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Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements

Two-dimensional arrangements

Definition

For a set of curves C in D with dim(D) = 2, the arrangement A(C)
is the partitioning of D into cells of dimension 0, 1, and 2 induced
by C. Cells are called vertices, edges, and faces.

Fundamental structure in Computational Geometry:

computer vision

geographic information systems

robot motion planning

we use it, e.g.,

– for minimization diagram
– as 2D-structure for

stratification of surfaces

model geometric problems in
“arrangement”-lingo, e.g., using
duality, or configuration space

enables traversal & queries

represents continuous problem
in discretized (combinatorial)
chunks
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Representation as Dcel

Doubly-connected-edge-list:
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Plane: Each face has ≤ 1 outer (counter-clockwise) boundary
cycle and a ≥ 0 of inner (clockwise) boundary cycles
Outer and inner cycles define nesting graph. Plane: tree

Berberich CGGC WS2009/2010:Applications 3



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements

Arrangement_2 package of

constructs, maintains, modifies, traverses, queries arrangements of
bounded curves in the plane (v3.2)
modular due to generic programming
efficient and robust, if used with exact geometric operations
implements generic sweep line/zone algorithm, that

– handle all degeneracies: e.g., vertical curves, multiple curves
running through a common point, etc.

– use visitor pattern to decouple combinatorics of sweep/zoning from
output, e.g. reporting intersections or constructing Dcel

Arrangement_2<GeoTraits,...>

– parameter of the data structures and algorithms
– defines the family of curves that induce the arrangement
– must fulfill ArrangementTraits_2 concept
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Geometric operations

Types: Curve_2, X_monotone_curve_2, Point_2
Methods:

– Subdivide a curve into x-monotone curves

– Compare two points lexicographically

– Determine the relative position of a point and an
x-monotone curve

–
Determine the relative position of two x-
monotone curves to the right (or left) of a point

– Find all intersections of two x-
monotone curves
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Arrangements of algebraic curves

was assumed to be impossible only a few years ago
uses Cgal’s Algebraic_curve_kernel_2

efficient by extensive use of approximative, but certified methods
[Eigenwillig, Kerber, Wolpert 07/08]
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Curved_kernel_via_analysis_2 rewrites analyses into geometric
operations (GeometryTraits class) [B./Emeliyanenko 08]

supports curves of arbitrary degree and all degeneracies
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Arrangements of algebraic curves
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Curved_kernel_via_analysis_2 rewrites analyses into geometric
operations (GeometryTraits class) [B./Emeliyanenko 08]

supports curves of arbitrary degree and all degeneracies

Example of three curves

But: Most algebraic curves are unbounded!
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Unbounded plane
Clipping the curves Infimaximal box [Mehlhorn & Seel, 2003]

Sweep algorithm is unchanged Sweep line modifications for
linear objects, larger bit-lengths

Not online Online (no clipping)

Single unbounded face Result has multiple unbounded
faces (and one ficticious)

First idea: GeometryTraits allows points at infinity
Problem 1: Must be implemented in each GeometryTraits of
unbounded curves
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Unbounded plane
Clipping the curves Infimaximal box [Mehlhorn & Seel, 2003]

First idea: GeometryTraits allows points at infinity
Problem 1: Must be implemented in each GeometryTraits of
unbounded curves
Problem 2: Requires post-processing for unbounded faces
New framework implements the usual duplicated parts

– Demands a small set of simple functors
– The programer is guided
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Generalization: Parametric surface

Definition (Parametric surface)

An orientable parametric surface P in u and v is defined by

φP(u, v) = (x(u, v), y(u, v), z(u, v))

where φP : Φ → R3 and P = φP(Φ), with Φ = UxV being a
continuous and simply connected two-dimensional parameter space.

Sphere: φsp(u, v) = (r cos u cos v , r sin u cos v , r sin v)

u ∈ [−π, π), v ∈ [−π

2
, π

2
]
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On a surface?!

Given: Parametric surface P ; set of curves C embedded in P

Goal: Compute and maintain arrangement

Motivation and Problems:
P may be unbounded, also the curves in C

– Minimization diagram of unbounded surfaces
– Stratification of surfaces

“international date line”, poles, . . .

Solution in Cgal

Extended Cgal’s Arrangement_2 package [TAU]

Unified software framework for parametric surfaces:
Arrangement_on_surface_2

Support for curves for ring Dupin cyclides cyclides (and quadrics)
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Arrangement on a surface

Decompose Φ into 5 parts: left, right, bottom, top, and interior
Classify boundaries of parameter space (∂Φ) — four options:

– finite, or infinite, i.e., open end
– contracted, e.g., ∀u ∈ U , φS (u, vmin) = p0 ∈ P
– identified, e.g., ∀v ∈ V , φS (umin, v) = φS (umax, v)

Split the input curves into u-monotone sweepable subcurves that
are interior disjoint from the boundaries (see figures)
Categorize each curve-end of subcurve according to its position

Berberich CGGC WS2009/2010:Applications 10
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Decompose Φ into 5 parts: left, right, bottom, top, and interior
Classify boundaries of parameter space (∂Φ) — four options:

– finite, or infinite, i.e., open end
– contracted, e.g., ∀u ∈ U , φS (u, vmin) = p0 ∈ P
– identified, e.g., ∀v ∈ V , φS (umin, v) = φS (umax, v)

Split the input curves into u-monotone sweepable subcurves that
are interior disjoint from the boundaries (see figures)
Categorize each curve-end of subcurve according to its position

No curve-end on boundary

⇒ Situation is “isomorphic” to
bounded curves in the plane
⇒ special handling only if curves
touching the boundary
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Problem 1: Geometry

Task: Interface lexicographic order of points and curve-ends in Φ

Augment ArrangementTraits_2 with surface-specific set of
– simple comparisons of curve-ends near boundary of Φ
– and on boundary of Φ, if identified or finite
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– simple comparisons of curve-ends near boundary of Φ
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Infinite algebraic curve-ends
compare to the right of x = −∞

compare to the left of x = +∞

compute how two approach
a vertical asymptote
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Lexicographic order in Φ

Package provides case distinction combining them
No duplicated (surface-independent) code in each geometry traits
Example: Lexicographic order in Φ for curves/points on sphere

ie14
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be2

be1

ie18
ne22

ne23
ne7

ne8
ie19

be6

ie11 ie16

ie10

ie17

ie13

be5

ie21

ne15ne12

Output of predicates is wrt Φ - not their implemention
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Problem 2: Dcel

Unique in planar case
Already in unbounded plane different possibilities. Two examples:

V3
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bounding fictitious rectangle single fictitious vertex

Task: Maintain Dcel-records related to ∂Φ respecting topology of P
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New parameter: TopologyTraits

template <typename GeoTraits, typename TopTraits>

class Arrangement_on_surface_2

Helps to determine A(C)’s actual representation:

Locate and maintain vertices on boundary
Locate curves incident to such vertices
Construct and maintain possible fictitious edges
Help to decide whether insertion of curve results in a face splitting
Assign boundary cycles to maintain consistent nesting graph

– Tree strategy: There is always an “outermost” root face
– Forest strategy: Maintain (several) equitable outermost faces

One TopologyTraits fits for all geometries on that surface.
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Available TopologyTraits classes

Bounded plane (original case)

Unbounded plane

Arrangements of
algebraic curves

Voronoi diagrams of
points in the plane

Lower envelopes of
quadrics

Surfaces
Sphere Quadrics Dupin cyclides
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Reference Cyclide

Cyclide: Surface homeomorphic to torus
Standard algebraic parameterization Φ for cyclide P (no sin/cos!)

„

u

v

«

7→

0

B

B

B

B

B

@

µ(c(1+u2)(1+v2)−a(1−v2)(1−u2))+b2(1−u2)(1+v2)

a(1+u2)(1+v2)−c(1−u2)(1−v2)

2u(a(1+v2)−µ(1−v2))b

a(1+u2)(1+v2)−c(1−u2)(1−v2)

2v(c(1−u2)−µ(1+u2))b

a(1+u2)(1+v2)−c(1−u2)(1−v2)

1

C

C

C

C

C

A

Splits cyclide at cut circles and induces pole

(“unfolding to the real plane”)

Also given: Set of algebraic
surfaces S intersecting P

Goal: Arrangement induced by
S ∩ P with all S ∈ S

Video [GfX: Pavel Emeliyanenko]
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GeometryTraits: Algebraic curves

Surface S defined by f := f (x , y , z) ∈ Q[x , y , z ], D := deg(f )

F (u, v) := f (x(u, v), y(u, v), z(u, v)) ∈ Q[u, v ]

defines real algebraic plane curve of bidegree (2D, 2D)

Curves in ΦP induced by

5 surfaces of degree 3
Enhance planar geometry for cyclide

Interpret arcs towards infinity
⇒ arcs towards cut circles

Interpret comparisons near infinity
⇒ comparisons near cut circles

New: Comparisons on the boundary
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Cyclidean TopologyTraits

Problem: Cut circles have two (four) preimages in Φ
Goal: Store one Dcel-vertex for each set of identified preimages
Solution: Two sorted sequences of vertices + one for pole

– coordinates in Φ are given by asymptotes of curves in Φ
– Task: Assign “unbounded” curve-arcs to asymptotes
– Vertical: (f , x , a), but non-vertical: (f ,±∞, a)

⇒ Buckets; one for each asymptote for x → −∞
– get safe u0: real roots of F (u0, v) do not leave bucket for u < u0

Problem: Adding curve that closes cycle ⇒ new face?
– first red curve ⇒ NO new face

this cycle is non-seperating
– second red curve ⇒ NEW face

this cycle is seperating

– Boundary cycles: Forest-strategy
face that contains non-contractible cycle ⇒ root in nesting graph

Berberich CGGC WS2009/2010:Applications 18



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements

Cyclidean TopologyTraits

Problem: Cut circles have two (four) preimages in Φ
Goal: Store one Dcel-vertex for each set of identified preimages
Solution: Two sorted sequences of vertices + one for pole

– coordinates in Φ are given by asymptotes of curves in Φ
– Task: Assign “unbounded” curve-arcs to asymptotes
– Vertical: (f , x , a), but non-vertical: (f ,±∞, a)

⇒ Buckets; one for each asymptote for x → −∞
– get safe u0: real roots of F (u0, v) do not leave bucket for u < u0

Problem: Adding curve that closes cycle ⇒ new face?
– first red curve ⇒ NO new face

this cycle is non-seperating
– second red curve ⇒ NEW face

this cycle is seperating

– Boundary cycles: Forest-strategy
face that contains non-contractible cycle ⇒ root in nesting graph

Berberich CGGC WS2009/2010:Applications 18



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements

Cyclidean TopologyTraits

Problem: Cut circles have two (four) preimages in Φ
Goal: Store one Dcel-vertex for each set of identified preimages
Solution: Two sorted sequences of vertices + one for pole

– coordinates in Φ are given by asymptotes of curves in Φ
– Task: Assign “unbounded” curve-arcs to asymptotes
– Vertical: (f , x , a), but non-vertical: (f ,±∞, a)

⇒ Buckets; one for each asymptote for x → −∞
– get safe u0: real roots of F (u0, v) do not leave bucket for u < u0

Problem: Adding curve that closes cycle ⇒ new face?
– first red curve ⇒ NO new face

this cycle is non-seperating
– second red curve ⇒ NEW face

this cycle is seperating

– Boundary cycles: Forest-strategy
face that contains non-contractible cycle ⇒ root in nesting graph

Berberich CGGC WS2009/2010:Applications 18



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements

Cyclidean TopologyTraits

Problem: Cut circles have two (four) preimages in Φ
Goal: Store one Dcel-vertex for each set of identified preimages
Solution: Two sorted sequences of vertices + one for pole

– coordinates in Φ are given by asymptotes of curves in Φ
– Task: Assign “unbounded” curve-arcs to asymptotes
– Vertical: (f , x , a), but non-vertical: (f ,±∞, a)

⇒ Buckets; one for each asymptote for x → −∞
– get safe u0: real roots of F (u0, v) do not leave bucket for u < u0

Problem: Adding curve that closes cycle ⇒ new face?
– first red curve ⇒ NO new face

this cycle is non-seperating
– second red curve ⇒ NEW face

this cycle is seperating

– Boundary cycles: Forest-strategy
face that contains non-contractible cycle ⇒ root in nesting graph

Berberich CGGC WS2009/2010:Applications 18



Arrangements on surfaces Robot Motion Planning Voronoi diagrams and arrangements

Experiments: Constructions

Created interpolated surfaces (some with degeneracies wrt cyclide)

Constructed arrangement on cyclide with sweep line (C)

Constructed arrangement in unbounded plane (2D)
Instance-<deg> #S #V,#E,#F (C) t in s (C) t in s (2D)

ipl-1 10 119,190,71 0.14 0.14
ipl-1 20 384,682, 298 0.58 0.58
ipl-1 50 1837,3363,1526 2.14 2.00

ipl-2 10 358,575,217 1.07 1.25
ipl-2 20 1211,2147,937 3.14 3.04

ipl-3 10 542,847,305 4.84 4.62
ipl-3-6points 10 680,1092,412 32.43 31.17
ipl-3-2sing 10 694,1062,368 5.82 5.57

ipl-4 10 785,1204,419 50.42 49.97
ipl-4-6points 10 989,1529,540 461.74 450.54
ipl-4-2sing 10 933,1471,538 53.01 52.78

Choice of TopologyTraits does not influence performance

Running time spent in analyses of planar curves
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Moebius strip

is also rational parameterizable (as the cyclide is)

but arrangement on this NON-ORIENTABLE surfaces cannot be
represented as Dcel.

requires quad-edge data structure [Guibas and Stolfi]

not (yet) available in Cgal
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Applications

Adjacency graph of surfaces: [abstract version of Hemmer 08]

Identify geometrically equal vertices on different surfaces

Enhance data-structure to model arrangement of surfaces

Arrangements on spheres: Minkowsi-Sums of (convex) polyhedra,
assembly planning of polyhedra [Fogel 08]

Configuration space of (some) two-link robot arms moving
respecting obstacles: arrangement on a torus. Example:
Molecules of some amino-acids have two main rotation axes

Berberich CGGC WS2009/2010:Applications 21
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Robot Motion Planning

Goal: giving a motion description for a collision-“free” movement
of a “robot” respecting obstacles

also known as the ’Piano Mover’s Problem’

Berberich CGGC WS2009/2010:Applications 22
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Robot

rather general term

not needed to be motorized (“Piano”)

has some shape (of finite description)

might be static, or has some degrees of freedom (arms)

typical Movements: translation, rotation

typical robots: objects, biological molecules, robotic manipulators,
animated digital characters

Berberich CGGC WS2009/2010:Applications 23
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Collision-free movement

Robot/object is allowed to freely move (according to its
possibilites) in some domain, e.g., a room/flat.

motion must be continuous

Domain might be restricted by obstacles: Walls, furniture

Two choices:

– totally collision-free
– “sliding” along an obstacle is allowed

Berberich CGGC WS2009/2010:Applications 24
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Geometry

Workspace for domain, robot, and obstacles is 2D or 3D Euclidean
space

Motion is given as a (one-dimensional) path in
configuration space C

C might have much higher dimension
(also depends on robot’s number of DOF)

Berberich CGGC WS2009/2010:Applications 25
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C-Space (Examples)

Robot is single point

Translating the robot in a 2D workspace, C is given by the
position (x , y) in the plane: dimC = 2.

Robot is 2D shape in a 2D workspace

Translation: Take a reference point (e.g., a corner). Robot’s
position is specified by position of reference (x , y): dimC = 2.

With rotation: Add angle-parameter φ ∈ [0, 2π). Robot’s
configuration is given by triple: (x , y , φ) in R2 × [0, 2π): dimC = 3

Robot is a 3D shape in 3D workspace

Reference point (x , y , z) plus three Euler angles (α, β, γ):
dimC = 6

Berberich CGGC WS2009/2010:Applications 26
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C-Space (Examples)

Robot is single point

Translating the robot in a 2D workspace, C is given by the
position (x , y) in the plane: dimC = 2.

Robot is 2D shape in a 2D workspace

Translation: Take a reference point (e.g., a corner). Robot’s
position is specified by position of reference (x , y): dimC = 2.

With rotation: Add angle-parameter φ ∈ [0, 2π). Robot’s
configuration is given by triple: (x , y , φ) in R2 × [0, 2π): dimC = 3

Robot is a 3D shape in 3D workspace

Reference point (x , y , z) plus three Euler angles (α, β, γ):
dimC = 6

Robot has DOF

A revolute join (Drehgelenk) adds a dimension to C .
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Free-space

The subset Cfree ⊆ C that avoids collisions with any obstacle
(touching or penetrative) is called the free-space (of the robot)

The complement of Cfree is the obstacle or forbidden region
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Algorithms

General idea

Locate initial position A in free-space

Locate final position B in free-space

Find continuous path connecting both positions

If there is no such path: Motion from A to B not feasible
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Algorithms - Grid based

Work well for low dimensional C

Overlay C with a grid (graph)

Remove vertices and edges not fully contained in Cfree

Search shortest path in remaining graph between start and end
configuration

Remarks

Requires dense grid to find narrow passages, becoming slow

Requires exponential number of vertices (in dimC )
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Algorithms - Sample based

Develop roadmap(-graph) in Cfree.

Sample n configurations in C ; keep those in Cfree as milestones

Connect milestones P and Q with road (an edge) if PQ ⊂ Cfree

Path-search adds A and B to roadmap:
If connecting path can be found, return it. Else: “I don’t know”

Remarks

“State-of-the-art”, even for high-dimensional C - though:

Sampled milestones do not suffice to find connecting path

Spending more time increases probability to find existing solution
path towards 1

Variations: test only neighbors, non-uniform sampling,
quasirandom, tree-growing for few searches
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Algorithms - Geometric approach

They are complete, i.e.,

always construct a feasible path if existing

Typical algorithm

Construct Cfree

Decompose Cfree into cells of “constant” size, e.g., by vertical
decomposition

Locate A and B in cells

Use adjacency information of cells to conclude whether there is a
free and continuous path passing cells and connecting A with B
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Construction of Cfree

Minkowski sum

M = P ⊕ Q = {p + q | p ∈ P , q ∈ Q}

Collision Detection

P ∩ Q 6= ∅ ⇔ 0 ∈ M ′ := P ⊕ (−Q)
(−Q means inverting at the origin)

Computing Cfree

Consider the set of obstacles as P

Consider the robot as Q

Cfree := P ⊕ (−Q)

“Sliding the robot” along the obstacles
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Examples

Exact construction detects one-dimensional passage (sliding along
at least two obstacles

Rounded floating-point would probably be blind
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Complexity

P and Q convex polygons, n and m edges

Space O(m + n)

Question: How to compute in linear time?

P and Q polygons, only one convex, n and m edges

Space O(nm)

P and Q polygons, n and m edges

Space O((nm)2)

Remark: Minkowski sums are defined in any dimension. Computing is
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Not covered

Rotations

Analysis of DOFs
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Voronoi diagram

Switch to slides by Ophir Setter, Tel-Aviv University.

Berberich CGGC WS2009/2010:Applications 36



Voronoi Diagrams

Given n objects (Voronoi sites) in some space (e.g., R
d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Voronoi diagram of segments and
points

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 4



Voronoi Diagrams

Given n objects (Voronoi sites) in some space (e.g., R
d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Voronoi diagram on the sphere
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Voronoi Diagrams

Given n objects (Voronoi sites) in some space (e.g., R
d , S

d ) and
a distance function ρ

The Voronoi Diagram subdivides the space into cells

Each cell consists of points that are closer to one particular site
than to any other site

Variants include different:
Classes of sites
Embedding spaces
Distance functions (e.g.,
farthest-site Voronoi diagrams)

Apollonius diagram
(additively-weighted Voronoi
diagram)

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 6



Lower Envelopes
and Voronoi Diagrams

Definition
Given a set of bivariate functions
S = {s1, . . . , sn}, their lower envelope is
defined to be their pointwise minimum:

Ψ(x , y) = min
1≤i≤n

si(x , y)

Corollary
Voronoi diagrams are the minimization
diagrams of the distance functions from each
site [Edelsbrunner & Seidel, 1986]

Distance functions are paraboloids

Looking from bottom gives us
the Voronoi diagram
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The Divide-and-Conquer Algorithm

Let S be a set of n sites
1 Partition S into two disjoint subsets S1 and S2 of equal size
2 Construct Vorρ(S1) and Vorρ(S2) recursively
3 Merge the two Voronoi diagrams to obtain Vorρ(S)
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The Merging Step

1 Overlay Vorρ(S1) and Vorρ(S2) using sweep
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The Merging Step

1 Overlay Vorρ(S1) and Vorρ(S2) using sweep
2 Partition each face to points closer to the site in S1 and points

closer to the site in S2

3 Label feature of the refined overlay with the sites nearest to it
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The Merging Step

1 Overlay Vorρ(S1) and Vorρ(S2) using sweep
2 Partition each face to points closer to the site in S1 and points

closer to the site in S2

3 Label feature of the refined overlay with the sites nearest to it
4 Remove redundant features

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 13



Envelopes and Arrangements in CGAL

Arrangement_on_surface_2 constructs and maintains
arrangements on two-dimensional parametric surfaces

Envelope_3 package computes lower and upper envelopes of
general surfaces [Meyerovitch, 2006]
Robust and Exact

All inputs are handled correctly (including degenerate input)
Exact number types are used to achieve exact results

Generic – Easy to interface, extend and adapt

Modular – Geometric and topological aspects are separated
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Implementation

Reduced and simplified interface for diagrams with
one-dimensional bisectors

Computing diagrams, the bisector curves of which are currently
supported by the arrangement package, is made easy (e.g., linear
and circular arcs, algebraic curves, geodesics on the sphere)
The framework supports types of diagrams that most frameworks
do not support:

Quadratic-size diagrams, e.g., Möbius diagrams and triangle-area
distance-function Voronoi diagrams
Non-connected bisectors, e.g., anisotropic Voronoi diagrams
Two-dimensional bisectors

Disadvantage: Though general, the method uses exact
constructions of bisectors and Voronoi vertices, which makes the
running time inferior to various dedicated implementations (e.g.,
Delaunay triangulations in CGAL)
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Other Advantages
The diagrams are represented as CGAL arrangements

The vertices, edges, and faces of the diagrams can easily be
traversed while obtaining coordinates to any desired precision
Point-location functionality
Inserting and removing curves
Overlay between diagrams, which is used, for example, for
computing minimum-width annulus and for representing the local
zones of two competing telecommunication operators
[Baccelli et al., 2000]
etc.

Overlaying an arrangement and a Voronoi diagram on the sphere
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Examples of Available Diagrams
Nearest-Site Voronoi Diagrams

Standard Voronoi diagrams and power diagrams Apollonius (additively-weighted Voronoi) diagrams

Möbius and anisotropic diagrams Voronoi diagram of linear objects

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 22



Examples of Available Diagrams
More Diagrams of Linear Objects
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Examples of Available Diagrams
On the Sphere
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Examples of Available Diagrams
Farthest-site Voronoi Diagrams (by constructing upper envelopes)

Farthest Voronoi diagram of points Farthest Apollonius Voronoi diagram

Farthest Möbius diagram Farthest Voronoi diagram of segments
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Application: Minimum-Width Annulus of Disks

Goal: Given a set of disks in the plane, find
an annulus of minimum width containing the
disks

Minimum-width annulus (MWA) has
applications in tolerancing metrology and
facility location

We extended a known algorithm for
computing a minimum-width annulus of
points [Ebara et al., 1989] to disks

O
Out

IN

R

r

In

www.npl.co.uk/server.php
cgm.cs.mcgill.ca/˜athens/cs507/
Projects/2004/Emory-Merryman
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The Connection to Voronoi Diagrams
If MWA exists then it touches the objects in 4 points. There are
3 cases:
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The Connection to Voronoi Diagrams
If MWA exists then it touches the objects in 4 points. There are
3 cases:
Inner circle touches 3 points — center is a nearest-site Voronoi vertex
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The Connection to Voronoi Diagrams
If MWA exists then it touches the objects in 4 points. There are
3 cases:
Outer circle touches 3 points — center is a farthest-site Voronoi vertex
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The Connection to Voronoi Diagrams
If MWA exists then it touches the objects in 4 points. There are
3 cases:
Both inner and outer circles touches ≥ 2 points — center is an
intersection point between the diagrams (on edges of both diagrams)
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The Connection to Voronoi Diagrams
If MWA exists then it touches the objects in 4 points. There are
3 cases:
Both inner and outer circles touches ≥ 2 points — center is an
intersection point between the diagrams (on edges of both diagrams)
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b

b

b

b

b

b

b

b

b

b

For points, only the third case occurs

The center of the MWA is a vertex of the overlay of the
nearest-site and farthest-site Voronoi diagrams

Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space 31



MWA of Disks in the Plane
Nearest-site
Voronoi is replaced
by the Apollonius
diagram

δ(x , di) = ||x − ci || − ri
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MWA of Disks in the Plane
Nearest-site
Voronoi is replaced
by the Apollonius
diagram

Farthest-site Apollo-
nius diagram is not
good in this case

δ(x , di) = ||x − ci || − ri

We need to consider
the farthest point of
the disk from a point
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MWA of Disks in the Plane
Nearest-site
Voronoi is replaced
by the Apollonius
diagram

Farthest-site Apollo-
nius diagram is not
good in this case

Farthest-Point Far-
thest-Site VD re-
places the farthest-
site VD

δ(x , di) = ||x − ci || − ri

We need to consider
the farthest point of
the disk from a point

δ(x , di) = ||x − ci || + ri
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MWA of Disks in the Plane
Nearest-site
Voronoi is replaced
by the Apollonius
diagram

Farthest-site Apollo-
nius diagram is not
good in this case

Farthest-Point Far-
thest-Site VD re-
places the farthest-
site VD

δ(x , di) = ||x − ci || − ri

We need to consider
the farthest point of
the disk from a point

δ(x , di) = ||x − ci || + ri

Farthest-point farthest-site is a farthest-site Apollonius with negative
radii and was easily produced using our framework
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MWA of Disks in the Plane, running times
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No. Disks Time (secs) V E F

50 10.741 126 213 88
100 26.994 238 395 158
200 62.968 416 659 244
500 185.244 775 1174 400

1000 405.405 1242 1894 653
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Voronoi diagram

Thank you Ophir, for providing the slides.
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