
Lecture 5

A First Geometric Kernel

This lecture will be quite different from the preceding one.There will be no definitions and theorem; this
lecture will be about software design. We will address two issues: how to package basic geometric objects
into a geometric kernel and how to make use of approximate arithmetic in an exact kernel. We will also study
the efficiency of such a kernel. We will see that generic programming techniques support a clean separation
between algorithms and basic objects through the introduction of kernel without sacrificing efficiency.

5.1 A Kernel

A kernelcomprises basic geometric objects and operations on these objects. It reveals nothing about the
representation of the objects. Amodelof the kernel is a concrete implementation of the objects in the
kernel. Algorithms are formulated in terms of the kernel andcan be instantiated with any model of the
kernel.

The most basic kernel offers only one kind of object, namely points in the plane, and a small collection
of operations on them, e.g., the orientation function of three points, lexicographic comparison of points, and
access to the Cartesian coordinates of a point. Depending onthe programming language, it may also have
to provide additional functions. For example,C++ requires constructors and an assignment operator. In
pseudo-code (we will see theC++ formulation in the next section) we might write:

concept basic_kernel {
object: point_2d;
operations: NT x_coordinate();

NT y_coordinate();
ops required by the language

int orientation(point_2d,point_2d,point_2d);
}

In programming language parlor (TODO: is this correct, or isit only C++ parlor), a kernel is aconcept. A
concept is a collection of objects, operation on these objects, and a set of requirements. In our example, the
requirements are that the orientation-function actually computes the orientation of its arguments and that the
access function return the Cartesian coordinates. We mightalso require that these functions run in constant
time.

1

2 LECTURE 5. A FIRST GEOMETRIC KERNEL

You have seen the notion of a concept in your math-courses. For example, a vector space is a concept.
It comprises a ringF (another concept), a setV, a special element 0∈ V, and two operations+ and ·.
Addition realizes a commutative group with neutral element0. And multiplication by a scalar takes a field
elementk and a vectorv∈V and yields a vectork·v such that 0·v = 0, 1·v = v, (k1 +k2) ·v = k1 ·v+k2 ·v,
(k1k2) ·v = k1 · (k2 ·v)), k · (v+w) = k ·v+k ·w. A model of this concept is any concrete vector space, e.g.,
F = R andV = R

d. Addition of vectors and multiplication by a scalar is component-wise. The notions of
linear-independence and basis are defined for vector-spaces. The theorem that all bases of a vector space
have the same cardinality is proved generally for vector spaces. Of course, the theorem then holds for any
concrete vector space.

The role of a concept in programming is exactly the same, except that we do not prove theorems but
write algorithms. We write algorithms in terms of concepts and the algorithm will then run for any model
of the concept. For example, we could formulate our convex hull algorithm from Lecture?? as follows:get the inputs

algorithm convex_hull based on concept linear_kernel {
// the algorithm as in Lecture XXX using the names in the kerne l;
point_2d p; // declaration of a point p
...
}

5.2 Concrete Kernels

We discuss models of the basic kernel. We have many choices. We may present points by their Cartesian
coordinates or by their homogeneous coordinates or as the intersection of two lines or We discuss the
first choice and ask the reader to work out the second choice inthe exercises.

In the Cartesian model, a point has two data membersx and y, the access functionsx_coord and
y_coord returnx andy, respectively, and orientation is implemented by formula XXX from Lecture??.
The Cartesian coordinates come from a number type NT which supports exact computations of signs. We
have seen three such types in Lecture??: arbitrary precision integers, rational numbers, and arbitrary preci-
sion floating point numbers without rounding.

model Cartesian_Points of concept basic_kernel {
struct point_2d { NT x,y;
real x_coord() { return x; }
real y_coord() { return y;}
}
int orientation(point_2d p, point_2d q, point_2d r){ retur n sign ; }
}

Exercise 0.1: Formulate a model of the basic kernel, in which points are represented by their homogeneous
coordinates. ♦

An Unusual Kernel: To see the flexibility of the approach, we give another example. The example may
seem weird, but is actually inspired by reduction of Delaunay triangulations to lower convex hulls in one
higher dimension. We will see this reduction in Lecture??.

We are interested only in points on the parabolay = x2. So a point has a single data member, itsx-
coordinate. They-coordinate is computed as the square of thex-coordinate. Orientation can be computed

5.3. C++ FORMULATION∗ 3

simpler than in the general case. Assume thatp lies left ofq. Thenp, q, r form a right turn, ifr lies between
p andq.

model parabola_points of concept basic_kernel {
struct point_2d{ NT x;
int x_coord(){ return x; }
int y_coord(){ return xˆ2; }
}
int orientation(point_2d p, point_2d q, point_2d r)
{ if (p.x_coord() < q.x_coord() < r.x_coord) return -1;

....
}
}

5.3 C++ Formulation∗

We use pseudocode to introduce the notions concept and model. In C++ , the formulation is as follows.

//! a simple cartesian kernel for points (and operations on t hem)
template < class NT >
class Cartesian_kernel {

public:

// GEOMETRIC TYPES (ref-counted ones would be better)

//! Type of Point (with cartesian x- and y-coordinates)
class Point {

public:

//! default constructor constructs origin
Point() :

m_x(0), m_y(0) // assumes that NT is constructible from Smal lIntConstant
{}

//! constructor from two given coordinates
Point(NT x, NT y) :

m_x(x), m_y(y) // assumes that NT is copy-constructible
{}

//! returns x-coordinate of point
NT x() const { return m_x; }

//! returns y-coordinate of point

4 LECTURE 5. A FIRST GEOMETRIC KERNEL

NT y() const { return m_y; }

private:

//! x-coordinate of point
NT m_x;

//! y-coordinate of point
NT m_y;

};

// GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& q, const Point & r) const {

NT det = (q.x() - p.x()) * (r.y() - p.y()) -
(q.y() - p.y()) * (r.x() - p.x());

if (det < 0) { // assumes that NT has operator<(int)
return -1;

} else if (det > 0) { // assumes that NT has operator>(int)
return 1;

}

return 0;

}

};

C++purists would probably criticize the code above on two accounts. Identifiers for template param-
eters should not be used as types. It is advised to useNT_ as parameter and to declare a public type
typedef NT_ NT subsequently. It is also recommended to implement predicates and constructions ’func-
tors and to use an enumeration type instead of ‘int’ as the result type of the orientation function.

//! a simple kernel for points on a parabola (and operations o n them)
template < class NT >
class Parabolic_kernel {

public:

// GEOMETRIC TYPES (ref-counted ones would are encouraged)

class Point {

5.3. C++ FORMULATION∗ 5

public:

//! default constructor constructs origin
Point() :

m_x(0) // assumes that NT is constructible from SmallIntCon stant
{}

//! constructor from one given coordinate
Point(NT x) :

m_x(x) // assumes that NT is copy-constructible
{}

//! returns x-coordinate of point
NT x() const { return m_x; }

//! returns y-coordinate of point
NT y() const { return m_x * m_x; }

private:

//! x-coordinate of point
NT m_x;

};

// GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& q, const Point & r) const {
std::cerr << "Parabolic Orientation not complete!" << std: :endl;

if (p.x() < q.x()) { // assumes that NT has operator<(int)
if (q.x() < r.x()) {

return -1;
}

}
// else
return 0;

}
};

Next comes the convex hull algorithm. We give only a stub.

//! class stub for convex hull
template < class Kernel >
class Convex_hull {

6 LECTURE 5. A FIRST GEOMETRIC KERNEL

public:

//! the kernel’s point type
typedef typename Kernel::Point Point;

template < class InputIterator, class OutputIterator >
OutputIterator operator()(InputIterator begin, InputIt erator end,

OutputIterator result) {

/ * CONVEX HULL algorithm for points in [begin,end) * /

InputIterator it = begin;

while (it != end) {

Point p = * it;

// do process p

// next
it++;

}

return result;
}

};

and finally the main program.

#include <iostream>
#include <list>

#include "KMCartesian_kernel.h"
#include "KMParabolic_kernel.h"
#include "KMConvex_hull.h"

template < class NT >
void cartesian() {

typedef Cartesian_kernel< NT > Kernel;

typedef typename Kernel::Point Point;

5.3. C++ FORMULATION∗ 7

// construct some points
Point o;
Point p1(-1,1); // requires NT to be ConstructibleFromSmal lInt
Point p2(-5,5);
Point pl(-2,3);
Point pr(-4,1);

// orientation of points
Kernel kernel;
std::cout << "Orientation(o,p1,p2) = " << kernel.orientat ion(o,p1,p2) << std::endl;
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat ion(o,p1,pl) << std::endl;
std::cout << "Orientation(o,p1,pr) = " << kernel.orientat ion(o,p1,pr) << std::endl;

std::list< Point > input;
input.push_back(o);
input.push_back(p1);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

// Convex hull
typedef Convex_hull< Kernel > CH;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul l));

}

template < class NT >
void parabolic() {

typedef Parabolic_kernel< NT > Kernel;

typedef typename Kernel::Point Point;

// construct some points
Point o;
Point p1(1); // requires NT to be ConstructibleFromSmallIn t
Point p2(5);
Point pl(2);
Point pr(4);

// orientation of points

8 LECTURE 5. A FIRST GEOMETRIC KERNEL

Kernel kernel;
std::cout << "Orientation(o,p1,p2) = " << kernel.orientat ion(o,p1,p2) << std::endl;
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat ion(o,p1,pl) << std::endl;
std::cout << "Orientation(o,p1,pr) = " << kernel.orientat ion(o,p1,pr) << std::endl;

std::list< Point > input;
input.push_back(o);
input.push_back(p1);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

// Convex hull
typedef Convex_hull< Kernel > CH;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul l));

}

int main() {

std::cout << "CARTESIAN with ’int’" << std::endl;
cartesian< int >();
std::cout << std::endl;

std::cout << "CARTESIAN with ’unsigned int’ - evil, because of ’-1’ in input"
cartesian< unsigned int >();
std::cout << std::endl;

std::cout << "CARTESIAN with ’double’" << std::endl;
cartesian< double >();
std::cout << std::endl;

std::cout << "PARABOLIC with ’int’" << std::endl;
parabolic< int >();
std::cout << std::endl;

std::cout << "PARABOLIC with ’double’" << std::endl;
parabolic< double >();
std::cout << std::endl;

}

5.4. A FLOATING POINT FILTER 9

Exercise 0.2: Redo the above in the programming language of your choice. ♦

5.4 A Floating Point Filter

Exact arithmetic is much slower than hardware floating pointarithmetic. However, floating point arithmetic
is only approximate and we have seen in Lecture?? that a naive use of floating point arithmetic can lead
to disaster. In Lecture?? we learned how to estimate the error errors in floating point computations. We
will now put this knowledge to use. We will obtain an exact kernel that is also efficient. We will give
experimental evidence in the next section and theoretical analysis in Lecture??.

The idea is to preface the evaluation of any expression (herethe expression defining the orientation
predicate) by an evaluation with floating point arithmetic.We also compute a bound on the roundoff error.
If the absolute value of the float value is larger than the bound on the roundoff error, we return the sign of
the float value. Otherwise, we evaluate the expression with exact arithmetic. This scheme is called afloating
point filter. The following code realizes this strategy for the orientation predicate.

int orientation(point_2d p, point_2d q, point_2d r){
NT px = p.xcoord(), py = p.ycoord(), qx = q.xcoord(), ;
// evaluation in floating point arithmetic
float pxd = fl(px), pyd = fl(py), qxd = fl(qx),;
float Etilde = (qxd - pxd) * (ryd - pyd) - (qyd - pyd) * (rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), aqxd = abs(qxd), ;
float mes = (aqxd + apxd) * (aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 7 * uu * mes) return (sign Etilde);
// exact evaluation
NT E = (qx - px) * (ry - py) - (qy - py) * (rx - px);
return sign E;
}

According to Lemma??, this implementation is correct.

Exercise 0.3: Formulate a floating point filter for points represented by their homogeneous coordinates.♦

5.5 Performance of the Floating Point Filter

We study the performance of the floating point filter under twoaspects. How often is it necessary to resort
to exact computation and how much do we save in running time? This section is based on [7, Section 9.7.4].

[[TODO: repeat the experiments and make them available on the companion page of the book.]]
Table 5.1 sheds light on the first question. The following experiment was performed. First, a setSof n

random points with 52 bit Cartesian coordinates either on the unit circle or in the unit square was generated.
A random point in the unit square is generated by choosing itscoordinates as follows: Generate a random
integer i ∈ [0,252− 1..] and then set the coordinate toi/252. The generation of points on the unit circle
is the topic of Section 5.6. Then the Cartesian coordinates were truncated tod bits for different values of
d, i.e., a pointp with Cartesian coordinates(px, py) was turned into a pointp′ with Cartesian coordinates
(
⌊

2d px
⌋

,
⌊

2d py
⌋

). Let S′ be the resulting set of points. The Delaunay triangulation of S′ was constructed . Explain Algorithm

10 LECTURE 5. A FIRST GEOMETRIC KERNEL

Compare Orientation Side of circle
d N number exact % number exact % number exact %

8 1883 157814 0 0.00 19909 0 0.00 7242 0 0.00
10 5298 187379 0 0.00 58263 0 0.00 20736 5743 27.70
12 8383 216679 0 0.00 89307 0 0.00 35931 24693 68.72
22 9999 230556 0 0.00 98899 0 0.00 46410 42454 91.48
32 9999 231656 0 0.00 90664 137 0.15 40003 39797 99.49
42 9999 231665 0 0.00 91205 152 0.17 40083 40083 100.00
∞ 9999 231665 125 0.05 44279 87 0.20 13082 13082 100.00

8 9267 230060 0 0.00 130431 0 0.00 64176 0 0.00
10 9953 236690 0 0.00 147814 0 0.00 77409 136 0.18
12 9996 236661 0 0.00 149233 0 0.00 78693 105 0.13
22 10000 235727 0 0.00 149057 0 0.00 78695 113 0.14
32 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15
42 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15
∞ 10000 235729 574 0.24 149059 0 0.00 78695 115 0.15

Table 5.1: Efficacy of floating point filter: The top part contains the results for random points on the unit
circle and the lower part contains the results for random points in the unit square. In each case we generated
10000 points. The first column shows the precision (= number of binary places) used for the homogeneous
coordinates of the points, the second column contains the number of distinct points in the input. The other
columns contain the number of tests, the number of exact tests, and the percentage of exact tests performed
for the compare, the orientation, and the side of circle primitive.

Table 5.1 confirms the theoretical considerations from the beginning of the section. For each test there
is a value ofd below which the floating point computation is able to decide all tests. For the orientation test
this value ofd is somewhere between 22 and 32 (we argued above that the valueis 47/2) and for the side of
circle test the value is somewhere between 8 and 10 (we ask thereader in the exercises to compute the exact
value). Also, the percentage of the tests, where the filter fails, is essentially an increasing function ofd.

The compare, orientation, and side of circle functions seemto be tests of increasing difficulty. This is
easily explained. The compare function decides the sign of alinear function of the Cartesian coordinates of
two points, the orientation function decides the sign of a quadratic function of the Cartesian coordinates of
three points, and the side of circle function decides the sign of a polynomial of degree four in the Cartesian
coordinates of four points. The larger the degree of the polynomial of the test, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the unit circle are much more difficult than the
random points in the unit square, in particular, for the sideof circle test. Again this is easily explained.

For the side of circle test, four almost co-circular points or four exactly co-circular points are the most
difficult input, and for sufficiently larged the situation that

∣

∣Ẽ
∣

∣ ≤ B andB > 1 arises frequently. Points on
(or near) the unit circle cause no particular difficulty for the compare and the orientation function. Points on
(or near) a segment would prove to be difficult for the orientation test.

For random points in the unit square the filter is highly effective for all three tests; the filter fails only
for a very small percentage of the tests.

We turn to the question of how much a filter saves with respect to running time. The following exper-

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 11

d Float kernel Rational kernel RK without filter

8 0.73 1.12 4.35
10 1.3 2.43 7.8
12 1.85 5.09 11.18
22 2.17 7.93 14.4
32 2.02 7.79 13.29
42 2.01 8.32 15.46
∞ 2∗ 5.09 9.19

8 2.58 3.59 16.33
10 2.8 3.98 18.36
12 2.83 4.04 18.63
22 2.82 4.02 20.51
32 2.86 3.96 20.77
42 2.83 4.01 26.02
∞ 2.83 3.99 33.2

Table 5.2: Efficiency of the floating point filter: The top partcontains the results for random points on the
unit circle and the lower part contains the results for random points in the unit square. The first column
shows the precision (= number of binary places) used for the Cartesian coordinates of the points. The other
columns show the running time with the floating point filter, with the rational kernel with the floating point
filter, and with the rational kernel without its floating point filter. A star in the second column indicates that
the computation with the floating point kernel produced an incorrect result.

iment continues the preceding experiment. The computationof the Delaunay diagram was performed in
three different ways:

• naive use of floating point arithmetic: the truncated Cartesian coordinates were stored as double
precision floating point numbers and Delaunay diagram algorithm was run with double precision
arithmetic.

• exact integer arithmetic with a floating point filter.

• exact integer arithmetic without the floating point filter turned off.

. Table 5.2 summarizes the outcome. Let us first look at individual columns.
The running time with the floating point kernel does not increase with the precision of the input. Ob-

serve, that ford < 22 and points on the unit circle, the input contains a significant fraction of multiple points
(see the second column of Table 5.1) and hence the first three lines really refer to simpler problem instances.
For d ≥ 22 and points on the unit circle and ford ≥ 10 and points in the unit square the input contains
almost no multiple points and the running times are independent of the precision. The computation with the
floating point kernel is not guaranteed to give the correct result. In fact, it produced an incorrect result in
one of the experiments (indicated by a∗).

The running time with the rational kernel and no filter increases sharply as a function of the precision.
This is due to the fact that larger precision means larger integers and hence larger computation time for
the integer arithmetic. We see one exception in the table. For points on the unit circle the computation on

12 LECTURE 5. A FIRST GEOMETRIC KERNEL

d 43 44 45 46 47 48 49 50 51 52

diff C C C F F F F F F F
easy C C C C C C C C C C

Table 5.3: Correctness of floating point computation: A detailed view for d ranging from 43 to 52. The
second row corresponds to points on the unit circle and the last row corresponds to points in the unit square.
A “C” indicates that the computation produced the correct result and a “F” indicates that a incorrect result
was produced.

the exact points is faster than the computation with the rounded points. The explanation can be found in
Table 5.1. The number of tests performed is much smaller for exact inputs than for rounded inputs. Observe,
that for points that lie exactly on a circle any triangulation is Delaunay.

The running time for the rational kernel (with the filter) increases only slightly for the second set of
inputs and increases more pronouncedly for the points on theunit circle. This is to be expected because the
filter fails more often for the points on the unit circle. skip

Let us next compare columns.
The comparison between the last two columns shows the efficiency gained by the floating point filter.

The gains are impressive, in particular, for the easier set of inputs. For random points in the unit square,
the computation without the filter is between five and almost ten times slower. For random points on a unit
circle the gain is less impressive, but still substantial. The running time without the filter is between two and
five times higher than with the filter.

The comparison between the second and the third column showswhat we might gain by further improv-
ing our filter technology. For our easier set of inputs the computation with the rational kernel is about 50%
slower than the computation with the floating point kernel. This increase in running time stems from the
computation of the error boundB in the filter. For our harder set of inputs the difference between the ratio-
nal kernel and the floating point kernel is more pronounced. This is to be expected since the rational kernel
resorts to exact computation more frequently for the harderinputs. The floating point kernel produced the
incorrect result in one of the experiments.

[[The remainder of this section is obsolete. The discussionis superseded by the the work on controlled
perturbation. We should add an experiment where the points are all on a small segment of the circle.]]

We were very surprised when we first saw Table 5.2. We expectedthat the floating point computa-
tion would fail more often, not only when the full 52 bits are used to represent Cartesian coordinates of
points. After all, the rational kernel resorts to integer arithmetic most of the time already for much smaller
coordinate length and the difficult set of inputs.

Exercise 0.4: Repeat the experiments of this section for points that lie ona segment. Predict the outcome
of the experiment before making it. ♦

We generated Table 5.3 to gain more insight1. It gives more detailed information ford ranging from
43 to 52. For our difficult inputs the floating point computation fails whend is 46 or larger and for our

1While writing this section, our work was very much guided by experiments. We had a theory of what floating point filters can
do. Based on this theory we had certain expectations about the behavior of filters. We made experiments to confirm our intuition.
In some cases the experiments contradicted our intuition and we had to revise the theory.

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 13

easy inputs it never fails. Ford < 45 and both sets of inputs it produces the correct result. Ourtheoretical
considerations give a guarantee only ford < 10.

In the remainder of this section we try to explain this discrepancy. We find the explanation interesting2

but do not know at present whether it has any consequences forthe design of floating point filters.
Let D = 2d and consider four pointsa, b, c, andd on the unit circle3. We use pointsa′, b′, c′, andd′ with

integer Cartesian coordinates⌊axD⌋, ⌊ayD⌋, The side of circle function is the sign of the determinant
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ax bx cx dx

ay by cy dy

a2
x +a2

y b2
x +b2

y c2
x +c2

y d2
x +d2

y

∣

∣

∣

∣

∣

∣

∣

∣

as will be shown in Section??. The value of this determinant is a homogeneous fourth degree polynomial
p(ax,ay, . . .). We need to determine the sign ofp(a′x,a

′
y, . . .). Let us relatep(ax,ay, . . .) andp(a′x,a

′
y, . . .).

We have
a′x = ⌊axD⌋ = axD+ δax,

where−1 < δax ≤ 0, and analogous equalities hold for the other coordinates.Thus

p(a′x,a
′
y, . . .) = p(axD+ δax,ayD+ δay, . . .)

= p(axD,ayD, . . .) + q3(axD,δax,ayD,δay, . . .)

+ q2(axD,δax,ayD,δay, . . .) + q1(axD,δax,ayD,δay, . . .)

+ q0(axD,δax,ayD,δay, . . .),

whereqi has degreei in theaxD, ayD, . . . and degree 4− i in theδax, δay, Since the four pointsa, b, c,
andd are co-circular, we have

p(axD,ayD, . . .) = D4p(ax,ay, . . .) = 0.

Up to this point our argumentation was rigorous. From now on we give only plausibility arguments.
Since the valuesaxD may be as large asD and since the valuesδax are smaller than one, the sign of
p(a′x,a

′
y, . . .) is likely to be determined by the sign ofq3. Sinceq3 is a third degree polynomial in the

axD we might expect its value to be aboutf ·D3 for some constantf . The constantf is smaller than one but
not much smaller. Expansion of the side of circle determinant shows that the coefficient ofδax in q3 is equal
to

∣

∣

∣

∣

∣

∣

1 1 1
byD cyD dyD

(b2
x +b2

y) ·D2 (c2
x +c2

y) ·D2 (d2
x +d2

y) ·D2

∣

∣

∣

∣

∣

∣

= D3(cy−ay−by),

where we used the fact thatp2
x + p2

y = 1 for a pointp on the unit circle. We conclude thatf has the same
order as they-coordinate of a random point on the unit circle and hencef ≈ 1/2.

We evaluatep(a′x,a
′
y, . . .) with floating point arithmetic. By Theorem??, the maximal error in the

computation ofp is g·D4 ·2−53 for some constantg; the actual error will be less. The argument in the proof
of Lemma?? shows thatg ≤ 28. Thus we might expect that the floating point evaluation ofp(a′x,a

′
y, . . .)

gives the correct sign as long asg·D4 ·2−53 < f ·D3 or d < 53− logg+ log f ≈ 53−8−1 = 44. This agrees
quite well with Table 5.3.

2We all know from our physics classes that the important experiments are the ones that require a new explanation.
3In the final round of proof-reading we noticed that we used with two meanings. In the sequeld is a point, except in the final

sentence of the section.

14 LECTURE 5. A FIRST GEOMETRIC KERNEL

(0,1)

p

p′

Figure 5.1: Pointp= (px, py) lies on the unit circle, pointp′ = (a,0) lies on thex-axes, and points(0,1), p,
andp′ lies on a common line. .

5.6 Points on a Circle

A point on the unit circle has Cartesian coordinates(cosα ,sinα), where 0≤ α < 2π. In general, sines and
cosines are non-rational numbers, e.g., cosπ/4 =

√
2/2. In this section, we will show how to find a dense

set of points with rational Cartesian coordinates on the unit circle. For anyα and anyε > 0, we will show
how to find a triple(a,b,w) of integral homogeneous coordinates such that

a2 +b2 = w2 and
∣

∣α −α ′∣
∣ ≤ ε where cosα ′ = a/w and sinα ′ = b/w.

A triple (a,b,w) of integers witha2 +b2 = w2 is called a Pythagorean triple.

LEMMA 1. For any rational point p= (px, py) on the unit circle there is a rational a and integers n and m
such that

(px, py) =

(

2a
a2 +1

,
a2−1
a2 +1

)

=

(

2mn
n2 +m2 ,

n2−m2

n2 +m2

Proof. Stereographic projection is a one-to-one correspondence between the points on the unit circle and
the points onx-axes, see Figure 5.1. Ifp = (px, py) lies on the unit circle,p′ = (a,0) lies on thex-axis, and
(1,0), p andp′ lie on a common line, then

a =
px

1− py
and px =

2a
a2 +1

, py =
a2−1
a2 +1

as a simple computation shows. Thus, ifp has rational coordinates,p′ has rational coordinates, and ifp′ has
rational coordinates,p has rational coordinates. We conclude that every rational point on the unit circle has
coordinatespx = 2a./(a2 +1) andpy = (a2−1)/(a2 +1) for some rationala. Let a = n/m. Then

px =
2(n/m)

(n/m)2 +1
=

2nm
n2 +m2 and py =

a2−1
a2 +1

=
(n/m)2−1
(n/m)2 +1

=
n2−m2

n2 +m2 .

Exercise 0.5: Why can there be no Pythagorean triple(a,b,c) with a andb odd? ♦

5.6. POINTS ON A CIRCLE 15

If we would not insist ona being rational, we could simply choosea such that

cosα =
2a

a2 +1
or a =

1
cosα

±
√

1
cos2 α

−1.

The two choices fora correspond to the two possible values for sinα . However, we wanta to be rational.
An obvious way to obtain a rational approximation with errorat most 2−s is as follows. We compute a
floating point approximation ˜a of a with error at most 2−s as shown in Section??; ã is the desired rational
approximation. The fraction obtained in this way has a numerator and denominator ofs bits.

One can obtain usually obtain better approximations with fewer bits as we discuss next. The less mathe-
matically inclined reader may proceed directly to the end ofthe section. We first show that there is always a
good rational approximation with small denominator and then show how to compute such an approximation.

THEOREM 2 (Dirichlet, 1842).For any real x and any positiveε there is a rational number p/q such that

q≤ 1
ε

and

∣

∣

∣

∣

x− p
q

∣

∣

∣

∣

<
ε
q
.

Proof. If ε ≥ 1, we simply takep = ⌊x⌋ andq = 1. So assumeε < 1. Let M = ⌊1/ε⌋ and consider the
numbers. For eachi, 0≤≤ M, let fi be the fractional part ofix, i.e., fi = ix−⌊ix⌋. The fractional parts lie
between 0 and 1 and hence there are distincti and j such that

∣

∣ f j − fi
∣

∣ ≤ 1/M. Assumej > i. Then

|(j − i)x− (⌊ jx⌋−⌊ix⌋)| =
∣

∣ f j − fi
∣

∣ ≤ 1
M

and hence
∣

∣

∣

∣

x− ⌊ jx⌋−⌊ix⌋
j − i

∣

∣

∣

∣

≤ 1
(j − i)M

≤ ε
j − i

.

Setq = j − i andp = ⌊ jx⌋−⌊ix⌋.

The standard technique for approximating a real by a rational is to compute its continued fraction ex-
pansion. For anx∈ R≥0, define a sequencex0, x1, x2, . . . of reals and a sequencea0, a1, a2, . . . of integers as
follows.

x0 = x a0 = ⌊x0⌋

x1 =
1

x0−a0
a1 = ⌊x1⌋

x2 =
1

x1−a1
a2 = ⌊x2⌋

...
...

If somexi is integral, the sequence ends withai . Otherwise, the sequence is infinite. Clearly,xi − ai < 1
for all i. If ai = xi , the sequence ends, ifai < xi , xi+1 > 1 and henceai+1 ≥ 1. We call[a0;a1,a2, . . .] the
continued fraction expansionof x. We will next derive some properties of this expansion. Observe first that
xi = ai +1/xi+1 wheneverxi+1 is defined and hence

x = x0 = a0 +
1

x1
= a0 +

1

a1 +
1

x2

= a0 +
1

a1 +
1

a2 +
1

x3

=

16 LECTURE 5. A FIRST GEOMETRIC KERNEL

A finite continued fraction defines a rational number. The converse is also true as we will see below. The
continued fraction[a0;a1, . . . ,an] is a rational number. We call it then-th convergent ofx. The convergents
of a continued fraction have many nice properties.

LEMMA 3. Let x∈ R≥0 and let [a0;a1,a2, . . .] be the continued fraction expansion of x. Define p−2 = 0,
q−2 = 1, p−1 = 1, q−1 = 0, and

pn = anpn−1 + pn−2 and qn = anqn−1 +qn−2 for n≥ 0.

Then

1.
pn

qn
= [a0;a1, . . . ,an] is the n-th convergent of x.

2. pnqn−1− pn−1qn = (−1)n+1 for n≥−1.

3.
∣

∣

∣

pn+1
qn+1

− pn
qn

∣

∣

∣
= 1

qnqn+1
for n≥ 0.

4. qn ≥ (3/2)n−1 for n≥ 0.

5. p−2
q−2

< p0
q0

< p2
q2

< .. . ≤ x≤ . . . p3
q3

< p1
q1

< p−1
q−1

.

6. The n+2-th convergent is closer to the n+1-th convergent than to the n-th convergent.

7. x− pn/qn is strictly decreasing in n.

Proof. Let zbe variable. Define
Mn(z) = [a0;a1, . . . ,an +z].

We will show that
Mn(z) =

pn + pn−1z
qn +qn−1z

by induction onn. Forn = 0, we have

M0(z) = a0 +z=
p0 + p−1z
q0 +q−1z

.

For n+1≥ 1, we have

Mn+1(z) = Mn(
1

an+1 +z
) =

pn + pn−1
1

an+1+z

qn +qn−1
1

an+1+z

=
an+1pn + pn−1+ pnz
an+1qn +qn−1 +qnz

=
pn+1 + pnz
qn+1 +qnz

.

Mn(0) is then-th convergent ofx. Thus[a0;a1, . . . ,an] = pn/qn. This proves (1).
We turn to (2). Observe first thatp−1q−2− p−2q−1 = 1 = (−1)0. Forn≥ 0, we have

pnqn−1− pn−1qn = (anpn−1 + pn−2)qn−1− pn−1(anqn−1−qn−2)

= pn−2qn−1− pn−1qn−2 = (−1) · (−1)n = (−1)n+1.

(3) follows from a simple calculation.
∣

∣

∣

∣

pn+1

qn+1
− pn

qn

∣

∣

∣

∣

=
|pn+1qn− pnqn+1|

qnqn+1
=

1
qnqn+1

.

5.6. POINTS ON A CIRCLE 17

(4) is a simple induction.q0 = 1≥ (3/2)−1 andq1 = a1 ≥ (3/2)0 and forn≥ 2,

qn = anqn−1 +qn−2 ≥ (3/2)n−2 +(3/2)n−3 = (3/2)n−3(3/2+1) = (3/2)n−35/2≥ (3/2)n−1.

We turn to (5). Assume inductively thatpn/qn ≤ x ≤ pn−1/qn−1 for evenn. This is certainly true for
n = −2. Mn(z) is an increasing function ofz, Mn(0) = pn/qn, Mn(∞) = pn−1/qn−1, andMn(1/xn+1) = x.
Now an+1 = ⌊xn+1⌋ and hence 1/an+1 ≥ 1/xn+1. Thus thatx≤ pn+1/qn+1 = Mn(1/an+1) < pn−1/qn−1. A
similar argument showspn/qn < pn+2/qn+2 ≤ x.

For (6), we consider the case of evenn. We have

pn+2

qn+2
− pn

qn
=

pn+1

qn+1
− pn

qn
−

(

pn+1

qn+1
− pn+2

qn+2

)

=
1

qnqn+1
− 1

qn+1qn+2
>

1
qn+1qn+2

=
pn+1

qn+1
− pn+2

qn+2
,

where the inequality follows fromqn+2 ≥ qn+1 +qn > 2qn. The proof for oddn is similar.
(7) is an easy consequence of (6). Consider an evenn. Thenpn/qn < pn+2/qn+2 ≤ x≤ pn+1/qn+1 and

pn+1

qn+1
−x≤ pn+1

qn+1
− pn+2

qn+2
≤ pn+2

qn+2
− pn

qn
≤ x− pn

qn
.

The convergentspn/qn are in lowest terms, because otherwise we could not havepnqn−1 − pn−1qn =
(−1)n+1. The even convergents converge tox from below and the odd convergents converge tox from above.
We have

pn

qn
=

p0

q0
+ ∑

1≤i≤n

pn

qn
− pn−1

qn−1
= a0 + ∑

1≤i≤n

(−1)i+1

qiqi−1
.

Thusx = a0 + ∑i≥1(−1)i+1/(qiqi−1).

LEMMA 4. Let x∈ R≥0 and let[a0;a1,a2, . . .] be the continued fraction expansion of x. The convergents are
optimal approximation of x in the following sense: Assume q< qn. Then

∣

∣

∣

∣

x− p
q

∣

∣

∣

∣

≥
∣

∣

∣

∣

x− pn

qn

∣

∣

∣

∣

for all p. The continued fraction expansion is finite if and only if x is rational.

Proof. Let nbe minimal such thatqn > q. The convergentspn−1/qn−1 andpn/qn bracketx and have distance
1/(qn−1qn) from each other. This is smaller than 1/qn−1q. If p/q is closer tox thanpn/qn then the distance
of p/q to eitherpn−1/qn−1 or pn/qn must be smaller than the distance between these points. However,

min(

∣

∣

∣

∣

p
q
− pn

qn

∣

∣

∣

∣

,

∣

∣

∣

∣

p
q
− pn−1

qn−1

∣

∣

∣

∣

≥ min(
1

qqn
,

1
qqn−1

) =
1

qqn−1

and hencep/q cannot lie closer tox thanpn/qn.
If the fraction is finite,x is rational. So assumex is rational, sayx = p/q. If the expansion is infinite,

there is a convergentpn/qn with qn > q. Thenpn/qn is closer tox thanp/q. This is a contradiction.

18 LECTURE 5. A FIRST GEOMETRIC KERNEL

It is now clear how to proceed. We compute an approximation of

a =
1

cosα
±

√

1
cos2 α

−1

using floating point arithmetic (of sufficient precision) and then compute a rational approximation ofa of
sufficient precision.

Exercise 0.6: Give more details on how to compute a rational approximationof a with error at mostε . ♦

Exercise 0.7: Extend the previous exercise and show how to guarantee an approximation of cosα with error
at mostε (an approximation ofα with error at mostε . ♦

5.7 Notes

Generic programming,

Determinants: Many geometric predicates, e.g., the orientation and the insphere predicates, are naturally
formulated as the sign of a determinant. The efficient computation of the signs of determinants has therefore
received special attention [4, 1, 2]. None of the methods is available in LEDA.

Specialized Arithmetics: The orientation predicate for points with integral homogeneous coordinates.

sign(pw·qw· rw) ·sign(pw· (qx· ry−qy· rx)−qw· (px· ry− py· rx)+ rw · (px·qy− py·qx)).

If the coordinates are less than 2L, the value of the orientation expression is at most 3·23L+1. With this
knowledge, one could try to optimize the arithmetic, i.e., instead of using a general purpose package for
the computation with arbitrary precision integers (such asthe class —integer—) one could design integer
arithmetic optimized for a particular bit length. This avenue is taken in [6, 8].

Section 5.6 is based on [3].
[[The following should go to the lectures on perturbation.]] What happens ifL is larger? The floating

point computation is able to deduce the sign ofE if
∣

∣Ẽ
∣

∣ > B. SinceE is twice the signed area (see Lemma??)
of the triangle with vertices(a,b,c), the floating point computation is able to deduce the correctsign for any
triple of points which span a triangle whose area is at least 8·2−53 ·22L+3/2. Devillers and Preparata [5]
have shown that for a random triple of points and forL going to infinity, the probability that the area of the
spanned triangle is at least 8·2−53 ·22L+3/2 goes to one. Thus for largeL and for triples of random points,
the floating point computation will almost always be able to deduce the sign ofE and exact computation
will be rarely needed.

Observe that the result cited in the previous paragraph depends crucially on the fact that the points are
chosen randomly. In an actual computation orientation tests will not be performed for random triples of
points even if the input consists of random points. It is therefore not clear what the result says about actual
computations.

Bibliography

[1] F. Avnaim, J.-D. Boissonnat, O. Devillers, and F. Preparata. Evaluating signs of determinants with
floating point arithmetic.Algorithmica, 17(2):111–132, 1997.

[2] H. Brönnimann, I. Emiris, V. Pan, and S. Pion. Computingexact geometric predicates using modular
arithmetic with single precision. InProceedings of 13th Annual ACM Symposium on Computational
Geometry (SCG’97), pages 174–182, 1997.

[3] J. Canny, B. Donald, and G. Ressler. A rational rotation method for robust geometric algorithms. In
A.-S. ACM-SIGGRAPH, editor,Proceedings of the 8th Annual ACM Symposium on Computational
Geometry (SCG ’92), pages 251–260, 1992.

[4] K. L. Clarkson. Safe and effective determinant evaluation. IEEE Foundations of Computer Sci., 33:387–
395, 1992.

[5] O. Devillers and F. Preparata. A probabilistic analysisof the power of arithmetic filters.Discrete &
Computational Geometry, 20:523–547, 1998.

[6] S. Fortune and C. van Wyk. Static analysis yields efficient exact integer arithmetic for computational
geometry.ACM Transactions on Graphics, 15:223–248, 1996. preliminary version in ACM Conference
on Computational Geometry 1993.

[7] K. Mehlhorn and S. Näher.The LEDA Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[8] J. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.Discrete
& Computational Geometry, 18:305–363, 1997.

19

