L ecture 7

Perturbation

Computational geometers tend to formulate their algordtion inputs in general position. What is an input
in general position? General position is always defined vaipect to a set of predicates. A set of points is
in general position with respect to the orientation pre@icano three points are collinear. It is in general
position with respect to the side-of-circle predicate iffoar points are co-circular. It is general position
with respect to the orientation predicate and the siderofecpredicate if no three points are collinear and
no four points are co-circular. Generallyfif, ..., fx are functions of geometric objects, then a set of objects
is in general position with respect to these functions, lifaiction evaluations for objects in the set yield
nonzero.

Geometric algorithms branch on the outcome geometric pagel. In general, the branches are three-
way branches: positive sign, negative sign, and zero. Ifrthet is in general position, the zero branch is
never taken. This simplifies the algorithm. We have alreagbnsseveral examples to this effect. In the
convex hull algorithm, we had to distinguish between vlgipand weak visibility and we had to cope with
inputs that are contained in a lower dimensional subspaciael Delaunay triangulation algorithm, we had
to cope with co-circular points and with inputs that are eored in a lower dimensional subspace.

So the general position assumption simplifies the life oflgorghm designer. However, at the cost of
the programmer. A program has to cope with all inputs and sddeeal with degenerate inputs. What can
a programmer do? There are essentially two approaches:

e Redesign the algorithm so that it handles degenerate inputs
e Use perturbation to bring the input into general position.

Whenever we discuss an algorithm in this book, we follow tinst fapproach. We make sure that the
algorithms works for all inputs. In this lecture and the newe study perturbation techniquekhe idea is to
solve the problem not on the given input, but on a nearby inpaé nearby input is obtained by perturbing
the given input. The perturbed input will then be in gener@ipon and, since it is near the original input,
the result for the perturbed input will hopefully still beefisl. This hope has to be substantiated in any
application of the perturbation technique. We cannot makeeral claims with respect to this hope. We
give a positive and a negative example. If the input objemsdarived from some physical measurement,
then a perturbation within the precision of the measuringadeshould be acceptable. On the other hand,
for an algorithm whose task is to decide whether the inpuhigeneral position, perturbation makes no
sense.

2 LECTURE 7. PERTURBATION

Exercise 0.1: Go through the examples in the first lecture. For which of tieperturbation a reasonable
technique? Discuss two additional examples of your ownaghoi &

Perturbation comes in two flavors: symbolic and numeriaalyimbolic perturbation, one perturbs in-
puts by infinitesimal amounts, and in numerical perturlmatome actually changes the coordinates. (REWRITE).

7.1 Symbolic Perturbation

It is convenient to summarize the input into a single vestarRN. For example, if the input is points

in the plane, we would sé = 2n and pack all & coordinates into a single vector. A test function is then
simply a functionf : RN — R. Let F be a collection of test functions. For example, if an aldgonituses
the geometric predicates lex-compare, orientation, ametai-circle forn points in the planelF contains
(5) test functions corresponding to lex-compare (one for eathqf distinct points),(3) test functions
corresponding to orientation, ar@) test functions corresponding to side-of-circle.

DEFINITION 1. Let f: RN — R be a test function and = f~1(0) be its zero set. We call Well-behaved
if every straight line/ is either contained iro or every bounded segmentintersectso in finitely many
points.

Many functions are well-behaved, e.g., all polynomials alhdational functions. In particular, for any
geometric test used in this book, the underlying functioweédi-behaved.

THEOREM 1. Let F be a collection of well-behaved continuous functiond let ac RN be a vector that is
in general position with respect to F, i.e.(d) # Ofor all f € F. Then for any fc F and any gc RN

(o) := lim signf(q+e(a—a))

exists and is non-zero. Moreover, ifgh # 0, f(q) = signf(q).

Proof. The functione — g+ £(a— q) defines a line passing througly anda. Sincef(a) # 0, ¢ is not
contained ino and hence the segmet intersectso only finitely often. Thus there is agy > 0 such that
f(g+e(a—q)) #0for 0< € < &. Sincef is continuous, sigh(q+ &(a—q)) is constant for G< € < &.
Thus f(q) exists and is non-zero.

Assume next thaf (q) # 0. Sincef is continuous, there is agy > 0 such thatf (q+ e(a—q)) # O for
0 < € < &. Again by continuity, sigf(q) = f(q). O

COROLLARY 2. Consider any algorithm that branches only on the sign of ation f from a class F
of well-behaved continuous functions applied to the inpatRN. Also assume that @ RN that is non-
degenerate for all £ F. Branching onf(q) instead of orsignf (q) has the following effect:

e The zero branch is never taken, and
e If g isin general position, the computation does not change.

Proof. This follows immediately from Theorem 1. Sind¢q) # O for all g, the zero branch is never taken,
and sincef(q) = signf(q) wheneverf(q) # 0, the computation does not change for an input in general
position. O

7.1. SYMBOLIC PERTURBATION 3

The corollary may be paraphrasedifigou know just one input in general position, any input can b
perturbed into general positioriWe still need to address two questions. How do we find inputgeneral
position and how can we compuféq)? We address both questions first for the orientation preslictn
points in the plane.

LEMMA 3. The points a= (i,i?), 1 <i < n, are in general position with respect to the orientatioegticate.
Proof. Lines intersect the paraboja= x? in at most two points. Thus no thregare collinear. O

We next discuss how to evaluate the orientation predicatsude our inputs are the poigfs 1 <i <n.
We replaceg; by g + £(a — q;). For three distinct pointg;, q;, ando, we then have:

1 (I-ex(a)+ei (1-e)y(a)+ei?
Orientation(q,qj,qk) = lim sign| 1 (1—e&)x(q;) +€&j (1—¢&)y(q;) + €j?
UL a-ex@) ek (1-e)y(g) +ek?

Expansion and collecting terms according to powers yitlds

N
i

) — =

[E—
7& NN
_/

= Orientation (¢}, d;, 0k) + Iin(’)l sign (sP(qi,qj,qk) +€
e—0+

whereP(q;,q;, 1, j,K) is a polynomial. Thus

Orientation(q;,Qj,0x) if Orientation(q;,qj,0k) # O

Orientation (¢}, d;j,0k) = ¢ sign(P(q;, qj, k) if Orientation(q;,q;,0x) = 0 andP(q,q;j,0x) # 0
Orientation(a;,aj,ac) if Orientation(q;,q;j,0x) = 0= P(q;,q;,0k)

We next address the equations more generally. We exhihittsnim general position for the set of
test functions introduced in the introductory paragraplte & so for arbitrary dimensioth and not only
for the plane. We considar points chosen from the positive branch (i.e 0) of the moment curve
t— (t,t%,...,t9). No two points on this curve agree in any coordinate. dNp1 points lie in a common
hyperplane. Consider the equatiagH- 3 1-j<qax of any hyperplane. Plugging= (t,t2,...,t9) into this
equation gives a polynomial of degrden t. We conclude that the hyperplane intersects the momenécurv
in at mostd points. Finally, the positive branch of the moment curverisgécts no sphere oh+ 2 or more
points. Lety ;<i<q(X —Ci)?>—r? =0 be the equation of a sphere. Plugging (t,t2,...,t%) into this equation
gives the following polynomial ir:

(t'—c)2—r2.
1<i<d

Descartes rule of signs (Theoreétd) states that the number of positive roots of a polynomiabisraed by
the number of sign changes in its coefficient sequence. Tly@gmial above can have at mabt- 1 sign
changes since the coefficients of the poviérsith j > d are nonnegative (any such coefficient is either zero
or one).

We first show how to computg&(q) for polynomialsf. We useq; to gy to denote the coordinates BN
and assume thdt(qs, ..., qn) is a polynomial of total degreg. Then.

fla+e@-q) = f(am+e@—a).....an+el@a—a))= Y Pi(aL..-.n)e',

o<i<d

4 LECTURE 7. PERTURBATION

where thep; are polynomials of total degree at makstWe claim

() = signpi(q) wherei =min{j | pj(q) # 0}.
We know from Theoren?? that the sign off (q+ £(a— q)) is constant and nonzero for sufficiently small
Therefore at least ong;j(q) must be non-zero. Létbe minimal withp;(q) # 0. Then

= n(ae Pi(@) i
f(q+e(a—q)) = pi(g)e <1+J;pi(q)gl >

LetM = max|p;(q)/pi(d)|. Then|s i pj(a)/pi(a)e’~'| < M/(1—¢) < 1/2 for sufficiently small.

7.2 Numerical Perturbation

[[the following is copied from Funke/Klein/Mehlhorn/Sclittn It needs to rewritten so that it fits better.]]

7.3 Some Words of Caution

Perturbation is not a cure-all. It removes burden from tigedthm designer and implementer. However, it
has two drawbacks.

The running time of an algorithm may increase as a result digmtion. We give two examples.
Assume we are given line segments passing through the origin. We will see iniSe&? that we can
compute their arrangement in tin@nlogn). However, perturbing the line segments into general [usiti
(no three intersect in a point) will generate an arrangemétit ©(n?) intersection points. The second
example is even more extreme. Assume we are givielentical points inRY%. Any sensible convex hull
algorithm should be able to handle this input in linear titdewever, the perturbation scheme of Section 7.1
moves then points onto thel-dimensional moment curve. The resulting hull will havel%/2 facets and
hence any algorithm will need tin@nl%/2) for computing the hull of the perturbed points.

Exercise 0.2: Prove bound for points on the moment curve. &

The second drawback is that we solve the problem on a pedunipeit and not on the original input.
The output for the perturbed input may tell us little abow tlutput for the original input.

The symbolic scheme has another drawback. It requires egagbutation.

Neither approach to perturbation will apply if some testdtion is identically zero. For example, if one
tests whether a pointlies on a line involvingp as one of the defining points, the outcome will be “on line”
no matter who one perturbs the input. The reader may thirtkésafunctions that are identically zero can
only arise as a consequence of stupid programming. Howtheyr,can also arise because the algorithm
designer misses a theorem, see Figure 7.1.

7.4 Notes

[3] introduced symbolic perturbation and applied it to thi@otation predicate. [5, 7, 4, 8] extended and
simplified the technique. Our presentation follows [7]. Ampiementation of the scheme is available in
CGAL [2]. CITATION IS INCOMPLETE.

Section?? is based on [6].

Section 7.3 is based on [1].

7.5. PROPOSED CONTENTS 5

Figure 7.1:p1, p2, ps are three arbitrary points on a life andqi, 02, gz are three arbitrary points on a
line /5. For 1<i <3let{j,k} ={1,2,3}\i and letr; be the intersection df(pj,ax) and¢(px,d;). Pappus
(ca. 300 AD) proved that;, ro andrs are collinear. So perturbing the input will not help.

7.5 Proposed Contents

discuss SoS by Edelsbrunner and Muecke, Seidel
discuss controlled perturbation. This can be based on tiEAS@ticle by Funke/Klein/Mehlhorn/Schmitt.
Reference to Devillers/Preparata.
also do conceptual perturbation: walk through a triangutatto get the code right. This is discussed in
the LEDAbook and also in my 2000 course notes.

LECTURE 7. PERTURBATION

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

C. Burnikel, K. Mehlhorn, and S. Schirra. On Degeneratgeometric Computations. FProceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algoritt®@DA’94) pages 16-23, 1994.

J. Comes and M. Ziegelmann. An easy to use implementatidinear perturbations within CGAL. In
Algorithm Engineeringpages 169-182, 1999.

H. Edelsbrunner and E. Micke. Simulation of simpliciytechnique to cope with degenerate cases in
geometric algorithmsACM Transactions on Graphic8(1):66—104, Jan. 1990.

I. Emiris, J. Canny, and R. Seidel. Efficient perturbatidor handling geometric degeneracigédgo-
rithmica, 19:219-242, 1997.

I. Z. Emiris and J. F. Canny. A general approach to remgdegeneracieSIAM Journal on Computing
24(3):650-664, June 1995.

S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt. ContedllPerturbation for Delaunay Triangulations.
SODA, pages 1047-1056, 2005.

R. Seidel. The nature and meaning of perturbations imgsc computing Discrete & Computational
Geometry19(1):1-17, 1998.

[8] C.-K. Yap. Geometric consistency theorem for a symbpécturbation schemel. Comput. Syst. Sci.

40(1):2-18, 1990.

