L ectureb

A First Geometric Kernd

This lecture will be quite different from the preceding ofighere will be no definitions and theorem; this
lecture will be about software design. We will address tvgniés: how to package basic geometric objects
into a geometric kernel and how to make use of approximatienaeitic in an exact kernel. We will also study
the efficiency of such a kernel. We will see that generic pogning techniques support a clean separation
between algorithms and basic objects through the intrémtucif kernel without sacrificing efficiency.

51 A Kernd

A kernelcomprises basic geometric objects and operations on thmgset® It reveals nothing about the
representation of the objects. Modelof the kernel is a concrete implementation of the objectshan t
kernel. Algorithms are formulated in terms of the kernel @ad be instantiated with any model of the
kernel.

The most basic kernel offers only one kind of object, namelyis in the plane, and a small collection
of operations on them, e.g., the orientation function ofé¢hpoints, lexicographic comparison of points, and
access to the Cartesian coordinates of a point. Dependinigegorogramming language, it may also have
to provide additional functions. For examplét+ requires constructors and an assignment operator. In
pseudo-code (we will see tl@&+ formulation in the next section) we might write:

concept basic_kernel {
object: point_2d;
operations: NT x_coordinate();
NT y_coordinate();
ops required by the language

int orientation(point_2d,point_2d,point_2d);
}

In programming language parlor (TODO: is this correct, dt anly C++ parlor), a kernel is @oncept A
concept is a collection of objects, operation on these thjand a set of requirements. In our example, the
requirements are that the orientation-function actualyputes the orientation of its arguments and that the
access function return the Cartesian coordinates. We ralgbtrequire that these functions run in constant
time.

2t the inputs

2 LECTURE 5. A FIRST GEOMETRIC KERNEL

You have seen the notion of a concept in your math-coursesexample, a vector space is a concept.
It comprises a ring= (another concept), a s#t, a special element @ V, and two operations- and -.
Addition realizes a commutative group with neutral elem@&nfnd multiplication by a scalar takes a field
elementk and a vector € V and yields a vectok-vsuch that Ov=0, 1-v=v, (k1 + kz) - v=Kki - V+ka -V,
(kiko) -v=Kki - (kz2-V)), k- (v+w) = k-v+k-w. A model of this concept is any concrete vector space, e.g.,
F =R andV = RY. Addition of vectors and multiplication by a scalar is compat-wise. The notions of
linear-independence and basis are defined for vector-spddee theorem that all bases of a vector space
have the same cardinality is proved generally for vectocepaOf course, the theorem then holds for any
concrete vector space.

The role of a concept in programming is exactly the same, mxtat we do not prove theorems but
write algorithms. We write algorithms in terms of conceptsl éhe algorithm will then run for any model
of the concept. For example, we could formulate our convebahgorithm from Lecture?? as follows:

algorithm convex_hull based on concept linear_kernel {
/I the algorithm as in Lecture XXX using the names in the kerne l;
point_2d p; /I declaration of a point p

}.
5.2 ConcreteKernes

We discuss models of the basic kernel. We have many choicesn&y present points by their Cartesian
coordinates or by their homogeneous coordinates or as t&esaction of two lines or We discuss the
first choice and ask the reader to work out the second choiteiaxercises.

In the Cartesian model, a point has two data memReasdy, the access functions _coord and
y_coord returnx andy, respectively, and orientation is implemented by formub@Xxfrom Lecture ??.
The Cartesian coordinates come from a number type NT whippats exact computations of signs. We
have seen three such types in Lect@Pearbitrary precision integers, rational numbers, andtebyi preci-
sion floating point numbers without rounding.

model Cartesian_Points of concept basic_kernel {
struct point_2d { NT x,y;

real x_coord() { return x; }

real y _coord() { return y;}

}

int orientation(point_2d p, point_2d q, point_2d r){ retur n sign v}

}

Exercise 0.1: Formulate a model of the basic kernel, in which points areasgnted by their homogeneous

coordinates. &

An Unusual Kernel: To see the flexibility of the approach, we give another examphe example may
seem weird, but is actually inspired by reduction of Delautteangulations to lower convex hulls in one
higher dimension. We will see this reduction in Lect@fe

We are interested only in points on the parabpta x*. So a point has a single data memberxits
coordinate. The-coordinate is computed as the square offtwordinate. Orientation can be computed

5.3. C++ FORMULATION* 3

simpler than in the general case. Assume phiags left ofg. Thenp, g, r form a right turn, ifr lies between
p andg.

model parabola_points of concept basic_kernel {
struct point_2d{ NT x;

int x_coord(){ return x; }

int y_coord(){ return x°2; }

}
int orientation(point_2d p, point_2d q, point_2d r)
{ if (p.x_coord() < g.x_coord() < r.x_coord) return -1,

}
}

5.3 Ct+ Formulation*

We use pseudocode to introduce the notions concept and mod#i+ , the formulation is as follows.
/I' a simple cartesian kernel for points (and operations on t hem)
template < class NT >
class Cartesian_kernel {
public:

// GEOMETRIC TYPES (ref-counted ones would be better)

/' Type of Point (with cartesian x- and y-coordinates)
class Point {

public:
/' default constructor constructs origin
Point() :
m_x(0), m_y(0) // assumes that NT is constructible from Smal [IntConstant
{

/I constructor from two given coordinates
Point(NT x, NT vy) :
m_x(x), m_y(y) // assumes that NT is copy-constructible

{}

/I returns x-coordinate of point
NT x() const { return m_x; }

/' returns y-coordinate of point

4 LECTURE 5. A FIRST GEOMETRIC KERNEL

NT y() const { return m_y; }
private:

/' x-coordinate of point
NT m_x;

/' y-coordinate of point
NT m_y;

h
/I GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& g, const Point & 1) const {

NT det = (q.x() - p.x()) * (ryQ - py0) -
(Q.y0 - p.y0) * (rxQ - p-xQ);

if (det < 0) { // assumes that NT has operator<(int)
return -1;

} else if (det > 0) { // assumes that NT has operator>(int)
return 1,

}

return O;

Ct+purists would probably criticize the code above on two aot®uldentifiers for template param-
eters should not be used as types. It is advised toNiseas parameter and to declare a public type
typedef NT_ NT subsequently. Itis also recommended to implement presfiGaid constructions 'func-
tors and to use an enumeration type instead of ‘int’ as thdtrgge of the orientation function.

/' a simple kernel for points on a parabola (and operations o n them)
template < class NT >
class Parabolic_kernel {
public:
/I GEOMETRIC TYPES (ref-counted ones would are encouraged)

class Point {

5.3. C++ FORMULATION*

public:

/I default constructor constructs origin
Point() :
m_x(0) // assumes that NT is constructible from SmallintCon

{}

/[! constructor from one given coordinate
Point(NT x) :
m_x(x) // assumes that NT is copy-constructible

{}

/! returns x-coordinate of point
NT x() const { return m_x; }

/' returns y-coordinate of point
NT y() const { return m_x * m_X; }

private:

/' x-coordinate of point
NT m_x;

/I GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& g, const Point

std::cerr << "Parabolic Orientation not complete!" << std:

if (p.x() < g.x()) { // assumes that NT has operator<(int)
if (@.x() < rx() {
return -1;
}
}

I/l else
return O;

Next comes the convex hull algorithm. We give only a stub.

/' class stub for convex hull
template < class Kernel >
class Convex_hull {

stant

& 1) const {
:endl;

6 LECTURE 5. A FIRST GEOMETRIC KERNEL

public:

/I the kernel's point type
typedef typename Kernel::Point Point;

template < class Inputlterator, class Outputlterator >
Outputlterator operator()(Inputlterator begin, Inputlt erator end,
Outputlterator result) {
[+ CONVEX HULL algorithm for points in [begin,end) */
Inputlterator it = begin;
while (it != end) {
Point p = =it;
/[do process p
Il next

it++;

}

return result;

h

and finally the main program.

#include <iostream>
#include <list>

#include "KMCartesian_kernel.h"

#include "KMParabolic_kernel.h"
#include "KMConvex_hull.h"

template < class NT >
void cartesian() {
typedef Cartesian_kernel< NT > Kernel,

typedef typename Kernel::Point Point;

5.3. C++ FORMULATION*

}

/[construct some points

Point o;

Point pl(-1,1); // requires NT to be ConstructibleFromSmal
Point p2(-5,5);

Point pl(-2,3);

Point pr(-4,1);

/[orientation of points

Kernel kernel;

std::cout << "Orientation(o,pl,p2) = " << kernel.orientat
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat
std::cout << "Orientation(o,p1,pr) = " << kernel.orientat

std::list< Point > input;
input.push_back(o);
input.push_back(pl);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

/[Convex hull
typedef Convex_hull< Kernel > CH;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul

template < class NT >
void parabolic() {

typedef Parabolic_kernel< NT > Kernel;

typedef typename Kernel::Point Point;

/I construct some points

Point o;

Point pl(1); /I requires NT to be ConstructibleFromSmallin
Point p2(5);

Point pl(2);

Point pr(4);

/[orientation of points

[Int

ion(o,p1,p2) << std::endl;
ion(o,pl1,pl) << std::endl;
ion(o,pl,pr) << std::endl;

);

8 LECTURE 5. A FIRST GEOMETRIC KERNEL

Kernel kernel;

std::cout << "Orientation(o,p1,p2) = " << kernel.orientat ion(o,p1,p2) << std::endl;
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat ion(o,pl1,pl) << std::endl;
std::cout << "Orientation(o,pl,pr) = " << kernel.orientat ion(o,pl,pr) << std::endl;

std::list< Point > input;
input.push_back(o);
input.push_back(pl);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

/[Convex hull
typedef Convex_hull< Kernel > CH,;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul N);

int main() {

std::cout << "CARTESIAN with 'int™ << std::endl;
cartesian< int >();
std::cout << std::endl;

std::cout << "CARTESIAN with 'unsigned int’ - evil, because of 1" in input"
cartesian< unsigned int >();
std::cout << std::endl;

std::cout << "CARTESIAN with 'double™ << std::endl;
cartesian< double >();
std::cout << std::endl;

std::cout << "PARABOLIC with ’'int™ << std::endl;
parabolic< int >();
std::cout << std::endl;

std::cout << "PARABOLIC with 'double™ << std::endl;
parabolic< double >();
std::cout << std::endl;

5.4. A FLOATING POINT FILTER 9

Exercise 0.2: Redo the above in the programming language of your choice. &

54 A Floating Point Filter

Exact arithmetic is much slower than hardware floating paiithmetic. However, floating point arithmetic
is only approximate and we have seen in Lect?Paghat a naive use of floating point arithmetic can lead
to disaster. In Lectur@? we learned how to estimate the error errors in floating paamputations. We
will now put this knowledge to use. We will obtain an exactradrthat is also efficient. We will give
experimental evidence in the next section and theoretiglyais in Lecture??.

The idea is to preface the evaluation of any expression (tereexpression defining the orientation
predicate) by an evaluation with floating point arithmeti¢e also compute a bound on the roundoff error.
If the absolute value of the float value is larger than the ldoam the roundoff error, we return the sign of
the float value. Otherwise, we evaluate the expression wihterithmetic. This scheme is callefl@ating
point filter. The following code realizes this strategy for the orieintapredicate.

int orientation(point_2d p, point_2d g, point_2d r){

NT px = p.xcoord(), py = p.ycoord(), gx = g.xcoord(), ;

/I evaluation in floating point arithmetic

float pxd = fl(px), pyd = fl(py), gxd = fl(gx), ;

float Etilde = (gxd - pxd) *(ryd - pyd) - (qyd - pyd) *(rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), agxd = abs(gxd), ;
float mes = (agxd + apxd) *(aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 7 * Uu * mes) return (sign Etilde);

/I exact evaluation

NT E = (gx - px) *(ry - py) - (@y - py) *(rx - px);

return sign E;

}

According to Lemm&?, this implementation is correct.

Exercise 0.3: Formulate a floating point filter for points represented ithomogeneous coordinatesy

5.5 Performance of the Floating Point Filter

We study the performance of the floating point filter under a8pects. How often is it necessary to resort

to exact computation and how much do we save in running tinié® section is based on [7, Section 9.7.4].
[[TODO: repeat the experiments and make them available ®@edmpanion page of the book.]]
Table 5.1 sheds light on the first question. The followingesikpent was performed. First, a s&bf n

random points with 52 bit Cartesian coordinates either eruttit circle or in the unit square was generated.

A random point in the unit square is generated by choosingoitgdinates as follows: Generate a random

integeri € [0,252 —1..] and then set the coordinate it2°2. The generation of points on the unit circle

is the topic of Section 5.6. Then the Cartesian coordinate® wuncated tal bits for different values of

d, i.e., a pointp with Cartesian coordinatey, py) was turned into a poinp’ with Cartesian coordinates

(|29, [29py|). LetS be the resulting set of points. The Delaunay triangulatib8 @as constructed . Explain.

10 LECTURE 5. A FIRST GEOMETRIC KERNEL

Compare Orientation Side of circle
d N | number| exact| % [number| exact| % [number| exact] %
8 1883 | 157814 0| 0.00| 19909 0| 0.00 7242 0 0.00

10| 5298| 187379
12| 8383| 216679
22| 9999 | 230556

0.00| 58263 0| 0.00| 20736| 5743| 27.70
0.00| 89307 0| 0.00| 35931| 24693| 68.72
0.00| 98899 0| 0.00| 46410| 42454 | 91.48
32| 9999 | 231656 0.00| 90664| 137| 0.15| 40003| 39797 | 99.49
42| 9999 | 231665 0.00| 91205| 152 0.17| 40083| 40083| 100.00
o | 9999 | 231665| 125| 0.05| 44279 871 0.20| 13082| 13082 | 100.00

8| 9267 | 230060 0.00| 130431 0| 0.00| 64176 0 0.00
10| 9953 | 236690 0.00 | 147814 0| 0.00| 77409 136 0.18
12| 9996 | 236661 0.00 | 149233 0| 0.00| 78693 105 0.13
22| 10000| 235727 0.00 | 149057 0| 0.00| 78695 113 0.14

0
0
0

[eoliellolele]

32 | 10000| 235729 0.00 | 149059 0.00| 78695 115 0.15
42 | 10000| 235729 0.00 | 149059 0.00| 78695 115 0.15
o | 10000 | 235729| 574 | 0.24| 149059 0.00| 78695 115 0.15

OO0 o0|o|lo|o

Table 5.1: Efficacy of floating point filter: The top part cantgthe results for random points on the unit
circle and the lower part contains the results for randomtsan the unit square. In each case we generated
10000 points. The first column shows the precision (= numbbmary places) used for the homogeneous
coordinates of the points, the second column contains thebau of distinct points in the input. The other
columns contain the number of tests, the number of exad, teistl the percentage of exact tests performed
for the compare, the orientation, and the side of circle e

Table 5.1 confirms the theoretical considerations from #giriming of the section. For each test there
is a value ofd below which the floating point computation is able to deciliéests. For the orientation test
this value ofd is somewhere between 22 and 32 (we argued above that theisdlg?) and for the side of
circle test the value is somewhere between 8 and 10 (we askdder in the exercises to compute the exact
value). Also, the percentage of the tests, where the filtls; fa essentially an increasing functionaf

The compare, orientation, and side of circle functions se®be tests of increasing difficulty. This is
easily explained. The compare function decides the signiogar function of the Cartesian coordinates of
two points, the orientation function decides the sign of adyatic function of the Cartesian coordinates of
three points, and the side of circle function decides the sfga polynomial of degree four in the Cartesian
coordinates of four points. The larger the degree of thermmwtyal of the test, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the unileciare much more difficult than the
random points in the unit square, in particular, for the sifleircle test. Again this is easily explained.

For the side of circle test, four almost co-circular pointsaur exactly co-circular points are the most
difficult input, and for sufficiently largel the situation thaﬂﬂ < B andB > 1 arises frequently. Points on
(or near) the unit circle cause no particular difficulty foetcompare and the orientation function. Points on
(or near) a segment would prove to be difficult for the origatatest.

For random points in the unit square the filter is highly effecfor all three tests; the filter fails only
for a very small percentage of the tests.

We turn to the question of how much a filter saves with respgeatinning time. The following exper-

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 11

\ d \ Float kernel\ Rational kernel\ RK without filter\

8 0.73 1.12 4.35
10 13 2.43 7.8
12 1.85 5.09 11.18
22 2.17 7.93 14.4
32 2.02 7.79 13.29
42 2.01 8.32 15.46

2° 5.09 9.19

8 2.58 3.59 16.33
10 2.8 3.98 18.36
12 2.83 4.04 18.63
22 2.82 4.02 20.51
32 2.86 3.96 20.77
42 2.83 4.01 26.02
00 2.83 3.99 33.2

Table 5.2: Efficiency of the floating point filter: The top padntains the results for random points on the
unit circle and the lower part contains the results for randmints in the unit square. The first column
shows the precision (= number of binary places) used for #reGian coordinates of the points. The other
columns show the running time with the floating point filteithathe rational kernel with the floating point
filter, and with the rational kernel without its floating pofiiter. A star in the second column indicates that
the computation with the floating point kernel produced awirect result.

iment continues the preceding experiment. The computatfidhe Delaunay diagram was performed in
three different ways:

e naive use of floating point arithmetic: the truncated Catesoordinates were stored as double
precision floating point numbers and Delaunay diagram #lgarwas run with double precision
arithmetic.

e exact integer arithmetic with a floating point filter.
e exact integer arithmetic without the floating point filterrted off.

. Table 5.2 summarizes the outcome. Let us first look at idd&ii columns.

The running time with the floating point kernel does not imsee with the precision of the input. Ob-
serve, that fod < 22 and points on the unit circle, the input contains a sigaifidraction of multiple points
(see the second column of Table 5.1) and hence the first theserkally refer to simpler problem instances.
Ford > 22 and points on the unit circle and fdr> 10 and points in the unit square the input contains
almost no multiple points and the running times are indepetdf the precision. The computation with the
floating point kernel is not guaranteed to give the correstilte In fact, it produced an incorrect result in
one of the experiments (indicated by)a

The running time with the rational kernel and no filter inges sharply as a function of the precision.
This is due to the fact that larger precision means largagens and hence larger computation time for
the integer arithmetic. We see one exception in the table pbimts on the unit circle the computation on

12 LECTURE 5. A FIRST GEOMETRIC KERNEL

[d[43]44]45]46]47]48]49[50]51]52]
dff [C[C|[C]| F| F| F]| F| F| F| F
easyf c[c[c|c[c|[c|c[c|c|c

Table 5.3: Correctness of floating point computation: A detaview for d ranging from 43 to 52. The
second row corresponds to points on the unit circle and gtedav corresponds to points in the unit square.
A “C” indicates that the computation produced the correstiteand a “F” indicates that a incorrect result
was produced.

the exact points is faster than the computation with the dedrpoints. The explanation can be found in
Table 5.1. The number of tests performed is much smallendactenputs than for rounded inputs. Observe,
that for points that lie exactly on a circle any triangulatis Delaunay.

The running time for the rational kernel (with the filter) irases only slightly for the second set of
inputs and increases more pronouncedly for the points oarheircle. This is to be expected because the
filter fails more often for the points on the unit circle. skip

Let us next compare columns.

The comparison between the last two columns shows the efficigained by the floating point filter.
The gains are impressive, in particular, for the easier Setputs. For random points in the unit square,
the computation without the filter is between five and almesttimes slower. For random points on a unit
circle the gain is less impressive, but still substantidde Tunning time without the filter is between two and
five times higher than with the filter.

The comparison between the second and the third column shibatsve might gain by further improv-
ing our filter technology. For our easier set of inputs the potation with the rational kernel is about 50%
slower than the computation with the floating point kernehisTincrease in running time stems from the
computation of the error bourlin the filter. For our harder set of inputs the difference lestmthe ratio-
nal kernel and the floating point kernel is more pronounceds 16 to be expected since the rational kernel
resorts to exact computation more frequently for the hairtjaurts. The floating point kernel produced the
incorrect result in one of the experiments.

[[The remainder of this section is obsolete. The discuss@uperseded by the the work on controlled
perturbation. We should add an experiment where the poiatalbon a small segment of the circle.]]

We were very surprised when we first saw Table 5.2. We expeabggdthe floating point computa-
tion would fail more often, not only when the full 52 bits arsed to represent Cartesian coordinates of
points. After all, the rational kernel resorts to integdthemetic most of the time already for much smaller
coordinate length and the difficult set of inputs.

Exercise 0.4: Repeat the experiments of this section for points that lie segment. Predict the outcome
of the experiment before making it. &

We generated Table 5.3 to gain more inslght gives more detailed information fat ranging from
43 to 52. For our difficult inputs the floating point compubatifails whend is 46 or larger and for our

Iwhile writing this section, our work was very much guided Ixperiments. We had a theory of what floating point filters can
do. Based on this theory we had certain expectations abeutehavior of filters. We made experiments to confirm our fitai
In some cases the experiments contradicted our intuitidnmanhad to revise the theory.

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 13

easy inputs it never fails. Far < 45 and both sets of inputs it produces the correct result.tiaaretical
considerations give a guarantee only dor 10.

In the remainder of this section we try to explain this diparecy. We find the explanation interesting
but do not know at present whether it has any consequencésefdesign of floating point filters.

Let D = 24 and consider four points, b, ¢, andd on the unit circlé. We use points(, Y, ¢, andd’ with

integer Cartesian coordinatéa,D |, |ayD]|, The side of circle function is the sign of the determina
1 1 1 1
ax by Cx dy

&y by & dy
at+al bi+bf g+ di+df
as will be shown in Sectiofd?. The value of this determinant is a homogeneous fourth eéggoé/nomial
p(ax,ay, - ..). We need to determine the signpofa;, &,...). Let us relatep(ax, ay, . ..) andp(a,, &, . ..).
We have
a = |aD| =aD+ 8,
where—1 < 4,, <0, and analogous equalities hold for the other coordindtiess

p(&,ay,...) = p(axD+0,ayD+0,...)
= p(@D,aD,...) + 0z(axD,%,,aD,d,,...)
+ (D, %, &D, 8a,,...) + Gu(&xD, 0, ayD,%,,.-.)
+ Qo(&D, 0a,,8yD, G - -),

whereq; has degreein theakD, a,D, ... and degree 4 i in the d,,, d,,, - .. . Since the four points, b, c,
andd are co-circular, we have

p(axD,aD,...) = D*p(ax,ay,...) = 0.

Up to this point our argumentation was rigorous. From now @ngive only plausibility arguments.
Since the values,D may be as large a® and since the valued, are smaller than one, the sign of
p(a,&,...) is likely to be determined by the sign g. Sincegs is a third degree polynomial in the
a,D we might expect its value to be abolutD? for some constant. The constanf is smaller than one but
not much smaller. Expansion of the side of circle deterntisanws that the coefficient @, in dz is equal

to
1 1 1

by,D D dyD =D(cy—ay—hy),
(bf +b§)-D? (G+¢)-D* (df+df)-D?
where we used the fact thag + pZ = 1 for a pointp on the unit circle. We conclude théthas the same
order as the-coordinate of a random point on the unit circle and heheel/2.

We evaluatep(&,, &,...) with floating point arithmetic. By Theorer?, the maximal error in the
computation ofp is g- D*- 2753 for some constarg; the actual error will be less. The argument in the proof
of Lemma?? shows thag < 28. Thus we might expect that the floating point evaluatiorpta”x,a(/, cel)
gives the correct sign as longgsD*- 2753 < f-D3 ord < 53—logg+log f ~ 53— 8—1=44. This agrees
quite well with Table 5.3.

2We all know from our physics classes that the important érpents are the ones that require a new explanation.
3In the final round of proof-reading we noticed that we dagith two meanings. In the sequelis a point, except in the final
sentence of the section.

14 LECTURE 5. A FIRST GEOMETRIC KERNEL

Figure 5.1: Poinp = (px, py) lies on the unit circle, poinp’ = (a,0) lies on thex-axes, and pointg, 1), p,
andp’ lies on a common line. .

5.6 Pointson aCircle

A point on the unit circle has Cartesian coordinatessa, sina), where 0< a < 2. In general, sines and
cosines are non-rational numbers, e.g.,7co5= v/2/2. In this section, we will show how to find a dense
set of points with rational Cartesian coordinates on theéairgle. For anya and anys > 0, we will show
how to find a triple(a, b,w) of integral homogeneous coordinates such that

a+b*=w? and |a—a’|<e where cos’=a/wand sim’=b/w.
A triple (a,b,w) of integers witha? + b? = w? is called a Pythagorean triple.
LEMMA 1. For any rational point p= (px, py) on the unit circle there is a rational a and integers n and m
such that
(- 2a a?—-1\ ([2mn n?—n?
PP =@irar1) \rm e rm
Proof. Stereographic projection is a one-to-one correspondeatveeln the points on the unit circle and

the points orx-axes, see Figure 5.1. if= (py, py) lies on the unit circlep’ = (a,0) lies on thex-axis, and
(1,0), pandp' lie on a common line, then

Px 2a a?—1
a=—— and = =
Py P L |

as a simple computation shows. Thusp tfias rational coordinateg, has rational coordinates, andafhas
rational coordinatesp has rational coordinates. We conclude that every rationiak pn the unit circle has
coordinategy = 2a./(a?+ 1) andpy = (a2 — 1)/(a? + 1) for some rationah. Leta=n/m. Then

2(n/m) 2nm _a?-1 (n/m?—-1 n*—n?
(n/m2+1 24 a2+l (n/m241 n24m?

Exercise 0.5: Why can there be no Pythagorean tripgeb, c) with a andb odd? O

5.6. POINTS ON A CIRCLE 15

If we would not insist ora being rational, we could simply chooaesuch that

cosa = 2a or a— ! + ! 1
a2+l ~cosa” Vco2a

The two choices foa correspond to the two possible values forginHowever, we wané to be rational.
An obvious way to obtain a rational approximation with eradbrmost 2% is as follows. We compute a
floating point approximatiom 6f a with error at most 2° as shown in Sectiofd?; d is the desired rational
approximation. The fraction obtained in this way has a nateerand denominator afbits.

One can obtain usually obtain better approximations witvefebits as we discuss next. The less mathe-
matically inclined reader may proceed directly to the enthefsection. We first show that there is always a
good rational approximation with small denominator anchtbigow how to compute such an approximation.

THEOREM 2 (Dirichlet, 1842). For any real x and any positive there is a rational number fg such that

qgl and x—E‘<£.
€ q q

Proof. If € > 1, we simply takep = [x| andgq= 1. So assume < 1. LetM = |1/¢| and consider the
numbers. For each 0 << M, let f; be the fractional part ak, i.e., fi = ix — |ix|. The fractional parts lie
between 0 and 1 and hence there are distiaat j such thaf f; — ;| < 1/M. Assumej >i. Then

|G = i)x—=(Lix) = [ix))] = | f; =] g%

and hence

=i T (-DM 7 j—i
Setq=j—iandp=|jx]| — |ix]. O

'x— Lix]| — [ix] 1 €

The standard technique for approximating a real by a ratisn@a compute its continued fraction ex-
pansion. For al € R, define a sequence, X1, X2, ... of reals and a sequenag a;, ay, .. . of integers as
follows.

X0 =X a0 = [%o
1

R 1= X

Xp = ! a = | X

2= i —a > = (X2

If somex; is integral, the sequence ends wah Otherwise, the sequence is infinite. Cleary;-a < 1
for all i. If & = x;, the sequence ends,af < X, Xi+1 > 1 and hencey,1 > 1. We call[ag;as,ay,...| the
continued fraction expansioof x. We will next derive some properties of this expansion. @lesérst that
Xi = & + 1/% 1 whenevelx; 1 is defined and hence

1 1 1
X=Xp=ag+ —=ag+ =g+ ———=....
X1 1

a+ — a +
X2

16 LECTURE 5. A FIRST GEOMETRIC KERNEL

A finite continued fraction defines a rational number. Theveose is also true as we will see below. The
continued fractiorjag; &, ..., ay) is a rational number. We call it theth convergent ok. The convergents
of a continued fraction have many nice properties.

LEMMA 3. Let xe R>g and let[ag; a1, ap,...] be the continued fraction expansion of x. Define g 0,
0-2= 1, P-1= 1, 0-1= 0, and
Ph=2anPn-1+Pn-2 and o =an0h-1+0n-2 forn>0.

Then
Pn

n

1. = = [ag;ay,...,an] is the n-th convergent of x.

2. POn-1— Pn_1Gn = (—1)™1forn> —1.

Pnti _ Pn

_
Ot On forn=0.

"~ OnOnsa

4. o, > (3/2)"1forn>0.
P2 P - P2 P PP
> g-2 < o < a2 <"'§X§"'Q3 < a1 < Q-1°
6. The nt 2-th convergent is closer to thednl-th convergent than to the n-th convergent.
7. X— pn/qn is strictly decreasing in n.

Proof. Let zbe variable. Define
Mn(z) = [ag;a1,...,an+ 2.

We will show that

_1Z
Mn(Z) — pn+ pn 1
On+0n-12
by induction om. Forn = 0, we have
Po+ P-12
Mo(z2) =ap+2= ————.
o2 =2 Jo+0-1Z
Forn+1>1, we have
1
1 . Pt Prig7z @niaPntPnitPnZ Prrit PeZ

Mni1(z2) =M = = = .
nald) =Mnlg Ot 1525 @410+ 01+ 2 Onei+ Oz

Mn(0) is then-th convergent ok. Thus[ag;as, ..., ah] = pn/an. This proves (1).
We turn to (2). Observe first that 102 — p_2g-1 = 1= (—1)°. Forn > 0, we have

PnOn-1— Pn-10n = (@nPn-1+ Pn-2)0n-1 — Pn-1(a8n0Gn-1 — On-2)
= Pn—20n-1— Pn-10n-2 = (—1) - (_l)n = (_1)n+l'

(3) follows from a simple calculation.

_ |Pnt10n — PnOhs1| 1

Pnt1 Pn _
OnOn+1 OnOnt1

On+1 On

5.6. POINTS ON A CIRCLE 17

(4) is a simple inductiongp = 1> (3/2)~! andqg; = a; > (3/2)° and forn > 2,
O = 8nlhn-1+0n-2 > (3/2)" 2 +(3/2)"° = (3/2)"%(3/2+ 1) = (3/2)"°5/2 > (3/2)" .

We turn to (5). Assume inductively thak, /g, < X < pn_1/0n—1 for evenn. This is certainly true for
n= —2. My(2) is an increasing function o My(0) = pn/gn, Mn(®©) = pr-1/0n-1, aNdMn(1/Xy+1) = X.
Now an.1 = |Xn+1] and hence fan, 1 > 1/%q11. Thus thatx < pry1/0ne1 = Mn(1/ani1) < pro1/0n-1- A
similar argument showp,/dn < Pn+2/0n2 < X

For (6), we consider the case of euer\We have

Pn+2 Pn_ Ptz Pn (pn+l B pn+2> 1 1 1 _ Pnt1 Pny2

—— - f— — > — s
Oh+2 On Ontr On On+1 On+2 OnOn+1 Yn+10n+2 On+1On+r2 Ontr Ont2

where the inequality follows frorgn.2 > gni1+ 0n > 20,. The proof for odch is similar.
(7) is an easy consequence of (6). Consider an ava@imenp, /gy < pPni2/0n+2 < X< Pne1/0ne1 and

Pn+1 _x< Pnt1 Pni2 < Pni2 Pn <x— &
On+1 On+1 Ont2 On+2 On On

O

The convergent$n /g, are in lowest terms, because otherwise we could not Pagie 1 — pn—10n =
(—1)"1. The even convergents convergetoom below and the odd convergents convergeftom above.
We have

B 1 i+1
Pn_ Po I Pn Pn-1_ a0+ (-1) .
On Jo 1<7<n On On-1 1<G<n Gidi—1

Thusx=ag+ i-1(—1)"/(gigi-1).

LEMMA 4. Letxe R>pand let[ag; a1, az,. . .| be the continued fraction expansion of Xx. The convergemts ar
optimal approximation of x in the following sense: Assumegy. Then

x——p'> x— Pn

On

for all p. The continued fraction expansion is finite if andyoifix is rational.

Proof. Letnbe minimal such that, > q. The convergentp,_1/d,-1 andp,/q, bracketx and have distance
1/(gn-10n) from each other. This is smaller thayidh_10. If p/qis closer tax thanp,/q, then the distance
of p/qto eitherp,_1/dn-1 Or pn/dn Must be smaller than the distance between these points. ud¢gwe

.1 1 1
> min(—,)=
dth dth-1~ (Gh-1

P_Pn
qa On

P Pn1

min(
4 01

)

and hencep/q cannot lie closer ta than p,/dpn.
If the fraction is finite,x is rational. So assumeis rational, say = p/q. If the expansion is infinite,
there is a converger,/qn with g, > g. Thenp,/q, is closer tax thanp/q. This is a contradiction. [

18 LECTURE 5. A FIRST GEOMETRIC KERNEL

It is now clear how to proceed. We compute an approximation of

1
a= +4/ = -1
cosa coga

using floating point arithmetic (of sufficient precision)datihen compute a rational approximationaobf
sufficient precision.

Exercise 0.6: Give more details on how to compute a rational approximadioawith error at mose. <

Exercise 0.7: Extend the previous exercise and show how to guarantee amd@mation of cosr with error
at moste (an approximation o&r with error at mosk. &

5.7 Notes

Generic programming,

Determinants. Many geometric predicates, e.g., the orientation and thighiare predicates, are naturally
formulated as the sign of a determinant. The efficient coatpr of the signs of determinants has therefore
received special attention [4, 1, 2]. None of the methodsadable in LEDA.

Specialized Arithmetics. The orientation predicate for points with integral homogmus coordinates.

sign(pw- qw- rw) - Sign pw- (gX-ry — ay- rx) — qw- (px-ry — py-rx) +rw- (px- qy— py- gx)).

If the coordinates are less thah, 2he value of the orientation expression is at mose®8+1. With this
knowledge, one could try to optimize the arithmetic, i.astéad of using a general purpose package for
the computation with arbitrary precision integers (suclihesclass —integer—) one could design integer
arithmetic optimized for a particular bit length. This aueris taken in [6, 8].

Section 5.6 is based on [3].

[[The following should go to the lectures on perturbatipifhat happens it is larger? The floating
point computation is able to deduce the sigaf \E\ > B. SinceE is twice the signhed area (see Lema®
of the triangle with verticega, b, c), the floating point computation is able to deduce the cosiggt for any
triple of points which span a triangle whose area is at leag 8- 22-+3/2. Devillers and Preparata [5]
have shown that for a random triple of points andlfggoing to infinity, the probability that the area of the
spanned triangle is at least8°3. 2273 /2 goes to one. Thus for lardeand for triples of random points,
the floating point computation will almost always be able ¢aldce the sign oE and exact computation
will be rarely needed.

Observe that the result cited in the previous paragraphndisperucially on the fact that the points are
chosen randomly. In an actual computation orientatiorstesit not be performed for random triples of
points even if the input consists of random points. It iséf@re not clear what the result says about actual
computations.

Bibliography

[1]

(2]

F. Avnaim, J.-D. Boissonnat, O. Devillers, and F. Prepar Evaluating signs of determinants with
floating point arithmeticAlgorithmicg 17(2):111-132, 1997.

H. Bronnimann, |. Emiris, V. Pan, and S. Pion. Computagct geometric predicates using modular
arithmetic with single precision. IRroceedings of 13th Annual ACM Symposium on Computational
Geometry (SCG’97pages 174-182, 1997.

[3] J. Canny, B. Donald, and G. Ressler. A rational rotaticgthmd for robust geometric algorithms. In

[4]

[5]

A.-S. ACM-SIGGRAPH, editorProceedings of the 8th Annual ACM Symposium on Computationa
Geometry (SCG '92pages 251-260, 1992.

K. L. Clarkson. Safe and effective determinant evaluatlEEE Foundations of Computer S33:387—
395, 1992.

O. Devillers and F. Preparata. A probabilistic analysighe power of arithmetic filtersDiscrete &
Computational Geomety0:523-547, 1998.

[6] S. Fortune and C. van Wyk. Static analysis yields efficxact integer arithmetic for computational

[7]

geometry ACM Transactions on Graphic45:223-248, 1996. preliminary version in ACM Conference
on Computational Geometry 1993.

K. Mehlhorn and S. NaherThe LEDA Platform for Combinatorial and Geometric CompgtitCam-
bridge University Press, 1999.

[8] J. Shewchuk. Adaptive precision floating-point arithimand fast robust geometric predicatBsscrete

& Computational Geometry18:305-363, 1997.

19

