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Two-dimensional arrangements LTV LR

Definition

For a set of curves C in D with dim(D) = 2, the arrangement A(C)
is the partitioning of D into cells of dimension 0, 1, and 2 induced
by C. Cells are called vertices, edges, and faces.

Fundamental structure in Computational Geometry:

= computer vision = model geometric problems in

= geographic information systems arrangement’lingo, e.g., using
duality, or configuration space

robot motion planning

. ™ 1
= we use it, e.g., enables traversal & queries

— for minimization diagram ® represents continuous problem
— as 2D-structure for in discretized (combinatorial)
stratification of surfaces chunks
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Representation as DCEL LY L LR
Doubly-connected-edge-list:

= Plane: Each face has < 1 outer (counter-clockwise) boundary
cycle and a > 0 of inner (clockwise) boundary cycles
= Quter and inner cycles define nesting graph. Plane: tree

Berberich CGGC WS2009/2010:Applications 3
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Arrangement_2 package of

= constructs, maintains, modifies, traverses, queries arrangements of
bounded curves in the plane (v3.2)
= modular due to generic programming
= efficient and robust, if used with exact geometric operations
= implements generic sweep line/zone algorithm, that
— handle all degeneracies: e.g., vertical curves, multiple curves
running through a common point, etc.
— use visitor pattern to decouple combinatorics of sweep/zoning from
output, e.g. reporting intersections or constructing DCEL
= Arrangement_2<GeoTraits,...>

— parameter of the data structures and algorithms
— defines the family of curves that induce the arrangement
— must fulfill ArrangementTraits 2 concept

Berberich CGGC WS2009/2010:Applications 4
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Geometric operations LY L LR

L Types: Curve_2, X_monotone_curve_2, Point_2

= Methods:
— Subdivide a curve into x-monotone curves
— Compare two points lexicographically

Determine the relative position of a point and an
X-monotone curve

Determine the relative position of two x-
monotone curves to the right (or left) of a point

Q2

Find all intersections of two x-
monotone curves

5
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Arrangements of algebraic curves EERJ)RR

= was assumed to be impossible only a few years ago
= uses CGAL's Algebraic_curve_kernel_2
efficient by extensive use of approximative, but certified methods

® Curved_kernel_via_analysis_2 rewrites analyses into geometric
operations (GeometryTraits class)
= supports curves of arbitrary degree and all degeneracies

Berberich CGGC WS2009/2010:Applications 6
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Arrangements of algebraic curves EERJ)RR

= uses CGA
efficient b

® Curved_ke
operations
= supports c. .

methods
Volpert 07/08]

;eometric
eliyanenko 08]
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Arrangements of algebraic curves EERJ)RR

= uses CGA
efficient b

® Curved_ke
operations
= supports ¢

methods
Volpert 07/08]

7
|

;eometric
eliyanenko 08]

But: Most algebraic curves are unbounded!

v,

Berberich
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Unbounded plane LY L LR

Clipping the curves Infimaximal box [Mehihorn & Seel, 2003]

= Sweep algorithm is unchanged = Sweep line modifications for
linear objects, larger bit-lengths

= Not online = Online (no clipping)

= Single unbounded face ® Result has multiple unbounded
faces (and one ficticious)

Berberich CGGC WS2009/2010:Applications 7
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Unbounded plane LY L LR
Clipping the curves Infimaximal box [Mehihorn & Seel, 2003]

= First idea: GeometryTraits allows points at infinity

= Problem 1: Must be implemented in each GeometryTraits of
unbounded curves

= Problem 2: Requires post-processing for unbounded faces

Berberich CGGC WS2009/2010:Applications 7
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Unbounded plane LY L LR

Clipping the curves Infimaximal box [Mehihorn & Seel, 2003]

First idea: GeometryTraits allows points at infinity
Problem 1: Must be implemented in each GeometryTraits of
unbounded curves

Problem 2: Requires post-processing for unbounded faces
New framework implements the usual duplicated parts

— Demands a small set of simple functors

— The programer is guided

Berberich CGGC WS2009/2010:Applications 7
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Generalization: Parametric surface 111 o vm e

Definition (Parametric surface)

An orientable parametric surface P in u and v is defined by

¢P(u’ V) = (X(u? V)a Y(u’ V)? Z(u? V))

where ¢p : @ — R3 and P = ¢p(®), with & = UxV being a
continuous and simply connected two-dimensional parameter space.

Qllce

Sphere: ¢s(u,v) = (rcosucos v, rsinucos v, rsin v)

ue [—7r,7r)7 vel-3,%

Berberich CGGC WS2009/2010:Applications 8
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On a surface?! LY L LR

m Given: Parametric surface P; set of curves C embedded in P
= Goal: Compute and maintain arrangement

Motivation and Problems:

= P may be unbounded, also the curves in C
— Minimization diagram of unbounded surfaces
— Stratification of surfaces

= “international date line”, poles, ...

Extended CGAL's Arrangement_2 package

= Unified software framework for parametric surfaces:

Arrangement_on_surface_2

= Support for curves for ring Dupin cyclides cyclides (and quadrics)

Berberich CGGC WS2009/2010:Applications 9



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements
0000000e000000000000 0000000000000 00

On a surface?! LY L LR

m Given: Parametric surface P; set of curves C embedded in P
= Goal: Compute and maintain arrangement

Motivation and Problems:

= P may be unbounded, also the curves in C
— Minimization diagram of unbounded surfaces
— Stratification of surfaces

= “international date line”, poles, ...

Extended CGAL's Arrangement_2 package

= Unified software framework for parametric surfaces:

Arrangement_on_surface_2

= Support for curves for ring Dupin cyclides cyclides (and quadrics)

Berberich CGGC WS2009/2010:Applications 9



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements
0000000e000000000000 0000000000000 00

On a surface?! LY L LR

m Given: Parametric surface P; set of curves C embedded in P
= Goal: Compute and maintain arrangement

Motivation and Problems:

= P may be unbounded, also the curves in C
— Minimization diagram of unbounded surfaces
— Stratification of surfaces

= “international date line”, poles, ...

Extended CGAL's Arrangement_2 package

= Unified software framework for parametric surfaces:

Arrangement_on_surface_2

= Support for curves for ring Dupin cyclides cyclides (and quadrics)
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Arrangement on a surface LY L LR

= Decompose ® into 5 parts: left, right, bottom, top, and interior
Classify boundaries of parameter space (99) — four options:

— finite, or infinite, i.e., open end

— contracted, e.g., Yu € U, ¢s(U, Vimin) = po € P

— identified, e.g., Vv € V| &5(Umin, V) = &5 (Umax, V)
Split the input curves into u-monotone sweepable subcurves that
are interior disjoint from the boundaries (see figures)
= Categorize each curve-end of subcurve according to its position

Berberich CGGC WS2009/2010:Applications 10
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Arrangement on a surface LY UL LR

= Decompose ® into 5 parts: left, right, bottom, top, and interior
= Classify boundaries of parameter space (09) — four options:
— finite, or infinite, i.e., open end
— contracted, e.g., Vu € U, ¢s(u, Vmin) = po € P
— identified, e.g., Vv € V| ¢s(Umin, V) = &5 (Umax, V)
= Split the input curves into u-monotone sweepable subcurves that
are interior disjoint from the boundaries (see figures)
= Categorize each curve-end of subcurve according to its position

No curve-end on boundary

= Situation is “isomorphic” to
bounded curves in the plane

= special handling only if curves
touching the boundary

Berberich CGGC WS2009/2010:Applications 10
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Problem 1: Geometry LEE LR

= Augment ArrangementTraits 2 with surface-specific set of
— simple comparisons of curve-ends near boundary of ®
— and on boundary of ®, if identified or finite

maxy
maxg

ming  ming ming
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Problem 1: Geometry LY L LR

- Task: Interface lexicographic order of points and curve-endsin @ |

= Augment ArrangementTraits 2 with surface-specific set of
— simple comparisons of curve-ends near boundary of ®
— and on boundary of @, if identified or finite

Infinite algebraic curve-ends

/ mins

® compare to the right of x = —co
® compare to the left of x = +c0

B compute how two approach
a vertical asymptote

mifg  miny  Thing

Berberich CGGC WS2009/2010:Applications 11
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Lexicographic order in ¢ LY L LR

= Package provides case distinction combining them
= No duplicated (surface-independent) code in each geometry traits
= Example: Lexicographic order in ® for curves/points on sphere

nerx nes
iex ie1s
bes
o
iers
. e
be, iers 20
nes i .
o— ®iers ieyg_je1o nex
ne; «—° nex
~——=@ ey
i
be e
be;
®ie
be
o
beg

= Qutput of predicates is wrt ¢ - not their implemention

Berberich CGGC WS2009/2010:Applications 12
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Voronoi diagrams and arrangements

Problem 2: DcCEL LEE LR

= Unique in planar case
= Already in unbounded plane different possibilities. Two examples:

v F v 7 T
Vs
F F
Fs
£ A
y [
e —fu |
Fr ‘ P -
‘ ]
Fy @ v |4
\ F
b ()

bounding fictitious rectangle single fictitious vertex

Berberich CGGC WS2009/2010:Applications 13
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New parameter: TopologyTraits — FNRJD BN

template <typename GeoTraits, typename TopTraits>
class Arrangement_on_surface_2

Helps to determine A(C)'s actual representation:

Berberich CGGC WS2009/2010:Applications 14
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New parameter: TopologyTraits — FNRJD BN

template <typename GeoTraits, typename TopTraits>
class Arrangement_on_surface_2

Helps to determine A(C)'s actual representation:
= | ocate and maintain vertices on boundary
= | ocate curves incident to such vertices

Berberich CGGC WS2009/2010:Applications 14
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New parameter: TopologyTraits — FNRJD BN

template <typename GeoTraits, typename TopTraits>
class Arrangement_on_surface_2

Helps to determine A(C)'s actual representation:

= Construct and maintain possible fictitious edges

Berberich CGGC WS2009/2010:Applications 14
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New parameter: TopologyTraits — FNRJD BN

template <typename GeoTraits, typename TopTraits>
class Arrangement_on_surface_2

Helps to determine A(C)'s actual representation:

= Help to decide whether insertion of curve results in a face splitting
= Assign boundary cycles to maintain consistent nesting graph

— Tree strategy: There is always an “outermost” root face

— Forest strategy: Maintain (several) equitable outermost faces

Berberich CGGC WS2009/2010:Applications 14
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New parameter: TopologyTraits — FNRJD BN

template <typename GeoTraits, typename TopTraits>
class Arrangement_on_surface_2

Helps to determine A(C)'s actual representation:
= | ocate and maintain vertices on boundary
= | ocate curves incident to such vertices
= Construct and maintain possible fictitious edges
Help to decide whether insertion of curve results in a face splitting
Assign boundary cycles to maintain consistent nesting graph
— Tree strategy: There is always an “outermost” root face
— Forest strategy: Maintain (several) equitable outermost faces

One TopologyTraits fits for all geometries on that surface.

Berberich CGGC WS2009/2010:Applications 14
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Available TopologyTraits classes NN BR o

= Bounded plane (original case)
= Unbounded plane

Arrangements of | Voronoi diagrams of | Lower envelopes of

algebraic curves points in the plane | quadrics
= Surfaces
Sphere Quadrics Dupin cyclides

Berberich CGGC WS2009/2010:Applications 15
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Reference Cyclide LT LR

= Cyclide: Surface homeomorphic to torus
= Standard algebraic parameterization @ for cyclide P (no sin/cos!)

p(c@+u?)(14v2) — a1 —v2)(1— )+ b2 (1 —u?)(1+v?)
a(1+u2)(1+v2)7c(17UZ%(17V2)
u\ 2u(a(1+v3) = u(1—v3)b
a(1+u2)(1+v2%76(17u2g(lfv2)
2v(c(1—u?)—p(1+u”))b
a(1+u2)(1+v2)—c(1—u2)(1—v2)

= Splits cyclide at cut circles and induces pole
(“unfolding to the real plane”)

= Also given: Set of algebraic
surfaces S intersecting P

= Goal: Arrangement induced by
SNPwithall S8

Video [GfX: Pavel Emeliyanenko]

Berberich CGGC WS2009/2010:Applications 16
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GeometryTraits: Algebraic curves IIRJ) BR i

= Surface S defined by f := f(x,y,z) € Q[x,y,z], D := deg(f)
. F(u,v) = F(x(u, V), y(u, v), 2(u, v)) € Q[u, V]
= defines real algebraic plane curve of bidegree (2D, 2D)

Curves in ®p induced by
5 surfaces of degree 3

Enhance planar geometry for cyclide

= |nterpret arcs towards infinity
= arcs towards cut circles

= |nterpret comparisons near infinity
= comparisons near cut circles

= New: Comparisons on the boundary

~

Berberich CGGC WS2009/2010:Applications 17
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Cyclidean TopologyTraits LY L LR

= Problem: Cut circles have two (four) preimages in ¢
Goal: Store one DCEL-vertex for each set of identified preimages
Solution: Two sorted sequences of vertices + one for pole
— coordinates in ¢ are given by asymptotes of curves in ®
— Task: Assign “unbounded” curve-arcs to asymptotes
— Vertical: (f, x, a), but non-vertical: (f,+o0, a)
= Buckets; one for each asymptote for x — —oo
— get safe ug: real roots of F(ug, v) do not leave bucket for u < ug

Berberich CGGC WS2009/2010:Applications 18
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Cyclidean TopologyTraits LEE LR

= Problem: Adding curve that closes cycle = new face?
— first red curve = NO new face
this cycle is non-seperating

Berberich CGGC WS2009/2010:Applications 18
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Cyclidean TopologyTraits LEE LR

= Problem: Adding curve that closes cycle = new face?
— first red curve = NO new face
this cycle is non-seperating
— second red curve = NEW face
this cycle is seperating
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Cyclidean TopologyTraits LEE LR

= Problem: Adding curve that closes cycle = new face?
— first red curve = NO new face
this cycle is non-seperating
— second red curve = NEW face
this cycle is seperating

— Boundary cycles: Forest-strategy
face that contains non-contractible cycle = root in nesting graph

Berberich CGGC WS2009/2010:Applications 18
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Experiments: Constructions

Robot Motion Planning
000000000000 00

Voronoi diagrams and arrangements

00

l l I I I max planck institut
informatik

= Created interpolated surfaces (some with degeneracies wrt cyclide)

= Constructed arrangement on cyclide with sweep line (C)

= Constructed arrangement in unbounded plane (2D)

[ Instance-<deg> [ #S [ #V.#E#F (C) [ tins(C) [ tins(2D) |
ipl-1 10 119,190,71 0.14 0.14
ipl-1 20 384,682, 298 0.58 0.58
ipl-1 50 1837,3363,1526 2.14 2.00
ipl-2 10 358,575,217 1.07 1.25
ipl-2 20 1211,2147,937 3.14 3.04
ipl-3 10 542,847,305 4.84 4.62
ipl-3-6points 10 680,1092,412 32.43 31.17
ipl-3-2sing 10 694,1062,368 5.82 5.57
ipl-4 10 785,1204,419 50.42 49.97
ipl-4-6points 10 989,1529,540 461.74 450.54
ipl-4-2sing 10 933,1471,538 53.01 52.78

= Choice of TopologyTraits does not influence performance

= Running time spent in analyses of planar curves

Berberich
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Moebius strip LT VL

= is also rational parameterizable (as the cyclide is)

= but arrangement on this NON-ORIENTABLE surfaces cannot be
represented as DCEL.

® requires quad-edge data structure

= not (yet) available in CaAL

Berberich CGGC WS2009/2010:Applications 20
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Applications ENRJD N

Adjacency graph of surfaces:
Identify geometrically equal vertices on different surfaces

Enhance data-structure to model arrangement of surfaces

= Arrangements on spheres: Minkowsi-Sums of (convex) polyhedra,
assembly planning of polyhedra

Configuration space of (some) two-link robot arms moving
respecting obstacles: arrangement on a torus. Example:
Molecules of some amino-acids have two main rotation axes

Berberich CGGC WS2009/2010:Applications 21
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Robot Motion Planning LY L LR

= Goal: giving a motion description for a collision-“free” movement
of a “robot” respecting obstacles

= also known as the 'Piano Mover's Problem’

Berberich CGGC WS2009/2010:Applications 22
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Robot i p [ ot

= rather general term

= not needed to be motorized (“Piano”)

= has some shape (of finite description)

= might be static, or has some degrees of freedom (arms)
= typical Movements: translation, rotation

= typical robots: objects, biological molecules, robotic manipulators,
animated digital characters

Berberich CGGC WS2009/2010:Applications 23
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Collision-free movement LY L LR

Robot/object is allowed to freely move (according to its
possibilites) in some domain, e.g., a room/flat.

= motion must be continuous

= Domain might be restricted by obstacles: Walls, furniture

Two choices:

— totally collision-free
— “sliding” along an obstacle is allowed

Berberich CGGC WS2009/2010:Applications 24
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informatik

= Workspace for domain, robot, and obstacles is 2D or 3D Euclidean
space

= Motion is given as a (one-dimensional) path in
configuration space C

= C might have much higher dimension
(also depends on robot’'s number of DOF)

Berberich CGGC WS2009/2010:Applications 25
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C-Space (Examples) ENRD R

Robot is single point

= Translating the robot in a 2D workspace, C is given by the
position (x,y) in the plane: dim C = 2.

Robot is 2D shape in a 2D workspace

= Translation: Take a reference point (e.g., a corner). Robot’s
position is specified by position of reference (x, y): dim C = 2.

= With rotation: Add angle-parameter ¢ € [0,27). Robot'’s
configuration is given by triple: (x,y, ¢) in R? x [0,27): dim C =3

Robot is a 3D shape in 3D workspace

= Reference point (x, y, z) plus three Euler angles («, 3,7):
dmC =6

Berberich CGGC WS2009/2010:Applications 26
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C-Space (Examples) ENRD R

Robot has DOF

= A revolute join (Drehgelenk) adds a dimension to C.

Berberich CGGC WS2009/2010:Applications 26
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Free-space LTV LR

m The subset Cqee € C that avoids collisions with any obstacle
(touching or penetrative) is called the free-space (of the robot)

= The complement of e is the obstacle or forbidden region

Berberich CGGC WS2009/2010:Applications 27
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1 .
Algorithms LR R

General idea

= | ocate initial position A in free-space

Locate final position B in free-space

Find continuous path connecting both positions

If there is no such path: Motion from A to B not feasible

Berberich CGGC WS2009/2010:Applications 28
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Algorithms - Grid based FERJD B

Work well for low dimensional C

= Overlay C with a grid (graph)
= Remove vertices and edges not fully contained in Cyee

= Search shortest path in remaining graph between start and end
configuration

Remarks

= Requires dense grid to find narrow passages, becoming slow

= Requires exponential number of vertices (in dim C)

Berberich CGGC WS2009/2010:Applications 29
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Algorithms - Sample based LY L LR
Develop roadmap(-graph) in Cee.

= Sample n configurations in C; keep those in Cqee as milestones
= Connect milestones P and Q with road (an edge) if PQ C Ciee

= Path-search adds A and B to roadmap:
If connecting path can be found, return it. Else: “l don't know"

Remarks
= “State-of-the-art”, even for high-dimensional C - though:
= Sampled milestones do not suffice to find connecting path

= Spending more time increases probability to find existing solution
path towards 1

= Variations: test only neighbors, non-uniform sampling,
quasirandom, tree-growing for few searches
Berberich CGGC WS2009/2010:Applications 30
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Algorithms - Geometric approach  ENR D B R i

They are complete, i.e.,

= always construct a feasible path if existing

Typical algorithm

= Construct Geee

= Decompose Cie into cells of “constant” size, e.g., by vertical
decomposition

= Locate A and B in cells

= Use adjacency information of cells to conclude whether there is a
free and continuous path passing cells and connecting A with B

Berberich CGGC WS2009/2010:Applications 31
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Construction of Cee LR VR LR

M=PoQ={p+q|lpeP,qge Q}

Collision Detection

PNR#AD=0eM :=Pa(-Q)

(—Q means inverting at the origin)

Computing Ciee

= Consider the set of obstacles as P

= Consider the robot as @

® Cree = PO (—Q)

= “Sliding the robot” along the obstacles

Berberich CGGC WS2009/2010:Applications 32
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Examples LT VL

+

= Exact construction detects one-dimensional passage (sliding along
at least two obstacles

= Rounded floating-point would probably be blind

Berberich CGGC WS2009/2010:Applications 33
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1 .
Complexity LT VL

P and Q convex polygons, n and m edges

= Space O(m + n)

Question: How to compute in linear time?

P and @ polygons, only one convex, n and m edges

= Space O(nm)

P and Q polygons, n and m edges

= Space O((nm)?)

Remark: Minkowski sums are defined in any dimension. Computing is

Berberich CGGC WS2009/2010:Applications 34
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Not covered LY L LR

= Rotations
= Analysis of DOFs

Berberich CGGC WS2009/2010:Applications 35
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Voronoi diagram LY L LR

Switch to slides by Ophir Setter, Tel-Aviv University.

Berberich CGGC WS2009/2010:Applications 36



Voronoi Diagrams

@ Given n objects (Voronoi sites) in some space (e.g., RY, S¢) and
a distance function p

@ The Voronoi Diagram subdivides the space into cells

@ Each cell consists of points that are closer to one patrticular site
than to any other site

@ Variants include different:

@ Classes of sites

o Embedding spaces

@ Distance functions (e.g.,
farthest-site Voronoi diagrams)

Voronoi diagram of segments and
points

%

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space



Voronoi Diagrams

@ Given n objects (Voronoi sites) in some space (e.g., RY, S9) and
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Voronoi Diagrams

@ Given n objects (Voronoi sites) in some space (e.g., RY, S9) and
a distance function p

@ The Voronoi Diagram subdivides the space into cells

@ Each cell consists of points that are closer to one particular site
than to any other site

@ Variants include different:

@ Classes of sites

@ Embedding spaces

@ Distance functions (e.g.,
farthest-site Voronoi diagrams)

Apollonius diagram
(additively-weighted Voronoi

diagram) %
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Lower Envelopes

and Voronoi Diagrams

Definition

Given a set of bivariate functions

S = {s1,...,Sn}, their lower envelope is
defined to be their pointwise minimum:

V(x,y) = min si(x.y)

Corollary

Voronoi diagrams are the minimization
diagrams of the distance functions from each
site [Edelsbrunner & Seidel, 1986]

| A\

Distance functions are paraboloids

Looking from bottom gives us
the Voronoi diagram

%
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The Divide-and-Conquer Algorithm

Let S be a set of n sites
© Partition S into two disjoint subsets S; and S, of equal size
@ Construct Vor,(S;) and Vor,(S;) recursively
© Merge the two Voronoi diagrams to obtain Vor,(S)
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The Merging Step

© Overlay Vor,(S;) and Vor,(S;) using sweep
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The Merging Step

© Overlay Vor,(S;) and Vor,(S;) using sweep

© Partition each face to points closer to the site in S; and points
closer to the site in S,

© Label feature of the refined overlay with the sites nearest to it
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The Merging Step

© Overlay Vor,(S;) and Vor,(S;) using sweep

© Partition each face to points closer to the site in S; and points
closer to the site in S,

© Label feature of the refined overlay with the sites nearest to it
© Remove redundant features
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Envelopes and Arrangements in CGAL

@ Arrangenent _on_surf ace_2 constructs and maintains
arrangements on two-dimensional parametric surfaces
@ Envel ope_3 package computes lower and upper envelopes of
general surfaces [Meyerovitch, 2006]
@ Robust and Exact
o All inputs are handled correctly (including degenerate input)
o Exact number types are used to achieve exact results
@ Generic — Easy to interface, extend and adapt

@ Modular — Geometric and topological aspects are separated
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Implementation

@ Reduced and simplified interface for diagrams with
one-dimensional bisectors

@ Computing diagrams, the bisector curves of which are currently
supported by the arrangement package, is made easy (e.g., linear
and circular arcs, algebraic curves, geodesics on the sphere)

@ The framework supports types of diagrams that most frameworks
do not support:

@ Quadratic-size diagrams, e.g., Mobius diagrams and triangle-area
distance-function Voronoi diagrams

@ Non-connected bisectors, e.g., anisotropic Voronoi diagrams

@ Two-dimensional bisectors

@ Disadvantage: Though general, the method uses exact
constructions of bisectors and Voronoi vertices, which makes the
running time inferior to various dedicated implementations (e.g.,
Delaunay triangulations in CGAL) w
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Other Advantages
The diagrams are represented as CGAL arrangements
@ The vertices, edges, and faces of the diagrams can easily be
traversed while obtaining coordinates to any desired precision
@ Point-location functionality
@ Inserting and removing curves
@ Overlay between diagrams, which is used, for example, for
computing minimum-width annulus and for representing the local
zones of two competing telecommunication operators
[Baccelli et al., 2000]
@ etc.

{1,
Overlaying an arrangement and a Voronoi diagram on the sphere %
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Examples of Available Diagrams

Nearest-Site Voronoi Diagrams

Standard Voronoi diagrams and power diagrams

Mé6bius and anisotropic diagrams Voronoi diagram of linear objects %
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Examples of Available Diagrams

More Diagrams of Linear Objects
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Examples of Available Diagrams
On the Sphere




Examples of Available Diagrams

Farthest-site Voronoi Diagrams (by constructing upper envelopes)

Farthest Voronoi diagram of points

Constructi



Application: Minimum-Width Annulus of Disks

@ Goal: Given a set of disks in the plane, find
an annulus of minimum width containing the
disks

@ Minimum-width annulus (MWA) has
applications in tolerancing metrology and
facility location

@ We extended a known algorithm for
computing a minimum-width annulus of
points [Ebara et al., 1989] to disks

WY

cgm.cs.mcgill.éal’athenslcsSO?l
www.npl.co.uk/server.php Projects/2004/Emory-Merryman %
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The Connection to Voronoi Diagrams

If MWA exists then it touches the objects in 4 points. There are
3 cases:
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The Connection to Voronoi Diagrams

If MWA exists then it touches the objects in 4 points. There are

3 cases:

Inner circle touches 3 points — center is a nearest-site Voronoi vertex
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The Connection to Voronoi Diagrams

If MWA exists then it touches the objects in 4 points. There are

3 cases:

Outer circle touches 3 points — center is a farthest-site Voronoi vertex
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The Connection to Voronoi Diagrams

If MWA exists then it touches the objects in 4 points. There are

3 cases:

Both inner and outer circles touches > 2 points — center is an
intersection point between the diagrams (on edges of both diagrams)
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The Connection to Voronoi Diagrams

If MWA exists then it touches the objects in 4 points. There are

3 cases:

Both inner and outer circles touches > 2 points — center is an
intersection point between the diagrams (on edges of both diagrams)

For points, only the third case occurs

The center of the MWA is a vertex of the overlay of the
nearest-site and farthest-site Voronoi diagrams F
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MWA of Disks in the Plane

Nearest-site
Voronoi is replaced
by the Apollonius
diagram

6(x,di) =[x —cil[ —
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MWA of Disks in the Plane

Nearest-site Farthest-site Apollo-
Voronoi is replaced ~ hius diagram is not
by the Apollonius  good in this case
diagram

We need to consider
d(x,di) =||x —cij|| = r; the farthest point of
the disk from a point

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space



MWA of Disks in the Plane

Nearest-site Farthest-site Apollo-  Farthest-Point Far-
Voronoi is replaced ~ hius diagram is not  thest-Site VD re-
by the Apollonius  good in this case places the farthest-
diagram site VD

We need to consider
d(x,dy) =||x —cj|| = the farthest point of d(x,d;) = ||x — Ci|| + T
the disk from a point

o
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MWA of Disks in the Plane

Nearest-site Farthest-site Apollo-  Farthest-Point Far-
Voronoi is replaced ~ hius diagram is not  thest-Site VD re-
by the Apollonius  good in this case places the farthest-
diagram site VD

We need to consider
d(x,dy) =||x —cj|| = the farthest point of d(x,d;) = ||x — Ci|| + T
the disk from a point

Farthest-point farthest-site is a farthest-site Apollonius with negative
radii and was easily produced using our framework F
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MWA of Disks in the Plane, running times

[No. Disks | Time(secs)| V | E | F |

50 10.741| 126| 213| 88
100 26.994| 238| 395| 158
200 62.968 | 416| 659 | 244

500 185.244| 775|1174| 400
1000 405.405 | 1242 | 1894 | 653
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Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements
00000000000000000000 00000000000000 oce

Voronoi diagram LY L LR

Thank you Ophir, for providing the slides.
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