
Lecture 9

Root Isolation

The determination of the roots of a univariate real polynomial is ubiquitous in geometric computing. Letf
be such a polynomial and letn be its degree, i.e.,

f = ∑
0≤i≤n

fix
i ∈ R[x].

A polynomial of degreen has exactlyn complex roots1 if roots are counted with multiplicities. We can write
f as a product of linear factors, i.e.,

f (x) = fn∏
i

(x−ξi)
ki ,

where theξi ’s are the distinct roots off andki is the multiplicity of ξi. Then∑i ki = n. A root ξi ∈ R is
called a real root. The nonreal roots come in pairs of conjugate roots. More precisely, ifξ = a+ bi with
b> 0 is a root off , then the complex conjugateξ = a−bi of ξ is also a root off . Indeedf (ξ ) = 0 implies2

0 = 0 = f (ξ ) = ∑
0≤i≤n

fiξ i = ∑
0≤i≤n

fiξ i = ∑
0≤i≤n

fiξ i = ∑
0≤i≤n

fiξ
i
= ∑

0≤i≤n

fiξ
i
,

where the last equality holds since the coefficientsfi are real numbers. Thusξ is a root of f . We ask the
reader to show thatξ andξ have the same multiplicity.

Exercise 0.1: Let ξ be a nonreal root off . Show thatξ andξ have the same multiplicity as roots off .
Hint: Let ξ = a+ ib. Theng(x) = (x−ξ )(x−ξ ) = x2−2ax+a2+b2 is a real polynomial that divides
f . Thus f/g is also a real polynomial. Now apply induction. ♦

How can we determine the roots of a polynomial? For polynomials of degree one, the task is trivial.
x−5 = 0 has a single root, namelyx = 5.

For polynomials of degree two, we learned the solution in high school.
x2 +bx+c = 0 has two roots, namelyx = (−b±

√
b2−4c)/2.

The polynomial has two distinct real roots ifb2 − 4c > 0, it has a double real root ifb2− 4c = 0, and its
has two complex roots ifb2−4c< 0. Explicit solutions are also known for polynomials of degree three and
four.

1This is called the Fundamental Theorem of Algebra.
2Conjugation commutes with addition and multiplication, i.e., forx,y∈ C, x ·y = x ·y andx+y = x+y.
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2 LECTURE 9. ROOT ISOLATION

Exercise 0.2: Look up the solution method for polynomials of degree three and apply it tox3−2x2 +7x+
19. ♦

Exercise 0.3: Look up the solution method for polynomials of degree four and apply it tox4 + x3−2x2 +
7x+19. ♦

For polynomials of degree five and higher, explicit solutions are not available. What does it mean then
to compute the roots of a univariate polynomialf ? It can mean different things.

(1) Determine the number of roots off . This is easy. The number of roots off in C counted with multi-
plicities is precisely the degree off . All formulations to follow are non-trivial computationaltasks.

(2) Determine the number of distinct roots off (and their multiplicities).

(3) Determine the number of real roots off .

(4) Determine the number of distinct real roots off (and their multiplicities).

(5) Isolate the complex roots off , i.e., determine triples(ξi , r i ,ki) with ξ ∈ C, r i ∈ R, andki ∈ N with the
following properties.

• The disk (in the complex plane) with centerξi and radiusr i contains aki-fold root of f .

• ∑i ki = degf

• The disksD(ξi , r i) are disjoint.

(6) Isolate the real roots off , i.e., determine triples(ξi, r i ,ki) with ξ ∈ R, r i ∈ R, andki ∈ N with the
following properties.

• The interval (of the real axis) with centerξ and radiusr i contains aki-fold real root of f .

• ∑i ki is equal to the number of real roots off counted with multiplicities.

• The intervalsI(ξi , r i) are disjoint.

(7) As (5) or (6), but guarantee in addition that ther i are smaller than some presribedε .

It is also interesting to solve these problems for polynomials with special properties, in particular, square-
free polynomials. A polynomial is square-free if all roots (complex or otherwise) off are distinct. We
will see in Lecture?? how to factor a polynomialf into a product f1 f2 . . . fn, n = degf , of square-free
polynomials such that the roots offk are precisely thek-fold roots of f . Hence, restricting attention to
square-free polynomials is justified.

In this section, we will concentrate on (6) for square-free polynomials. We will start with polynomials
with rational coefficients (f ∈ Q[x]) and then generalize to polynomials with real coefficients.(7) will be
the topic of Lecture??.

9.1 Root Isolation for Polynomials with Integer Coefficients

Throughout this section,f = ∑0≤i≤n fixi is a polynomial with integer coefficients. This includes thecase
that the coefficients are rational numbers; multiplyingf with (a multiple of) the least common multiple of
the denominators of thefi ’s convertsf into a polynomial with integer coefficients.
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9.1.1 Root Bounds

We derive an upper bound on the absolute value of any root off . Such a bound, call itB, is very useful. It
allows us to restrict the search for complex roots to the disk(in the complex plane) of radiusB centered at 0
and the search for real roots to the interval of radiusRcentered at 0. The following result is due to Cauchy3.

THEOREM 1. Let f ∈ R[x], and letξ be a root of f . Then

|ξ | < B := 2 max
0≤i≤n

| fi |
| fn|

.

Proof. Observe first thatB ≥ 2 since the fraction| fn|/ | fn| is included in the maximization. For the sake
of a contradiction, assumef has a rootξ with |ξ | ≥ B. Then 0= fnξ n + ∑0≤i≤n−1 fiξ i and hence| fnξ n| =∣∣∑0≤i≤n−1 fiξ i

∣∣. Thus

Bn ≤ |ξ n| =
∣∣∑0≤i≤n−1 fiξ i

∣∣
| fn|

≤ ∑
0≤i<n

| fi |
| fn|

|ξ |i ≤ ∑
0≤i<n

B
2

Bi =
B
2

Bn−1
B−1

≤ Bn−1,

a contradiction. The last inequality follows fromB/2≤ B−1 for B≥ 2.

9.1.2 Descartes’ Rule of Sign

Descartes4 established a simple rule for bounding the number of positive real roots of a polynomial. Let
f = ∑0≤i≤n fixi ∈R[x] be a univariate polynomial of degreen. We define thenumber of sign changesVar( f )
in the coefficient sequenceof f as the number of pairs(i, j) with i < j, fi f j < 0 and fi+1 = . . . = f j−1 = 0.
The sequence(−2,0,+2,+2,−1) has two sign changes.

THEOREM 2 (Descartes).Let f = ∑0≤i≤n fixi ∈ R[x], f 6≡ 0, be a univariate polynomial with real coeffi-
cients. Let PZ( f ) be the number of positive real roots of f counted with multiplicities. Then

Var( f )−PZ( f ) is an even nonnegative integer.

Proof. We may assume thatf0 6= 0. Otherwise, we considerf/x instead off . Var( f ) is even if f0 and fn
have the same sign and is odd otherwise. The sign off (0) is equal to the sign of the constant coefficient
and the sign off (x) for sufficiently largex is equal to the sign of the leading coefficient. Thus the number
of real zeros counted with multiplicities is even ifff0 and fn have the same sign. We have now established
thatVar( f ) andPZ( f ) have the same parity.

3Augustin-Louis Cauchy (21 August 1789 – 23 May 1857) was a French mathematician who was an early pioneer of analysis.
He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner. He also gave
several important theorems in complex analysis and initiated the study of permutation groups in abstract algebra. A profound
mathematician, Cauchy exercised a great influence over his contemporaries and successors. His writings cover the entire range of
mathematics and mathematical physics. Quote from Wikipedia (January 5, 2010).

4René Descartes (31 March 1596 – 11 February 1650) was a French philosopher, mathematician, physicist, and writer who spent
most of his adult life in the Dutch Republic. He has been dubbed the ”Father of Modern Philosophy”, and much of subsequent
Western philosophy is a response to his writings, which continue to be studied closely to this day. In particular, his Meditations on
First Philosophy continues to be a standard text at most university philosophy departments. Descartes’ influence in mathematics
is also apparent, the Cartesian coordinate system–allowing geometric shapes to be expressed in algebraic equations being named
for him. He is credited as the father of analytical geometry.Descartes was also one of the key figures in the Scientific Revolution.
(Quote from Wikipedia, January 5, 2010)



4 LECTURE 9. ROOT ISOLATION

It remains to establishVar( f ) ≥ PZ( f ). We do so by induction on the degree off . If the degree of
f is zero,Var( f ) = 0 = PZ( f ). For degf > 0, consider the derivativef ′ of f . By induction hypothesis,
Var( f ′) ≥ PZ( f ′). AlsoVar( f ) ≥ Var( f ′) andPZ( f ) ≤ PZ( f ′)+1. Thus

Var( f )−PZ( f ) ≥ Var( f ′)− (PZ( f ′)+1)) = Var( f ′)−PZ( f ′)−1≥−1.

SinceVar( f )−PZ( f ) is even, we concludeVar( f ) ≥ PZ( f ).

The case of zero or one sign change deserves special mentioning.

COROLLARY 3. If Var( f ) = 0, f has no positive real root, and ifVar( f ) = 1, f has exactly one positive
real root.

The rule is easily extended to arbitrary open intervals by a suitable coordinate transformation. Let
I = (a,b) be an open interval. The mapping

x 7→ ax+b
x+1

maps(0,∞) bijectively onto(a,b) and hence the positive real roots of

fI (x) := (1+x)n · f

(
ax+b
x+1

)

correspond bijectively to the real roots off in I . We defineVar( f , I) asVar( fI ). The factor(1+ x)n in
the definition of fI clears denominators and guarantees thatfI is a polynomial. We thus have the following
extension of Descartes’ rule to intervals.

THEOREM 4. Let f be a polynomial, let I= (a,b) be an interval and let k be the number of zeros of f
(counted with multiplities) in I. Then

Var( f , I)−k is an even nonnegative integer.

The number of sign changesVar( f , I) of f with respect to an interval is an upper bound on the number
of roots of f in I . It may and, in general, will overestimate the number of roots. The Bulgarian mathematician
Obreschkoff has established tighter bounds onVar( f , I).

THEOREM 5 ([?, ?]). Let f be a polynomial of degree n, I an open interval, and v= Var( f , I). If the
Obreshkoff lens Ln−q (see Figure 9.1) contains at least q roots (counted with multiplicity) of f , then v≥ q. If
the Obreshkoff area Aq (see Figure 9.1) contains at most q roots (counted with multiplicity) of f , then v≤ q.
In particular,

# of roots of f in Ln ≤ Var( f , I) ≤ # of roots of f in An.

The casesq = 0 andq = 1 deserve special mentioning. They run under the names one-circle theorem
and two-circle theorem, respectively.

THEOREM 6 ([?, ?]). Consider a real polynomial f(x) and an interval I= (a,b) with midpoint mI = (a+
b)/2 and let v= Var( f , I).

• (One-Circle Theorem) If the open disc bounded by the circle C0 centered at mI and passing through
the endpoints of I contains no root of f(x), then v= 0.
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Figure 9.1: For anyq with 0≤ q≤ n, the Obreshkoff disksCq andCq for I have the endpoints ofI on their
boundary; their centers see the line segment[a,b] under the angle 2α = 2π/(q+2). The Obreshkoff lensLq

is the interior ofCq∩Cq and the Obreshkoff areaAq is the interior ofCq∪Cq. Any point (except fora and
b) on the boundary ofAq sees[a,b] under an angleπ/(q+2) (= half the angle at the center) and any point
(except fora andb) on the boundary ofLq sees[a,b] under angleπ −π/(q+2) (= half the complementary
angle at the center). We haveLn ⊂ Ln−1 ⊂ . . . ⊂ L1 ⊂ L0 andA0 ⊂ A1 ⊂ . . . ⊂ An−1 ⊂ An. The circlesC0

andC0 coincide. They have their center at the midpoint ofI . The circlesC1 andC1 are the circumcircles of
the two equilateral triangles havingI as one of their edges. We callA1 the two-circle regionof I .

• (Two-Circle Theorem) If the union of the open discs bounded by the circles C1 andC1 centered at
mI ± i(1/(2

√
3))w(I) and passing through the endpoints of I contains precisely one root of f(x), then

v = 1.

We would expect the number of sign variationsVar( f , I) to be a monotone function inI , i.e., if I ⊆ J
thenVar( f , I) ≤ Var( f ,J). In fact, much more is true. The functionVar( f , I) is subadditive. For a simple
self-contained proof, we refer the reader to [?, Corollary 2.27].

THEOREM 7 ([?]). Let f be a real polynomial. If the pairwise disjoint open intervals J1, . . . , Jl are subsets
of the open interval I, then

∑
1≤i≤ℓ

Var( f ,Ji) ≤ Var( f , I).

9.1.3 Proofs of the One-Circle and Two-Circle Theorems∗

The goal of this section is to prove the one-circle and two-circle theorems. We proceed in two steps. In the
first step, we derive conditions under whichVar( f ) = 0 andVar( f ) = 1, respectively. In the second step,
we transform these conditions to intervals.

LEMMA 8. If all roots of a real polynomial f lie in the closed left halfplane of the complex plane (if
ξ = a+bi is a root of f then a≤ 0), Var( f ) = 0.

Proof. Since the nonreal roots off come in conjugate pairs, we have

f = fn ∏
ξ∈R; f (ξ )=0

(x−ξ ) ∏
ξ∈C; f (ξ )=0; Im(ξ )>0

(x−ξ )(x−ξ).
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π/3

Figure 9.2: The cone mentioned in Lemma 9. [[Ugly figure. Makeit an inline figure.]]

If ξ is a real root off , ξ ≤ 0 and hence both coefficients ofx− ξ are nonnegative. Ifξ = a+ bi is a
nonreal root off with a≤ 0, all coefficients of(x− ξ )(x− ξ) = x2−2ax+ a2 + b2 are nonnegative. Thus
all coefficients off/ fn are nonnegative and henceVar( f ) = 0.

LEMMA 9. Let C= {ξ ∈ C | ξ = |ξ |eiϕ and2π/3≤ ϕ ≤ 4π/3} be the cone with opening angle2π/3 and
centered at the negative real axis, see Figure 9.2. If a real polynomial f has exactly one positive real root
and all other roots in C,Var( f ) = 1.

Proof. Since f has a positive real root,Var( f ) ≥ 1. It remains to showVar( f ) ≤ 1. As in the proof of the
preceding lemma, we write

f = fn ∏
ξ∈R; f (ξ )=0

(x−ξ ) ∏
ξ∈C; f (ξ )=0; Im(ξ )>0

(x−ξ )(x−ξ ).

We now build the productf/ fn inductively. We start withx−ξ whereξ is the positive real root off . Then
we have one sign change. Assume now that we haveh(x) = ∑0≤i≤maixi with Var(h) ≤ 1, saya0, . . . ,ak ≤ 0
andak+1, . . . ,am ≥ 0. We will showVar(h· (x−ξ )) ≤ 1, wheneverξ ≤ 0 andVar(h· (x−ξ )(x−ξ )) ≤ 1,
wheneverξ ∈C\R.

Consider firsth · (x− ξ )) with ξ ≤ 0. Write h · (x− ξ ) = ∑0≤i≤m+1cixi . Thencm+1 = am ≥ 0, c0 =
−a0ξ ≤ 0 andci = ai−1− ξ ai for 1≤ i ≤ m. Thusci ≥ 0 for i ≥ k+ 2 andci ≤ 0 for i ≤ k. Whatever the
sign ofck+1, Var(h· (x−ξ )) ≤ 1.

Consider nextg := h · (x− ξ )(x− ξ ) with ξ ∈ C\R. Let ξ = a+ ib. Thena ≤ 0 andb2 ≤ 3a2 and
(x− ξ )(x− ξ ) = x2−2ax+ a2 + b2. Sinceb > 0, we havea < 0. We may substitute−2ax for x without
changing the number of sign changes in eitherh or g; this holds since−2a > 0. The substitution changes
x2−2ax+a2 +b2 into 4a2(x2 +x+ λ ) whereλ = (a2 +b2)/(4a2) and hence 1/4≤ λ ≤ 1.

Write g = ∑0≤i≤m+2cixi . Thenci = ai−2 + ai−1 + λai for 0 ≤ i ≤ m+ 2 with the conventiona−2 =
a−1 = am+1 = am+2 = 0. Thusci ≥ 0 for i ≥ k+3 andci ≤ 0 for i ≤ k and henceVar(g) ≤ 3. Sinceg has
exactly one positive real root,Var(g) is odd. It remains to exclude the caseVar(g) = 3. If Var(g) = 3,
necessarily,ck+2 < ck+1. However,

ck+1 = ak−1 +ak + λak+1 definition ofck+1

≤ ak +ak+1 sinceλ ≤ 1, ak−1 ≤ 0, ak+1 ≥ 0

≤ ak +ak+1 + λak+2 sinceλ > 0 andak+2 ≥ 0

= ck+2 definition ofck+2.
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Figure 9.3: M maps the line with slopeβ/α through the origin onto the circle with centerm(I) +
(α/β )w(I)/2i and passing through the endpoints ofI = (a,b). [[This figure looks ugly. I should learn
how to use IPE.

Recall, the definition ofVar( f , I). We definedVar( f , I) asVar( fi), where

fI (x) := (1+x)n · f

(
ax+b
x+1

)
.

The mapping

M : x 7→ ax+b
x+1

maps(0,∞) bijectively onto(a,b) and hence the positive real roots offI correspond bijectively to the real
roots of f in I . We haveVar( fI ) = 0 if all roots of fI lie in the closed left halfplane of the complex plane
(equivalently: fI has no root in the open right halfplane) andVar( fI ) = 1 if fI has one positive real root
and all other roots in the coneC (equivalently: has exactly one root outside the coneC). So we need to
ask ourselves: into which region doesM map the open right halfplane and the complement of coneC,
respectively. These are exactly the regions mentioned in the one- and two-circle theorems as we show next.

LEMMA 10. The mapping M maps lines through the origin into circles passing through the endpoints of
I. More precisely, a line with slopeγ is mapped into the circle with center(a+b)/2+((b−a)/(2γ))i and
passing through the endpoints of I, see Figure 9.3 for an illustration.

Proof. The proof is a straightforward but somewhat tedious calculation. We observe first that

ax+1
x+1

=
a+b

2
+

b−a
2

· 1−x
1+x

.

Therefore is suffices to prove that the mappingM̃ : x 7→ (1−x)/(1+x) maps the lineℓ with slopeγ into the
circleCγ with center 0+(1/γ)i and passing through the points±1+0i.

Let α + β i be an intersection ofℓ with the unit circle. Thenγ = β/α andα2 + β 2 = 1. The points onℓ
are parameterized as(α + β i)t with t ∈ R. M̃ maps(α + β i)t into

1−αt −β ti
1+ αt + β ti

=
(1−αt −β ti)(1+ αt −β ti)
(1+ αt + β ti)(1+ αt −β ti)

=
1−2β ti − t2

1+2αt + t2 =
1− t2

1+2αt + t2 +
−2β t

1+2αt + t2 i.
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The parameter value 0 is mapped to 1+ 0i and the parameter value∞ is mapped to−1+ 0i. The squared
distance of the generic image from the center ofCγ is

(
1− t2

1+2αt + t2

)2

+

( −2β
1+2αt + t2 −

α
β

)2

=
β 2(1− t2)+ (−2β 2t −α(1+2αt + t2))2

β 2(1+2αt + t2)2

=
β 2(1− t2)+ (−α −2t −αt2)2

β 2(1+2αt + t2)2

=
β 2−2β 2t2 + t4 + α2+4αt +(4+2α2)t2 +4αt3+ α4t4

β 2(1+2αt + t2)2

=
1+4αt +(−2β 2+4+2α2)t2 +4αt3 + t4

β 2(1+4αt +(4α2 +2)t2 +4αt3 + t4)

=
1

β 2 ,

since−2β 2 +4+2α2 = 4α2 +2. We have now shown that̃M mapsℓ onto the circle with center 0+(1/γ)i
and passing through±1+0i.

It is now easy to prove the one- and two-circle theorem. We have Var( fI ) = 0 if fI has no root in the
open right halfplane. By Lemma 10,M maps the imaginary axis (this is a line with slopeγ = ∞) onto the
circle C0 centered at the midpoint ofI and passing through the endpoints ofI . Continuity tells us that the
two open halfplanes defined by the imaginary axis are mapped into the interior and exterior of the circle,
respectively. The right open halfplane is mapped into the interior since the positive real axis is mapped onto
I . Thus fI has no root in the open right halfplane if and only iff has no roots insideC0. This establishes the
one-circle theorem.

We come to the two-circle theorem. We haveVar( fI ) = 1, if fI has exactly one root outside the cone
C. This cone is bounded by the rayst 7→ t +±

√
3ti, t ∈ R≥0. By Lemma 10,M maps the supporting lines

of these rays into the circlesC1 andC1 centered atmI ± i(1/(2
√

3))w(I) and passing through the endpoints
of I . The complement of the coneC is the union of two open halfplanes. These open halfplanes are mapped
into the interior ofC1 andC1, respectively. ThusfI has exactly one root outsideC if and only if f has exactly
one root in the union of the interiors ofC1 andC1. This establishes the two-circle theorem.

[[ drawings would be helpful]]

9.1.4 A Bisection Algorithm for Root Isolation

[[The polynomial is now calledp]]

For a real rootz of p, let σ(z, p) be the minimal distance ofz to another root ofp. For a nonreal rootz
of p, let σ(z, p) be the absolute value of its imaginary coordinate. Letσ(p) be the minimal value ofσ(z, p)
over all roots ofp. For an intervalI = (a,b), let w(I) := b−a be its length or width.

Algorithm 1 shows a bisection algorithm for isolating the roots of a real polynomialp in an open interval
I0 based on Descartes’ rule of sign. The algorithm requires that the real roots ofp in I0 are simple. If the
requirement is not met, the algorithm diverges. It maintains a setA of active intervals. Initially,A contains
I0, and the algorithm stops as soon asA is empty. In each iteration, some intervalI ∈ A is processed. The
action taken depends on the integerVar(p, I), the outcome of Descartes’ rule of signs applied top andI .
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Algorithm 1 Bisection Algorithm for Isolating Real Roots

Require: p= ∑0≤i≤n pixi is a real polynomial andI0 is an open interval. The real roots ofp in I0 are simple.

Ensure: returns a listO of isolating intervals for the real roots ofp in I .

A := {I0} {list of active intervals}
O := /0 {list of isolating intervals}
repeat

I := some interval inA; deleteI from A;
if Var(p, I) = 0 do nothing;
if Var(p, I) = 1 addI to O;
if Var(p, I) ≥ 2 then

let I = (a,b) and setm := (a+b)/2;
if p(m) = 0 add[m,m] to O;
add(a,m) and(m,b) to A;

end if
until A is empty
return O

If there is no sign change,I contains no root ofp and we discard it. If there is exactly one sign change,
I contains exactly one root ofp and hence is an isolating interval for it. We addI to the listO of isolating
intervals. If there is more than one sign change, we divideI at its midpoint and add the subintervals to the
set of active intervals. If the midpointm is a zero ofp, we add the trivial interval[m,m] to the list of isolating
intervals.

Correctness of the algorithm is obvious. Termination and complexity analysis rest on the one- and
two-circle theorems.

LEMMA 11. No interval of lengthσ(p) or less is split.

Proof. Such an interval, recall that is is open, cannot contain two real roots and its two-circle region cannot
contain any nonreal root. ThusVar(p, I) ≤ 1 by Theorem 6.

THEOREM 12. The depth of the recursion tree is at mostlog(w(I0)/σ(p)). The total size of the recursion
tree is O(nlog(w(I0)/σ(p))).

Proof. The root of the recursion tree has an associated interval of lengthw(I0), every internal node has an
associated interval of length at leastσ(p), and the interval associated with a node has half the length of the
interval associated with the parent. Thus the depth of any internal node (the depth of the root is zero) is at
most log(w(I0)/σ(p)).

At any level of the tree, we can have at mostn/2 internal nodes. This holdss since the intervals are
associated with the internal nodes at any level are disjointand hence their sign variations add to at mostn by
Theorem 7. Each internal node contributes at least two sign variations. Thus the number of internal nodes
is at most(1+ log(w(I0)/σ(p)))n/2.

The recursion tree is binary, i.e., each nonleaf has exactlytwo children. In such a tree the number
of leaves is equal to the number of internal nodes plus one. Thus the total size of the tree is at most
1+(1+ log(w(I0)/σ(p))n.

[[[ what was called fI before is now called qI ]]]
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The computation ofqI from p at every node of the recursion is costly. It is better to storewith every
interval I = (a,b) the polynomialpI (x) := p(a+x(b−a)), whose roots in(0,1) correspond to the roots of
p in I . If I is split atm= (a+ b)/2 into Iℓ = (a,m) and Ir = (m,b), the polynomials associated with the
subintervals are

pIℓ(x) = 2npI (x/2) and pIr (x) = 2npI ((1+x)/2) = pIℓ(1+x).

Also, qI (x) = (1+ x)npI (1/(1+ x)). The polynomialspIℓ , pIr , andqI can be obtained frompI by n2 addi-
tions. Also, if the coefficients are integral, the coefficients grow byO(n) bits in every node.

[[todo: give more details and do complexity analysis]]

9.1.5 The Continued Fraction Algorithm for Root Isolation∗

[[give a brief account of the continued fraction method.]]

9.2 Root Isolation for Polynomials with Real Coefficients

We extend the findings of the preceding section to polynomials with real coefficients. In principle, there
is no need for extending. Algorithm 1 works perfectly for polynomials with real coefficients. There is a
problem however. We need to determine the number of sign variatations in sequences of real numbers, e.g.,
in

(π,−
√

2,
√

2,π).

This is computationally hard. The sign determination of algebraic expressions is the topic of Lecture??.
We take a different route in this section. We assume that we can approximate the coefficients with any

desired accuracy, i.e., for any coefficientfi and any integerL, we can compute a binary fractioñfi = Fi/2L

with Fi ∈ Z and
∣∣ fi − f̃i

∣∣ ≤ 2−L, e.g.,Fi =
⌊

fi2L
⌋

or Fi =
⌈

fi2L
⌉
. Alternatively, we view the coefficients as

binary numbers with potentially infinite binary places after the binary point;f̃i is then obtained by keeping
the firstL digits after the binary point.

We pursue the following idea. In order to isolate the roots off = ∑0≤i≤n fixi , we perform the following
three steps:

(1) Approximatef by a polynomialf̃ = ∑0≤i≤n f̃ixi , where each̃fi is a binary fraction approximatingfi .

(2) Isolate the roots of̃f by means of the Algorithm 1.

(3) return the isolating intervals for the roots off̃ (after a suitable widening) as isolating intervals for the
roots of f .

Since the roots of a polynomial depend continuously on its coefficients such an approach might work; iff̃
is sufficiently close tof , the roots of f̃ should be good approximations for the roots off . Thus if I is an
isolating interval for a root off̃ , a slightly widenedI might be an isolating interval for the corresponding
root of f . In order to turn the idea into an algorithm, we need to overcome some obstacles.

• How well do we have to approximate the coefficients off ?

• Algorithm 1 may return isolating intervals sharing an endpoint. If we widen such intervals, we loose
disjointness.
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We overcome the second problem by modifying the algorithm slightly. Instead of recursing only for
intervalsI with Var(p, I) ≥ 2, we recurse for all intervals withVar(p, I+) ≥ 2, whereI+ is the interval of
length 5w(I) enlargingI by 2w(I) on either side, i.e., ifI = (a,b), I+ = (a−2(b−a),b+2(b−a)). We call
I+ theextensionof I or anextended interval.

The small change ensures that isolated intervals are well-separated, see Lemma 16, without increasing
the depth of the recursion by much, see Lemma 15. It has the nice side effect that the algorithm also
computes an estimate of the root separation of the input polynomial, see Lemma 17. Before, we state and
prove these Lemmas, we address item (1). We remarked above that the roots of a polynomial are continuous
functions of the coefficients. Schönhage proved a quantitative version of this fact. For a polynomialp =

∑0≤i≤n pixi , |p| = ∑0≤i≤n |pi | denotes the 1-norm ofp.

THEOREM 13 ([?]). Let p= ∑0≤i≤n pixi = pn ∏1≤i≤n(x− zi) be a polynomial of degree n with|zi | < 1 for
all i. Let µ be a positive real withµ ≤ 2−7n and let p∗(x) = ∑0≤i≤n p∗i xi = p∗n ∏1≤i≤n(x−z∗i ) be such that

|p− p∗| < µ |p| .

Then up to a permutation of the indices of the z∗
i

|z∗i −zi | < 9 n
√

µ .

Proof. We prove the stronger claim|z∗i −zi| ≤ n
√µ under the additional assumptionsn

√µ < σ(p)/2 and
|p− p∗| ≤ µ |p∗n|.

Let zi be a root ofp, let g(x) = p∗(zi +x)/p∗n, and letxi be a root ofg of smallest modulus. Thenzi +xi

is a root ofp∗ andg is monic. Sinceg is monic, the product of its roots is equal (up to sign) tog(0). Since
xi is a root ofg of smallest modulus, we have|xi |n ≤ |g(0)|. Thus

|xi | ≤ n
√
|g(0)|

= n
√
|p∗(zi)− p(zi)|/ |p∗n| sinceg(0) = p∗(zi) andp(zi) = 0

≤ n

√
∑

0≤k≤n

∣∣pk− p∗k
∣∣/ |p∗n| |zi |k

≤ n

√
∑

0≤k≤n

∣∣pk− p∗k
∣∣/ |p∗n| since|zi | ≤ 1

≤ n
√

µ since|p− p∗| ≤ µ |p∗n|

So for any rootzi of p there is a rootz∗i of p∗ of distance at mostn
√µ and hence of distance less thanσ(p)/2.

Since any two roots ofp are at leastσ(p) apart, we have a bijection between thezi and thez∗i .

[[my notation is not consistent: In the proof above,σ(p) is the smallest distance between any two roots of
p. The definition given in Subsection 9.1.4 is different. Either introduce two concepts or change the

definition given in Subsection 9.1.4.
Also, what was called̃f before is now called p∗.]]

Theorem 13 requires all roots ofp to lie in the unit circle. It is easy to guarantee this condition. Let
P = ∑0≤i≤n Pixi ∈ R[x]. By Theorem 1, the absolute value of all roots ofP is strictly bounded by

B := 2 max
0≤i≤n

|Pi|
|Pn|

.
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Let p(x) := P(2Bx). Then all roots ofp have modulus less than 1/2. Thus Theorem 13 applies top.
What is a good choice forµ and how can we determine ap∗ with |p− p∗| ≤ µ |p|? We will address

these questions in two steps. We first assume that we know the root separation ofp (more precisely, have a
lower bound for it) and then we show how to do without this assumption.

9.2.1 The Case of Known Root Separation

We chooseµ such that the following three properties hold:

• µ ≤ 2−7n; this is required by the Theorem.

• 9 n
√µ ≤ 1/2; this guarantees that roots move by at most 1/2 and hence allroots ofp∗ have modulus at

most 1. Thus it is safe to start root isolation forp∗ with the start interval(−1,+1).

• 9 n
√µ ≤ σ(p)/12; this makes sure that roots move by at mostσ(p)/12. Since the imaginary part of a

nonreal root ofp is at leastσ(p)/2, nonreal roots ofp become nonreal roots ofp∗. Since real roots
of p have distance at leastσ(p) from each other, real roots ofp become real roots ofp∗. Thusp and
p∗ have the same number of real roots. Also,

σ(p∗) ≥ σ(p)−2σ(p)/12= 5σ(p)/6.

Similarly σ(p∗) ≤ σ(p)+2σ(p)/12= 7σ(p)/6.

Exercise 0.4: Show thatµ ≤ 2−7n implies 9n
√µ ≤ 1/2. ♦

LEMMA 14. Assumeσ ≤ min(1/2,σ(p) and letµ = (σ/108)n. Then

• µ ≤ 2−7n, 9 n
√µ ≤ 1/2, and9 n

√µ ≤ σ(p)/12.

• σ(p∗) ≥ 5σ(p)/6≥ 90 n
√µ .

Now that we know how to chooseµ , we come to the choice ofp∗. For eachi, we determine a binary
fraction p∗i with |p∗i − pi| ≤ 2−L for a still to be determinedL. Then |p∗− p| ≤ (n+ 1)2−L. We need
|p∗− p| ≤ µ |p| and therefore chooseL such that

2−L ≤ µ |p|
n+1

.

We can now state the algorithm, see Algorithm 2. The only difference to Algorithm 1 is that we now recurse
wheneverVar(p∗, I+) ≥ 2.

LEMMA 15. Algorithm 2 generates no interval of length less thanσ(p∗)/10.

Proof. Consider any intervalI with w(I) ≤ σ(p∗)/5. Thenw(I+) ≤ σ(p∗) and hence either the one- or the
two-circle theorem applies toI+. ThusVar(p∗, I+) ≤ 1 andI is not split. Thus only intervals with length
≥ σ(p∗)/5 are split and hence no interval has length less thanσ(p∗)/10.

Let O∗ be the list of isolating intervals computed forp∗. Any interval inO∗ is either a singleton or has
length at leastσ(p∗)/10. For an intervalI , let Ĩ be its expansion by 9n

√µ on both sides, i.e, ifI = (a,b),
then Ĩ = (a−9 n

√µ ,b+9 n
√µ) and if I = [m,m], thenĨ = (m−9 n

√µ ,m+9 n
√µ). If I is an isolating interval

for a real root ofp∗, Ĩ contains the corresponding root ofp.
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Algorithm 2 Bisection Algorithm for a Real Polynomialp with Root Separation Estimateσ
Require: p is a real polynomial with roots in the disc of radius 1/2 centered at 0,σ ≤ min(1/2,σ(p)),

µ = (σ/108)n, |p∗i − pi | ≤ µ |p|/(n+1) for all i.

Ensure: returns a listO∗ of well-separated isolating intervals for the real roots ofp∗.

A := {(−1,1)} {list of active intervals}
O∗ := /0 {list of isolating intervals}
repeat

I := some interval inA; deleteI from A;
I+ = (a−2(b−a),b+2(b−a)), whereI = (a,b);
if Var(p∗, I+) > 1 then

add(a,m) and(m,b) to A wherem= (a+b)/2;
if p∗(m) = 0 add[m,m] to O∗;

else
if Var(p∗, I) = 0 do nothing;
if Var(p∗, I) = 1 addI to O∗;

end if
until A is empty
return O∗

LEMMA 16. O := {Ĩ | I ∈ O∗} is a set of isolating intervals for p.

Proof. By our choice ofµ , p andp∗ have the same number of real roots and each expanded intervalcontains
a real root ofp. We need to argue disjointness.

Let I andJ be two intervals inO∗. If I andJ are singletons, they have distance at leastσ(p∗) from each
other. Sinceσ(p∗) ≥ 90 n

√µ , disjointness is preserved after expanding both intervals.
So assume, that at least one of the intervals is not a singleton, sayI . We may also assumew(I) ≥ w(J).

SinceI andJ are inO∗, both contain a real root ofp∗. If I+ would containJ, it would contain two real roots,
and we would haveVar(p∗, I+) ≥ 2. SoI would be split. ThusI+ does not containJ and hence is disjoint
from J (sincew(I) ≥ w(J)). Thus the distance ofI andJ is at least 2w(I). Also,

2w(I) ≥ σ(p∗)
5

≥ 18 n
√

µ

by our choice ofµ and hencẽI andJ̃ are disjoint.

This concludes the analysis of modified algorithm. It computes isolating intervals forp and its recursion
depth is not much larger than for the original algorithm. Itsdrawback is that it needs an estimateσ with
σ ≤ σ(p).

9.2.2 The Case of Unknown Root Separation

The nice thing is that the algorithm computes such an estimate σ .

LEMMA 17. Algorithm 2 refines at least one interval to a length less thannσ(p∗).
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mIa bc d

π
2n+4

Ln

2w(I)

h

Figure 9.4:I = (a,b), I+ = (c,d), andLn denotes the Obreshkoff lensLn(I+). The height ofLn at endpoint
of I is at leasth, whereh= 2w(I) tan(π/(2(n+2))) ≥ 2w(I)/(n+2) ≥w(I)/n. By Theorem 5,Var(p∗, I+)
is at least the number of roots ofp∗ in the rectangleI × [−hi,+hi].

Proof. We distinguish cases. Ifσ(p∗) is equal to the distance of two real roots, letI be the separating
interval computed for one of them. Thenw(I) ≤ σ(p∗)/2 because otherwiseI+ would contain both roots
andI would be split.

If σ(p∗) is equal to the imaginary coordinate of a nonreal root, consider a leafI of the Descartes tree with
the property that the real part of the root is contained in theclosure ofI . SinceI is a leaf,Var(p∗, I+) ≤ 1
and henceσ(p∗) ≥ w(I)/n, see Figure 9.4.

Exercise 0.5: Show that Lemma 17 is not true for Algorithm 1). Considerp(x) = x2+δ 2 = (x− iδ )(x+ iδ )
with δ ≈ 0. This polynomial has a pair of conjugate complex roots at±iδ and hence separation 2δ .
However,Var(p,(−1,1)) = 2 andVar(p,(−1,0)) = Var(p,(0,1)) = 0. Verify these statements.
Thus the algorithm ends with intervals of length 1/2, although the separation may be arbitrarily small.

♦

Exercise 0.6: In Algorithm 2 we split all intervalsI satisfyingVar(p, I+) ≥ 2. Is there a less agressive
rule, which still guarantees a variant of Lemma 17. The question is how to handle intervals with
Var(p∗, I) ≤ 1 andVar(p∗, I+) ≥ 2. ♦

Lemma 17 yields a simple method for verifying whether a guessσ is no larger thanσ(p).

LEMMA 18. If Algorithm 2 produces no interval of length less than2nσ thenσ ≤ σ(p).

Proof. The algorithm produces an interval of length at mostnσ(p∗) and hence 2nσ ≤ nσ(p∗). Also,
σ(p∗) ≤ σ(p)+18 n

√µ = σ(p)+ σ/6. Thus

2σ ≤ σ(p∗) ≤ σ(p)+ σ/6

and henceσ ≤ σ(p).

We can now state the complete algorithm for isolating the roots of a polynomial with bitstream coef-
ficients. We start with an initial guessσ = 1/2; then(σ/108)n ≤ 2−7n. We computeµ and p∗ and run
Algorithm 2 onp∗. If no interval of length less than 2nσ is produced, we haveσ ≤ σ(p) and the algorithm
returns isolating intervals forp. On the other hand, if an interval of length less than 2nσ is produced, we
take this as an indication that our current guess is too large. We replaceσ by σ2 and repeat. We obtain
Algorithm 3. It remains to estimate how smallσ can become.
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Algorithm 3 Bisection Algorithm for Real Polynomials

Require: p = ∑0≤i≤n pixi and all roots ofp lie in a disc of radius 1/2 centered at 0. Real roots are distinct.

Ensure: returns isolating intervals for the real roots ofp.

σ = 1/2;
µ = (σ/108)n;
while (true) do

chooseε ≤ µ |p|/(n+2) and letp∗ be such that|p∗i − pi | ≤ µ |p|/(n+1) for all i;
run Algorithm 2 onp∗ and start intervalI = (−1,1); // we do not guaranteeµ ≤ (σ(p)/108)n

if the algorithm does not produce an interval of length less than 2nσ then
exit from the loop;

else
σ = σ2;

end if
end while
returnO := {Ĩ | I ∈ O∗}

LEMMA 19. Algorithm 3 stops with

σ ≥ min

(
1
2
,

(
σ(p)

20n+1

)2
)

.

Proof. If the algorithm stops in the first iteration, it stops withσ = 1/2. If the algorithm performs more
than one iteration, consider the next to last iteration. An interval of length less than 2nσ is produced. On
the other hand, by Lemma 15, no interval of length less thanσ(p∗)/10 is generated. Thus 2nσ ≥ σ(p∗)/10
and hence 20nσ ≥ σ(p∗) ≥ σ(p)−18 n

√
σ ≥ σ(p)−σ/6 and finallyσ ≥ σ(p)/(20n+1).

Sinceσ is squared from one iteration to the next, we haveσ ≥ (σ(p)/(20n+1))2 in the last iteration.

9.3 Further Reading

See [?, ?] for extensive treatments and references.


