots ofp∗ corresponding toz
and hencevar(p, I+) should be at leastk. This suggests that we should return a failure indicator
as soon asvar(p∗, I+) ≤ k0 for all subdivision intervals.

Consider next a long subdivision interval that is almost short, i.e.,L0 ≤w(I) < 2L0. If 9 n
√µ ≪

σ(p), we might hope thatI+ only seesthek roots ofp∗ corresponding tozand hencevar(p, I+)

14
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Fig. 4.I =(a,b), I+ =(c,d), andLn denotes the Obreshkoff lensLn(I+). For anyε ≤ 2w(I)sin(π/(2n+4)),
we haveUε (I) ⊆ Ln whereUε (I) denotes theε-neighborhood ofI .

should be exactlyk. This suggests that we can return isolating intervals if we have foundm0−1
intervalsIℓ with var(p∗, Iℓ) = 1 and one intervalI with var(p∗, I) = k0 +1.

Assume now that none of the two cases above arises, i.e., if weconsider all subdivision inter-
valsI with L0 ≤ w(I) < 2L0, there is still at least one that counts at leastk0 +1 sign changes and
there are nom0−1 yet that count only one. We should then conclude that our current approxi-
mation is not good enough. So we stop, squareµ , and start over.

The following theorem shows thatvar(p∗, I+) is strongly related to the number of roots ofp
nearI and captures the intuition underlying the reasoning above.

Theorem 14. Let p be a polynomial of degreen≥ 2 and roots of modulus less than one and let
p∗ be an approximation ofp with |p− p∗| < µ |p| andµ ≤ 2−7n. Let I be a long interval and let
mI be its midpoint. Then

# of roots ofp in Uw(I)/(2n)(I) ≤ var(p∗, I+) ≤ # of roots ofp in U6nw(I)(mI ).

Roots are counted with multiplicity and, for a setS, Uε(S) is theε-neighborhood ofS.

Proof. Let v be the number of roots ofp in Uw(I)/(2n)(I). ThenUw(I)/(2n)+9 n√µ(I) contains at least
v roots ofp∗. AssumeUw(I)/(2n)+9 n√µ(I) ⊆ Ln(I+). Thenvar(p∗, I+) ≥ v by Theorem 1. For the
inclusion, we refer to Figure 4. We haveUε(I) ⊆ Ln(I+) if ε ≤ 2w(I)sin(π/(2(n+ 2)). Since
sin(π(/(2(n+ 2)) ≥ 1/(n+ 2) ≥ 1/(2n), the inclusion certainly holds wheneverε ≤ w(I)/n.
Thus it holds forε = w(I)/(2n)+9 n

√µ . This proves the first inequality.
By Theorem 1,var(p∗, I+) is bounded by the number of roots ofp∗ in An(I+) and hence by the

number of roots ofp in X :=U9 n√µ(An(I+)). Let r be the radius of the Obreshkoff discsDn for I+.
The extended sine theorem yields 2r = w(I+)/sin(π/(n+2))< (n+2)w(I+)/2≤2n·5w(I)/2=

5nw(I). Hence the distance frommI to an arbitrary point in X is at most 5nw(I)+9 n
√µ . This is

at most 6nw(I). 2

The next lemma is a consequence of Theorem 14. It tells us under what circumstances an
isolating intervalI for a real root ofp∗ gives rise to an isolating intervalĨ for a simple real root
of p.
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Lemma 15. Let I either be a long interval withvar(p∗, I+) = var(p∗, I) = 1 or a singleton
interval3 [m∗,m∗] for which p∗(m∗) = 0 andvar(p∗, I+

ℓ ) = 1= var(p∗, I+
r ) = 1 for long intervals

Iℓ = ( ,m∗) andIr = (m∗, ) ending and starting inm∗, respectively. TheñI contains a unique zero
of p.

If I andI ′ are disjoint long intervals satisfying one of the conditions above,̃I andĨ ′ are disjoint.

Proof. In the first case,I contains a zero ofp∗, and, by Theorem 14,Uw(I)/2n(I) contains at
most one root ofp. Since corresponding roots have distance less than 9n

√µ and 9n
√µ ≤ w(I)/2n,

U9 n√µ(I) contains exactly one root ofp. This root must be real and hence lies inĨ . The second
case is also a direct consequence of Theorem 14 applied to theintervalIℓ or Ir , respectively.

We come to the second part. IfI and I ′ are singletons, they are at leastL0 apart and hence
Ĩ and Ĩ ′ are disjoint. So assume thatI is not a singleton andw(I) ≥ w(I ′). If I+ containsI ′,
var(p∗, I+) ≥ 2, a contradiction. SoI+ does not containI and henceI and I ′ are at least 2L0

apart. Thus̃I andĨ ′ are disjoint. 2

We can now give the details of them-k deterministic bitstream-Descartes algorithm; see Al-
gorithm 4 for pseudocode. The algorithm maintains an outputlist and a candidate output list. The
candidate output list contains singleton intervals[m,m] with p∗(m)= 0 that have not been verified
yet to correspond to simple roots ofp. We have an approximationp∗ of p with |p− p∗| < µ |p|
andµ ≤ 2−7n. We proceed in rounds. At the beginning of each round all active intervals have
the same length. We first process the active intervalsI with var(p∗, I+) = 1. We remove them
from the list of active intervals and addI to the output list ifvar(p∗, I) = 1, otherwise we dis-
card them. A singleton interval[m,m] is moved from the candidate output list to the output list
if there is no active interval either ending or starting inm. Then we process the intervalsI with
var(p∗, I+) ≥ 2. We splitI at mI into Iℓ andIr . A subintervalIℓ or Ir is added to the list of active
intervals if its extensionI+

ℓ or I+
r counts at least one sign change. The singleton[mI ,mI ] is added

to the candidate output list, if it is a zero ofp∗. At all times, letJ denote the minimal interval
containing all active intervals. We stop when we reach one ofthe following situations:
• (R) When a short interval is added to the list of active intervals, we squareµ and start over.
• (F) var(p∗, I+) ≤ k0 for all active intervalsI . We stop and return a failure indicator.
• (S) m0 − 1 intervalsI1, . . . , Im0−1 have been added to the output listO∗, there is at least one

active intervalI with var(p∗, I+) ≥ k0 +1, and the expanded intervalsĨ1, . . . , Ĩm0−1, andJ̃ are
disjoint.4 We return the expanded intervals and markĨ1 to Ĩm0−1 as “simple root”.
We proceed to the analysis. We proceed in two steps. We first show that if the precondition

holds and the algorithm stops in cases (F) or (S), the postcondition holds. In a second step, we
show that the algorithm terminates if the precondition holds.

Correctness:Assume that the algorithm stops. If it stops in case (F), every active intervalI counts
at mostk0 sign changes forI+. Thus, by Theorem 14, there is no real root ofp of multiplicity
k0 +1.

So assume that it stops in case (S). The output listO∗ containsm0−1 intervalsI1, . . . , Im0−1,
J is nonempty and contains an intervalI with var(p∗, I+) ≥ k0 + 1, and the extended intervals
Ĩ1, . . . , Ĩm0−1, andJ̃ are disjoint. AnI j is either a singleton[m,m] with p∗(m) = 0 and there exists

3 A real zerom∗ of p∗ might correspond to a multiple zero ofp. For such a zero, at least one of the subdivision intervals
havingm∗ as an endpoint counts more than one sign change.
4 The subdivision intervals containing a multiple root ofp are contained inJ. As long asO∗ has fewer thanm0 − 1
elements orJ̃ is not disjoint from the extended intervals inO∗, there might be more than one multiple real root.
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Algorithm 4 m-k deterministic bitstream-Descartes Algorithm

Require: p = ∑0≤i≤n pixi and all roots ofp lie in a disc of radius 1/4 centered at 1/2+0i; p has
exactlym0 distinct real roots andk0 = deggcd(p, p′) ≥ 1.

Ensure: postcondition is as stated at the beginning of Section 5

µ = 2−7n;
while (true) do

chooseε ≤ µ |p|/(n+2) and letp∗ be anε-approximate ofp;
O∗ := /0; CO∗ := /0; output and candidate output list
A :={(0,1)}; Anew:= /0; Anew is the A of the next iteration
while (true) do

all intervals in A have the same length
remove allI with var(p∗, I+) = 1 fromA; move the ones withvar(p∗, I) = 1 toO∗;
move any[m,m] from CO∗ to O∗ for which there is no active interval with endpointm;
if var(p∗, I+) ≤ k0 for all I ∈ A then

return a failure indicator; Case (F)
end if
Let J be a minimal interval containing all active intervals;
if O∗ contains exactlym0−1 intervalsI1 to Im0−1, var(p∗, I+) ≥ k0 + 1 for at least one
active intervalI , andĨℓ is disjoint fromJ̃ for all ℓ then

returnĨ1 to Ĩm0−1 andJ̃; Case (S)
end if
while (A 6= /0) do

let I ∈ A be arbitrary; removeI from A;
addIℓ to Anew if var(p∗, I+

ℓ ) ≥ 1; addIr to Anew if var(p∗, I+
r ) ≥ 1; add[mI ,mI ] to CO∗

if p∗(mI ) = 0;
end while
A :=Anew; Anew:= /0;
if A contains a short intervalthen

µ = µ2; break from the inner while loop and restart with a better approximation;
end if

end while
end while

no active interval with endpointmor it satisfiesvar(p∗, I j) = var(p∗, I+
j ) = 1. Then according to

Lemma 15, each̃I j contains exactly one real root ofp. By the precondition,p has exactlym0 real

roots. Letz0 be the remaining real root ofp and letk be its multiplicity. Then 1≤ k≤ k0 +1 by

assumption. We need to show thatz0 is contained inJ̃. By definition,z0 6∈ I j for 1≤ j ≤ m0−1.

Consider the chainK0, K1, . . . of subdivision intervals containingz0 in their closure. All of them

are long and hencevar(p∗,K+
i ) ≥ k for all i by Theorem 14. If some interval containingz0 in

its closure is active when the algorithm terminates,z0 ∈ J̃. So assume, there is no active interval

containingz0 in its closure when the algorithm terminates. Thenk = 1 and either an interval

containingz0 was added toO∗ or the singleton[z0,z0] was added toCO∗ and then moved toO∗.

In either case, we have a contradiction.
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Termination:The approximation parameterµ is calledsmall if

µ ≤ min

((

σ(p)

72·25n2

)n

,2−7n
)

.

If µ is small andn≥ 2, we have:
• 4L0 = 72n n

√µ ≤ σ(p)/(25n)≤ σ(p)/50.
• 9 n

√µ ≤ σ(p)/2. Hence nonreal roots ofp correspond to nonreal roots ofp∗, simple real roots
of p correspond to simple real roots ofp∗, and a real rootz of p of multiplicity k corresponds
to k roots ofp∗ in a disk of radius 9n

√µ with centerz.
• 4L0 ·6n+2L0 ≤ σ(p)/4 and henceI ⊆U6nw(I)(I) ⊆Uσ/4(mI ) for anyI with w(I) ≤ 4L0.

Theorem 16. Let p be a polynomial of degreen and roots with modulus less than one. Let
k0 = deggcd(p, p′), let µ be small, and letp∗ be such that|p∗− p|< µ |p|. Then for any interval
I with L0 ≤ w(I) < 4L0, var(p∗, I+) ≤ k, wherek is the multiplicity of the unique real root ofp
in Uσ/4(mI ); k = 0, if the disk contains no real root.

Proof. Sinceµ is small andw(I) < 4L0, we haveU6nw(I)(mI ) ⊆ Uσ/4(mI ). The latter disk can
contain at most one root ofp. The root must be real and, by Theorem 14,var(p∗, I+) is at most
its multiplicity. 2

Theorem 17. Let p be a polynomial of degreen and roots of modulus at most one;p has ex-
actly m0 distinct real roots andk0 = deggcd(p, p′). If µ is small, Algorithm 4 terminates. The
algorithm terminates with

µ ≥ min

(

(

σ(p)

72·25n2

)2n

,2−7n

)

.

Proof. If the algorithm does not terminate, a short interval is added to the list of active intervals.
Just before this happens, any active intervalsI has lengthL with L0 ≤ L < 2L0 andvar(p∗, I+) is
at least two. We argue that the algorithm would have terminated in this iteration.

If p has no real root of multiplicityk0 + 1, var(p∗, I+) ≤ k0 for all intervals of lengthL by
Theorem 16 and the algorithm terminates in case (F).

So assume thatp has exactlym0−1 simple real rootsz1, . . . ,zm0−1 and one real root, sayz0,
of multiplicity k0 +1 with k0 ≥ 1. Fori with 1≤ i ≤ m0−1, letz∗i be the simple real root ofp∗

corresponding tozi . Then under the given assumptions the following Lemma holds.

Lemma 18. The output list contains exactlym0−1 intervalsI1 to Im0−1. The extended intervals
Ĩ j contain one real root ofp each and are disjoint. Each proper interval on the output list has
length at least 2L0.

Proof. For i with 1≤ i ≤ m0−1, letKi be a subdivision interval of length 2L containingz∗i in its
closure. Thenvar(p∗,K+

i ) ≤ 1 by Theorem 16. Ifz∗ ∈ Ki , var(p∗,Ki) = 1 and hence some an-
cestor ofKi was added to the output list. Ifz∗ is an endpoint ofKi , var(p∗,Ki) = 0 = var(p∗,K′

i ),
whereK′

i is the other subdivision interval of length 2L with endpointz∗ and hence[z∗,z∗] was
added to the output list. We conclude that the output list contains at leastm0−1 elements. Also,
by Lemma 15, each extended interval contains exactly one real root of p and the extended inter-
vals are disjoint. The same Lemma shows that the output list cannot containm0 or more elements,
as the extension of each of them would contain a simple root ofp. 2
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The preceding Lemma shows that the intervalsĨ j , 1≤ j ≤ m0−1, isolate the simple roots of
p. It remains to show that̃J containsz0 and is disjoint from thẽI j ’s.

Lemma 19. J̃ containsz0 and is disjoint from anỹI j on the output list.

Proof. Let I0 be a subdivision interval of lengthL containingz0 in its closure; ifz0 is a sub-
division point, there is a choice of two intervals forI0, otherwise it is uniquely defined. Then
var(p∗, I+

0 ) ≥ k0 +1 by Theorem 14. ThusI0 is active and hencẽJ containsz0.
Now consider any active intervalI ; Uσ/4(mI ) contains at most one root ofp andvar(p∗, I+)

is at most the multiplicity of this root (Theorem 16). Asvar(p∗, I+) > 1, this root has to bez0.
Thus |mI − z0| ≤ σ/4 and hencew(J̃) ≤ σ/4+ w(I)/2+ 18n n

√µ ≤ σ/4+ 36n n
√µ < σ . If J

would contain an intervalI j from the output list, theñJ would contain the simple real rootzj of
p. But this contradictsσ ≥ |z0−zj | asJ̃ also containsz0 andw(J̃) < σ .

We must still exclude the case thatJ shares an endpoint with any proper intervalI j from the
output list. So assume thatI j shares an endpoint with some active intervalI . Thenw(I) = L <

2L0 ≤ w(I j). ThusI+ ⊆ I+
j and hencevar(I+

j ) ≥ var(I+) > 1, a contradiction. 2

It remains to prove the bound onµ . If the algorithm terminates in the first iteration, it stops
with µ = 2−7n. If µ is small in an iteration, the iteration is the last. So if the algorithm requires
more than one iteration,µ is not small in the next to last iteration. The bound onµ follows. 2

We turn to the complexity analysis. The analysis of Algorithm 3 essentially carries over. Both
algorithms start with log(1/µ) = 7n and doubleµ in every iteration. For any fixed value ofµ ,
they generate the same subdivision tree and hence incur the same cost of

O
(

(nlog1/σ(p)+ log1/µ) ·n2 · (nτ + log1/µ)
)

bit operations, as shown in Section 4.2. Algorithm 3 stops with µ ≥min((σ(p)/(100n))2n,2−7n),
the algorithm of this section stops withµ ≥ min((σ(p)/(72·25n2))2n,2−7n). In both cases,
log(1/µ) stops at O(n(logn+τ + log(1/σ(q))). Therefore we obtain the same bit complexity as
for Algorithm 3.

Theorem 20. Let q be a polynomial with root separationσ(q), |qn| ≥ 1, and|qi | ≤ 2τ−1 for all
i. Furthermore, letm0 be the number of distinct real roots ofq andk0 = deggcd(q,q′). The bit
complexity of them-k deterministic bitstream-Descartes algorithm is

O

(

n4
(

logn+ τ + log
1

σ(q)

)2
)

.

The coefficients ofq need to be approximated with O(n(τ + log1/σ(q))) bits after the binary
point.

We remark that no bound on the bit complexity of them-k randomized bitstream-Descartes
algorithm of Eigenwillig et al. (2007) is available. As thisalgorithm is the main workhorse in
the algorithms of (Eigenwillig et al., 2007; Berberich et al., 2008) for determining the topology
of algebraic curves and surfaces, our complexity result maypave the way for determining the
complexity of the entire topology computation.
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6. Conclusions

The randomized bitstream-Descartes method as presented in(Eigenwillig et al., 2005) has
already shown its effectiveness and strength in practice; it is a main ingredient of the algorithms
of (Eigenwillig et al., 2007; Berberich et al., 2008) for cad(Cylindrical Algebraic Decompo-
sition) computation. An implementation will become available in (CGAL, 2008). It remains to
be seen, whether our deterministic algorithm is competitive with its randomized cousin. A first
implementation is encouraging.

Collins and Krandick (1992) have described a natural extension of the Descartes algorithm for
isolating all (complex) roots of a polynomial. Does their algorithm generalize to the bitstream
model and can it be extended to the situation where multiple roots are allowed and the number
of distinct complex roots is given as an additional input?

The continued fraction method (Akritas, 1980; Tsigaridas and Emiris, 2008) is an alternative
to the Descartes method for root isolation. It would be interesting to generalize it to the bitstream
model and to them-k scenario.
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