
Lecture 7

Perturbation

Computational geometers tend to formulate their algorithms for inputs in general position. What is an input
in general position? General position is always defined withrespect to a set of predicates. A set of points is
in general position with respect to the orientation predicate if no three points are collinear. It is in general
position with respect to the side-of-circle predicate if nofour points are co-circular. It is general position
with respect to the orientation predicate and the side-of-circle predicate if no three points are collinear and
no four points are co-circular. Generally, iff1, . . . , fk are functions of geometric objects, then a set of objects
is in general position with respect to these functions, if all function evaluations for objects in the set yield
nonzero.

Geometric algorithms branch on the outcome geometric predicates. In general, the branches are three-
way branches: positive sign, negative sign, and zero. If theinput is in general position, the zero branch is
never taken. This simplifies the algorithm. We have already seen several examples to this effect. In the
convex hull algorithm, we had to distinguish between visibility and weak visibility and we had to cope with
inputs that are contained in a lower dimensional subspace. In the Delaunay triangulation algorithm, we had
to cope with co-circular points and with inputs that are contained in a lower dimensional subspace.

So the general position assumption simplifies the life of an algorithm designer. However, at the cost of
the programmer. A program has to cope with all inputs and so has to deal with degenerate inputs. What can
a programmer do? There are essentially two approaches:

• Redesign the algorithm so that it handles degenerate inputs.

• Use perturbation to bring the input into general position.

Whenever we discuss an algorithm in this book, we follow the first approach. We make sure that the
algorithms works for all inputs. In this lecture and the next, we study perturbation techniques.The idea is to
solve the problem not on the given input, but on a nearby input. The nearby input is obtained by perturbing
the given input. The perturbed input will then be in general position and, since it is near the original input,
the result for the perturbed input will hopefully still be useful. This hope has to be substantiated in any
application of the perturbation technique. We cannot make general claims with respect to this hope. We
give a positive and a negative example. If the input objects are derived from some physical measurement,
then a perturbation within the precision of the measuring device should be acceptable. On the other hand,
for an algorithm whose task is to decide whether the input is in general position, perturbation makes no
sense.

1



2 LECTURE 7. PERTURBATION

Exercise 0.1: Go through the examples in the first lecture. For which of themis perturbation a reasonable
technique? Discuss two additional examples of your own choice. ♦

Perturbation comes in two flavors: symbolic and numerical. In symbolic perturbation, one perturbs in-
puts by infinitesimal amounts, and in numerical perturbation, one actually changes the coordinates. (REWRITE).

7.1 Symbolic Perturbation

It is convenient to summarize the input into a single vectorx ∈ R
N. For example, if the input isn points

in the plane, we would setN = 2n and pack all 2n coordinates into a single vector. A test function is then
simply a function f : R

N 7→ R. Let F be a collection of test functions. For example, if an algorithm uses
the geometric predicates lex-compare, orientation, and side-of-circle forn points in the plane,F contains
(n

2

)

test functions corresponding to lex-compare (one for each pair of distinct points),
(n

3

)

test functions
corresponding to orientation, and

(n
4

)

test functions corresponding to side-of-circle.

DEFINITION 1. Let f : R
N 7→ R be a test function andσ = f−1(0) be its zero set. We call fwell-behaved

if every straight lineℓ is either contained inσ or every bounded segment ofℓ intersectsσ in finitely many
points.

Many functions are well-behaved, e.g., all polynomials andall rational functions. In particular, for any
geometric test used in this book, the underlying function iswell-behaved.

THEOREM 1. Let F be a collection of well-behaved continuous functions and let a∈ R
N be a vector that is

in general position with respect to F, i.e., f(a) 6= 0 for all f ∈ F. Then for any f∈ F and any q∈ R
N

f (q) := lim
ε→0+

signf (q+ ε(a−q))

exists and is non-zero. Moreover, if f(q) 6= 0, f (q) = signf (q).

Proof. The functionε 7→ q+ ε(a−q) defines a lineℓ passing throughq anda. Since f (a) 6= 0, ℓ is not
contained inσ and hence the segmentqa intersectsσ only finitely often. Thus there is anε0 > 0 such that
f (q+ ε(a−q)) 6= 0 for 0< ε < ε0. Since f is continuous, signf (q+ ε(a−q)) is constant for 0< ε < ε0.
Thus f (q) exists and is non-zero.

Assume next thatf (q) 6= 0. Sincef is continuous, there is anε0 > 0 such thatf (q+ ε(a−q)) 6= 0 for
0≤ ε < ε0. Again by continuity, signf (q) = f (q).

COROLLARY 2. Consider any algorithm that branches only on the sign of a function f from a class F
of well-behaved continuous functions applied to the input q∈ R

N. Also assume that a∈ R
N that is non-

degenerate for all f∈ F. Branching onf (q) instead of onsignf (q) has the following effect:

• The zero branch is never taken, and

• If q is in general position, the computation does not change.

Proof. This follows immediately from Theorem 1. Sincef (q) 6= 0 for all q, the zero branch is never taken,
and sincef (q) = signf (q) wheneverf (q) 6= 0, the computation does not change for an input in general
position.



7.1. SYMBOLIC PERTURBATION 3

The corollary may be paraphrased asif you know just one input in general position, any input can be
perturbed into general position. We still need to address two questions. How do we find inputs in general
position and how can we computef (q)? We address both questions first for the orientation predicate of n
points in the plane.

LEMMA 3. The points ai = (i, i2), 1≤ i ≤ n, are in general position with respect to the orientation predicate.

Proof. Lines intersect the parabolay = x2 in at most two points. Thus no threeai are collinear.

We next discuss how to evaluate the orientation predicate. Assume our inputs are the pointsqi , 1≤ i ≤ n.
We replaceqi by qi + ε(ai −qi). For three distinct pointsqi , q j , andqk, we then have:

Orientation(qi ,q j ,qk) = lim
ε→0+

sign

∣

∣

∣

∣

∣

∣

1 (1− ε)x(qi)+ ε i (1− ε)y(qi)+ ε i2

1 (1− ε)x(q j)+ ε j (1− ε)y(q j)+ ε j2

1 (1− ε)x(qk)+ εk (1− ε)y(qk)+ εk2

∣

∣

∣

∣

∣

∣

Expansion and collecting terms according to powers ofε yields

= Orientation(qi ,q j ,qk)+ lim
ε→0+

sign



εP(qi,q j ,qk)+ ε2

∣

∣

∣

∣

∣

∣

1 i i2

1 j j 2

1 k k2

∣

∣

∣

∣

∣

∣



 ,

whereP(qi ,q j ,qk, i, j,k) is a polynomial. Thus

Orientation(qi ,q j ,qk) =











Orientation(qi ,q j ,qk) if Orientation(qi ,q j ,qk) 6= 0

sign(P(qi ,q j ,qk)) if Orientation(qi ,q j ,qk) = 0 andP(qi ,q j ,qk) 6= 0

Orientation(ai ,a j ,ak) if Orientation(qi ,q j ,qk) = 0 = P(qi ,q j ,qk)

We next address the equations more generally. We exhibit inputs in general position for the set of
test functions introduced in the introductory paragraph. We do so for arbitrary dimensiond and not only
for the plane. We considern points chosen from the positive branch (i.e.,t > 0) of the moment curve
t 7→ (t, t2, . . . , td). No two points on this curve agree in any coordinate. Nod + 1 points lie in a common
hyperplane. Consider the equationa0 + ∑1≤i≤d aixi of any hyperplane. Pluggingx = (t, t2, . . . , td) into this
equation gives a polynomial of degreed in t. We conclude that the hyperplane intersects the moment curve
in at mostd points. Finally, the positive branch of the moment curve intersects no sphere ind+ 2 or more
points. Let∑1≤i≤d(xi −ci)

2−r2 = 0 be the equation of a sphere. Pluggingx= (t, t2, . . . , td) into this equation
gives the following polynomial int:

∑
1≤i≤d

(t i −ci)
2− r2.

Descartes rule of signs (Theorem??) states that the number of positive roots of a polynomial is bounded by
the number of sign changes in its coefficient sequence. The polynomial above can have at mostd+ 1 sign
changes since the coefficients of the powerst j with j > d are nonnegative (any such coefficient is either zero
or one).

We first show how to computef (q) for polynomials f . We useq1 to qN to denote the coordinates ofR
N

and assume thatf (q1, . . . ,qn) is a polynomial of total degreed. Then.

f (q+ ε(a−q)) = f (q1 + ε(a1−q1), . . . ,qN + ε(aN −qN)) = ∑
0≤i≤d

pi(q1, . . . ,qn)ε i,



4 LECTURE 7. PERTURBATION

where thepi are polynomials of total degree at mostd. We claim

f (q) = signpi(q) wherei = min{ j | p j(q) 6= 0}.

We know from Theorem?? that the sign off (q+ ε(a−q)) is constant and nonzero for sufficiently smallε .
Therefore at least onep j(q) must be non-zero. Leti be minimal withpi(q) 6= 0. Then

f (q+ ε(a−q)) = pi(q)ε i

(

1+ ∑
j>i

p j(q)

pi(q)
ε j−i

)

.

Let M = max
∣

∣p j(q)/pi(q)
∣

∣. Then
∣

∣∑ j>i p j(q)/pi(q)ε j−i
∣

∣≤ M/(1− ε) < 1/2 for sufficiently smallε .

7.2 Numerical Perturbation

[[the following is copied from Funke/Klein/Mehlhorn/Schmitt. It needs to rewritten so that it fits better.]]

7.3 Some Words of Caution

Perturbation is not a cure-all. It removes burden from the algorithm designer and implementer. However, it
has two drawbacks.

The running time of an algorithm may increase as a result of perturbation. We give two examples.
Assume we are givenn line segments passing through the origin. We will see in Section ?? that we can
compute their arrangement in timeO(nlogn). However, perturbing the line segments into general position
(no three intersect in a point) will generate an arrangementwith Θ(n2) intersection points. The second
example is even more extreme. Assume we are givenn identical points inRd. Any sensible convex hull
algorithm should be able to handle this input in linear time.However, the perturbation scheme of Section 7.1
moves then points onto thed-dimensional moment curve. The resulting hull will haveΩn⌊d/2⌋ facets and
hence any algorithm will need timeΩn⌊d/2⌋ for computing the hull of the perturbed points.

Exercise 0.2: Prove bound for points on the moment curve. ♦

The second drawback is that we solve the problem on a perturbed input and not on the original input.
The output for the perturbed input may tell us little about the output for the original input.

The symbolic scheme has another drawback. It requires exactcomputation.
Neither approach to perturbation will apply if some test function is identically zero. For example, if one

tests whether a pointp lies on a line involvingp as one of the defining points, the outcome will be “on line”
no matter who one perturbs the input. The reader may think that test functions that are identically zero can
only arise as a consequence of stupid programming. However,they can also arise because the algorithm
designer misses a theorem, see Figure 7.1.

7.4 Notes

[3] introduced symbolic perturbation and applied it to the orientation predicate. [5, 7, 4, 8] extended and
simplified the technique. Our presentation follows [7]. An implementation of the scheme is available in
CGAL [2]. CITATION IS INCOMPLETE.

Section?? is based on [6].
Section 7.3 is based on [1].



7.5. PROPOSED CONTENTS 5

Figure 7.1: p1, p2, p3 are three arbitrary points on a lineℓ1 andq1, q2, q3 are three arbitrary points on a
line ℓ2. For 1≤ i ≤ 3 let{ j,k} = {1,2,3}\ i and letr i be the intersection ofℓ(p j ,qk) andℓ(pk,q j). Pappus
(ca. 300 AD) proved thatr1, r2 andr3 are collinear. So perturbing the input will not help.

7.5 Proposed Contents

discuss SoS by Edelsbrunner and Muecke, Seidel
discuss controlled perturbation. This can be based on the SODA article by Funke/Klein/Mehlhorn/Schmitt.
Reference to Devillers/Preparata.
also do conceptual perturbation: walk through a triangulation. to get the code right. This is discussed in

the LEDAbook and also in my 2000 course notes.



6 LECTURE 7. PERTURBATION



Bibliography

[1] C. Burnikel, K. Mehlhorn, and S. Schirra. On Degeneracy in Geometric Computations. InProceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA’94), pages 16–23, 1994.

[2] J. Comes and M. Ziegelmann. An easy to use implementationof linear perturbations within CGAL. In
Algorithm Engineering, pages 169–182, 1999.

[3] H. Edelsbrunner and E. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in
geometric algorithms.ACM Transactions on Graphics, 9(1):66–104, Jan. 1990.

[4] I. Emiris, J. Canny, and R. Seidel. Efficient perturbations for handling geometric degeneracies.Algo-
rithmica, 19:219–242, 1997.

[5] I. Z. Emiris and J. F. Canny. A general approach to removing degeneracies.SIAM Journal on Computing,
24(3):650–664, June 1995.

[6] S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt. Controlled Perturbation for Delaunay Triangulations.
SODA, pages 1047–1056, 2005.

[7] R. Seidel. The nature and meaning of perturbations in geometric computing.Discrete & Computational
Geometry, 19(1):1–17, 1998.

[8] C.-K. Yap. Geometric consistency theorem for a symbolicperturbation scheme.J. Comput. Syst. Sci.,
40(1):2–18, 1990.

7


