
Lectures on Reliable Geometric Computing

November 2, 2009

2

Contents

1 Introduction 5
1.1 Geometric Computing 5
1.2 Preview of the Course 7
1.3 Historical Notes 10
1.4 Implementation Notes 10
1.5 Exercises 11

2 A First Algorithm: Planar Convex Hulls 13
2.1 The Convex Hull Problem 13
2.2 A First Algorithm 13
2.3 The Orientation Predicate 16
2.4 Efficiency 18

2.4.1 A Sweep Algorithm 18
2.4.2 Incremental Construction 18
2.4.3 Randomized Incremental Construction∗ . 19

2.5 Degeneracy 23
2.6 Arbitrary Dimension 23
2.7 The Real-RAM 23
2.8 Historical Notes 24
2.9 Implementation Notes 24
2.10 Exercises 24

3 A First Implementation 25
3.1 The Geometry of Float-Orient 25
3.2 Implementation of the Convex Hull Algorithm 28
3.3 The Impact on the Convex Hull Algorithm 30
3.4 Further Examples∗ . 31
3.5 Non-Continuous Functions 34
3.6 Geometric Computing vs. Numerical Analysis 35
3.7 Reliable (Geometric) Computing 37
3.8 Non-Solutions 37
3.9 Where Do We Stand? 39
3.10 Historical Notes 39
3.11 Implementation Notes 39
3.12 Exercises 39

3

4 CONTENTS

4 Number Types I 41
4.1 Built-In Integers and Arbitrary Precision Integers 41
4.2 Rational Numbers 42
4.3 Floating Point Numbers 43

4.3.1 Rounding .. . 44
4.3.2 Arithmetic on Floating Point Numbers 45
4.3.3 Floating Point Integers 47

4.4 An Optimized Evaluation Order for the Orientation Predicate 47
4.5 An Error Analysis for Arithmetic Expressions 47
4.6 A Simplified Error Analysis for Polynomial Expressions 52
4.7 A More Precise Error Analysis∗ . 54
4.8 Arbitrary Precision Floating Point Numbers 55
4.9 Notes 56
4.10 Material for the Lecture 57

5 A First Geometric Kernel 59
5.1 A Kernel 59
5.2 Concrete Kernels 60
5.3 C++ Formulation∗ . 61
5.4 A Floating Point Filter 67
5.5 Performance of the Floating Point Filter 67
5.6 Points on a Circle 72
5.7 Notes 76

6 Delaunay Triangulations and Voronoi Diagrams 77
6.1 Notes 77

7 Perturbation 79
7.1 Symbolic Perturbation 80
7.2 Numerical Perturbation 82
7.3 Some Words of Caution 82
7.4 Notes 82
7.5 Proposed Contents 83

Lecture 1

Introduction

We give examples of geometric computing tasks and an outlineof the course.

1.1 Geometric Computing

Geometric computing refers to computation with geometric objects such as points, lines, hyperplanes, disks,
curves, surfaces, and solids.. These objects live in an ambient space. In this book, ambient space will be add
mainly two- and three-dimensional Euclidean space. Geometric computing is ubiquitous. We illustrate its
richness by way of examples.

Computer-aided Design: Computer-aided design is about the construction of geometric objects. Starting
from a ground set of geometric objects, e.g., half-planes, circles, ellipsoids in the plane or cubes, spheres,
cylinders, tori, one constructs complex shapes by applyinggeometric operations to previously constructed
objects. Figures 1.1 and 1.2 show examples in two and three dimensions, respectively. Figure?? shows a
more complex example.

Robotics: A central task of robotics is the planning of collision-freepaths. Consider a simple situation;
the goal is to move a disk-like robot amongst polygonal obstacles in the plane, see Figure??. The Voronoi
diagram of the obstacles is an appropriate data structure for the task. It consists of all points of maximal
clearance from the obstacles; a disk grown at a point of the Voronoi diagram hits two or more obstacles
simultaneously. The diagram represents paths for maximal safety. In order to move a disk from a pointA to
a pointB, we first move it fromA to a point on the Voronoi diagram, then along the Voronoi diagram, and
finally from the Voronoi diagram toB.

Graphics: A 3D scanner is a device that analyzes a real-world object or environment to collect data on its
shape and possibly its appearance (i.e. color). In its simplest form it returns a set of points on the surface
of the object, see Figure 1.4. The geometric computing task is then to construct a digital three dimensional
model of the object from the collected data. The task arises in the production of movies and video games.
Other common applications of this technology include industrial design, orthotics and prosthetics, reverse
engineering and prototyping, quality control/inspectionand documentation of cultural artifacts.

5

6 LECTURE 1. INTRODUCTION

Figure 1.1: The left part shows two polygonal regions with holes (in light and dark grey). The middle part
shows the intersection of these regions and the right part shows the symmetric difference. The figure was
produced with the LEDA demo polygonlogo [45, 43].

Linear Programming: Linear programming is concerned with the optimization (maximization or mini-
mization) of a linear function subject to linear constraints:

maximize cTx subject to Ax≤ b,

wherex is a vector ofn variables,c ∈ Rn defines the objective function,A∈ Rm×n is a m× n real matrix
andb∈ Rm is a real vector. Each rowai of A and the corresponding entrybi of b defines a linear inequality
aix≤ b. Geometrically, the set ofx satisfying this inequality form a halfspace inRn. The set ofx satisfying
all constraintsAx≤ b is the intersection of halfspaces, i.e., a convex polyhedron P in Rn. Figure 1.5 shows
an example. The aim of linear programming is to find a pointx∈ P that maximizescTx. The maximum is
attained at a vertex ofP that is maximal in directionc.

Mathematics: Algebraic curves and algebraic surfaces are an important topic in mathematics. An alge-
braic curve is the zero set of a polynomialp(x,y) in two variables and an algebraic surface is the zero set of
a polynomialp(x,y,z) in three variables. In applications of algebraic curves andsurfaces, it is important to
visualize them. Figure 1.6 shows some examples.

More Examples: continue definition with pictures, give examples, examplesshould come form computa-
tional geometry, but also from fields outside CS, e.g.,

• medicine: reconstruction of artery system in brain from NMR-images

• searching for patterns in astronomy

• have a look at Danny Halperin’s page: he has nice examples with pictures. Also he taught a course on
applied computational geometry.

• GIS: map overlay, map simplification, map labelling,

• examples from the book of Overmars

1.2. PREVIEW OF THE COURSE 7

c1
s1

c2
s2

Figure 1.2: The left part shows four solids: two cylinders and two spheres. The right part shows their
intersection. The surface of the intersection composed of faces (surface patches stemming from one of the
solids), vertices (intersection curves between two input solids) and vertices (points in common to three or
more input solids). The picture was produced with the CAD-software Rhino3D.

1.2 Preview of the Course

Now that we have developed an intuition for geometric computations, we are ready for an overview of the
course. We will discuss the subject along three axes.

1. Geometric Algorithms

2. Geometric Objects and Predicates

3. Applications.

A geometric algorithm takes geometric objects and producesnew geometric objects from them, e.g.,
it produces the convex hull of a set of points, or a surface interpolating a point cloud, or the intersection
of a set of solids, or a path for a robot amidst obstacles. The algorithms operate on geometric objects,
query these objects through geometric functions or predicates, and construct new objects through geometric
constructors. For example, an algorithm may wish to know thelocation of point relative to a circle defined
by three other points (side-of-circle predicate) or construct a point as the intersection of two curves. We will
build on knowledge from discrete mathematics, geometry, combinatorial algorithms, and data structures.

How do we represent geometric objects? Primitive geometricobjects such as points, lines, hyperplanes,
curves, amd surfaces are represented by their coordinates or their equations. A point may be specified by
its Cartesian coordinates and a line through its line equation. The curve shown in Figure?? is the zero set
of the polynomial. . .. Predicates and constructors are then functions of these coordinates and equations.
We will build on knowledge from analytical geometry, numerical analysis, and algebra. More complex
geometric objects are composed of primitive geometric objects and hence we will data structures for these
compositions.

Applications are ubiquitous as we seen in the preceding section. We will discuss some of them so that
our readers see the full picture.

8 LECTURE 1. INTRODUCTION

Figure 1.3: Robot motion planning: The figure shows four polygons (the letters M, P, I, and I) enclosed in
a square frame. The space between the polygons and the space inside the polygon in partitioned into cells
by the Voronoi diagram of the polygons. Imagine to grow a diskcentered in an arbitrary point of the plane.
In general, the first collision of the growing disk with one ofthe polygons will be with a single polygon.
The Voronoi diagram consists of all points, where this first collision involves two or more polygons. The
Voronoi diagram (also called Medial axes) comprises the points of maximum clearance from the disks. The
figure was created by Michael Seel [50].

Lecture II: We will start with a simple geometric problem, the computation of the convex hull of a fi-
nite set of points in the plane. We will see several algorithms for solving the problem based on different
computational paradigm: incremental computation, sweep,and divide-and-conquer. We will formulate the
algorithms in terms of geometric predicates. The primitiverequired for the convex hull problem is the ori-
entation predicate for three points. Given three pointsp, q, andr in the plane, the predicate tells whether the
points form a left turn, are collinear, or form a right turn; see Figure?? for an illustration. The triple(p,q, r)
is a left turn if p 6= q andr lies to the left of the line passing throughp andq and oriented fromp to q.

Lecture III: Points are usually represented by their Euclidean coordinates. We derive an analytical for-
mula that expresses the orientation of three points in termsof their coordinates. We will see that

Orientation(p,q, r) = sign(det





1 px py

1 qx qy

1 rx ry



),

wherepx andpy are thex- andy-coordinate ofp, respectively. The sign is+1 if (p,q, r) form a left turn, is
0 if they are collinear, and is−1 if they form a right turn.

Point coordinates are real numbers as are the parameters defining other geometric objects, e.g., the
coordinates of the center and the radius of a disk. Thereforethe natural model of computation for geometric
computing is theReal-RAM. It is a random access machine with the additional capability of handling real
numbers. Of course, the operations on real numbers follow the laws of mathematics. The Real-RAM model
is also used successfully in numerical analysis.

1.2. PREVIEW OF THE COURSE 9

t

Figure 1.4: The left part of the picture shows a point cloud obtained from a 3D-scan of a bust of Max
Planck. The middle part and right part show reconstructionsof the object (non-smoothed and smoothed).
The reconstruction is by Tamal Dey, University of Ohio.

Real computers do not come with real arithmetic. They provide only floating point arithmetic and
bounded integer arithmetic. We will study the effect of floating point arithmetic on geometry. We will first
see the effect on the orientation predicate (see Figure??) and then the effect on our convex hull algorithm
(see Figure??). The former effect will be surprising, the latter disastrous.

We continue to give more examples of geometric programs (academic and commercial) that break on
some inputs. Why is it that

Lecture IV:

Lecture V:

Lecture VI:

Lecture VII:

Lecture VIII:

Lecture IX:

Lecture X:

10 LECTURE 1. INTRODUCTION

Figure 1.5: A convex polyhedron in three dimensional space.It was generated as the convex hull of a set of
points (using the LEDA demo 3d-hull [45, 43]). Alternatively, it could be constructed as the intersection of
the halfspaces corresponding to the faces of the polyhedron. Linear programming finds the extreme vertex
in the direction of the objective function.

Lecture XI:

Lecture XII:

Lecture XIII:

1.3 Historical Notes

1.4 Implementation Notes

CGAL [23], LEDA [43, 45], and CORE [39] are designed according to the principles put forward in this
course. They package much of the content of the course.

Also point to other resources.

1.5. EXERCISES 11

Figure 1.6: A figure of an algebraic curve (from Pavel’s gallery, a close-up view of a singularity, a figure of
a triangulated surface. Show the equations, either in the text or in the caption.

1.5 Exercises

Exercise 0.1: Collect three further examples of geometric computing and document them on the wiki-page
of the course. ♦

Exercise 0.2: ♦

12 LECTURE 1. INTRODUCTION

Lecture 2

A First Algorithm: Planar Convex Hulls

We will start with a simple geometric problem, the computation of the convex hull of a finite set of points in
the plane. We will formulate a basic algorithm that constructs the planar hull in quadratic time. It accesses
the input points through a single predicate, the orientation predicate for three points. We will see how this
predicate can be realized by a simple formula in the point coordinates. Next we discuss two techniques for
improving the running time toO(nlogn), wheren is the number of input points. Collinear points require
special care in convex hull algorithms and hence we call thema degeneracy. Finally, the algorithm would
lead directly to an implementation if we had a Real-RAM to ourdisposal.

2.1 The Convex Hull Problem

A set is calledconvexif for any two pointsp andq in the set the entire line segmentpq is contained in the
set, see Figure 2.1. Theconvex hullconvSof a setSof points is the smallest (with respect to set inclusion)
convex set containingS, see Figure 2.1. A pointp ∈ S is called anextreme pointof S if there is a closed
halfspace containingSsuch thatp is the only point inSthat lies in the boundary of the halfspace.

From now on we restrict our discussion to the plane. We define the convex hull problem as the problem
of computing the extreme points of a finite set of points as a cyclically ordered list of point, see Figure 2.1.
The cyclic order is the counter-clockwise order in which theextreme points appear on the hull.

2.2 A First Algorithm

The simplest method for constructing the convex hull works iteratively. We start with the convex hull of the
first three points; we assume for simplicity that the first three points ofSare not collinear and come back to
this assumption in Section 2.5. For every point, we first determine whether it lies outside the current hull or
not. If it is contained in the current hull, we do nothing. Otherwise, the point is an extreme point of the new
hull and we update the hull by constructing the tangents fromthe new point to the old hull, see Figure 2.2a.

How can we determine whether a pointr is contained in the current hull? Recall that the current hull
is represented by its cyclic list of extreme points in counter-clockwise order, say(v0,v1, . . . ,vk−1,vk = v0).
Consider a pair(vi ,vi+1) of consecutive extreme points. Any point in the current hulllies on or to the left
of the oriented lineℓ(vi ,vi+1) and every point to the right ofℓ(vi ,vi+1) lies outside the current hull, see
Figure 2.2b. The geometric predicate of locating a point with respect to an oriented line is so important that
we give it a name.

13

14 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

v0

v3

v2

v1

w0

w1

p

(a) (b)

Figure 2.1: (a) shows a convex and a non-convex set, (b) showstwo point sets and their convex hulls. The
extreme pointsv0, v1, v2, andv3, respectivelyw0 andw1 are highlighted as solid disks. The pointp lies on
the boundary of the hull, but is not an extreme point. The cyclic clockwise list of extreme points isv0, v1,
v2, v3 andw0, w1 (or any cycle shifts thereof), respectively.

Definition: Let p, q, andr be points in the plane (see Figure 2.3). Ifp 6= q, let ℓ(p,q) be the line passing
throughp andq and oriented fromp to q. Then

Orientation(p,q, r) =











+1 if p 6= q andr lies to the left ofℓ(p,q)

0 if p = q or p 6= q andr lies onℓ(p,q)

−1 if p 6= q andr lies to the right ofℓ(p,q).

If Orientation(p,q, r) = +1 (−1), we say that(p,q, r) form a left (right) turn, ifOrientation(p,q, r) =
+1, the points are collinear. We next specialize to the convexhull problem. Assume thatvi and vi+1

are consecutive extreme points in the counter-clockwise order of extreme points. Ifr lies to the right of
ℓ(vi ,vi+1), we also say thatr seesthe (counter-clockwise) hull edgevivi+1 and that this hull edge isvisible
from r.

THEOREM 1. A point r lies outsideconvS if and only if it can see at least one edge ofconvS.

Proof. If r can see a hull edge, it is clearly outside convS. Assume next thatr 6∈ convSand letzbe the point
in convSclosest tor. If r lies in the interior of some hull edge thenr can see this edge. So assume thatz is
an extreme point ofS, sayz= vi . Thenr sees at least one of the two hull edges incident tovi .

We now know how to check whether a new pointr lies outside the current hull. We simply check
whether it can see some hull edge. We will see more efficient methods in Section??. We next turn to the
update step. We need the notion ofweak visibility. If r lies to the right of or onℓ(vi ,vi+1), we say thatr
weekly seesthe hull segmentvivi+1 and that this segment isweakly visiblefrom r.

THEOREM 2. Let (v0,v1, . . . ,vk−1) be the sequence of extreme points ofconvS in counter-clockwise order
and assume that r6∈ convS. The hull edges weakly visible from r form a contiguous subsequence and so do
the edges that are not weakly visible.

If (vi ,vi+1), . . . , (v j−1,v j) is the subsequence of weakly visible edges, the updated hullis obtained by
replacing the subsequence(vi+1, . . . ,v j−1) by r. The subsequence(vi , . . . ,v j) is taken in the circular sense,
i.e., if i > j then the subsequence is(vi , . . . ,vk−1,v0, . . . ,v j).

2.2. A FIRST ALGORITHM 15

r

vi

v j

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�v0

v3

v2

v1

(a) (b)

Figure 2.2: In (a) the current hull is shown as a polygon whoseboundary is indicated by solid segments.
The pointr lies outside the current hull. The tangents fromr to the current hull touch the hull in verticesvi

andv j . The boundary of the new hull consists of the segmentrv j , followed by the part of the old hull from
v j to vi , followed by the segmentvir.
In (b) the oriented lineℓ(v0,v1) is highlighted. Every point to the right of this line lies outside the current
hull.

(a) (b) (c)ppp

qq
q r

r
r

Figure 2.3: (a) shows a left turn, (b) shows collinear points, and (c) shows a right turn.

Proof. Consider the tangentst1 andt2 from r to convS. A tangentti intersects the boundary of convSeither
in a single vertex or in an edge. In either case, letzi be the tangent point of maximal distance. Then one of
the hull edges incident tozi is weakly visible fromr and one is not. Moreover,z1 andz2 split the boundary
of convS into two chains. In one chain all edges are weakly visible from r, and in the other chain, no edge
is weakly visible fromr. The boundary of conv(S∪ r) consists of the chain of edges that are not weakly
visible fromr plus the two segmentsz1r andrz2.

Theorems 1 and 2 lead to the incremental convex hull algorithm shown as Algorithm 1. We still need to
explain how we find all edges weakly visible fromr and how we updateL. Starting from the visible edgee,
we move counter-clockwise along the boundary until a non-weakly-visible edge is encountered. Similarly,
we move clockwise frome until a non-weakly-visible edge is encountered.

How to update the listL? We can delete the vertices in(vi+1, . . . ,v j−1) after all visible edges are found,
as suggested in the above sketch (“the off-line strategy”) or we can delete them concurrently with the search
for weakly visible edges (“the on-line strategy”).

We have now almost completed the description of our first geometric algorithm. We still need to discuss
the implementation of the orientation predicate. We will see in the next section that the orientation predicate

16 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Algorithm 1 Incremental Convex Hull Algorithm
initialize L to a counter-clockwise triangle(a,b,c) with a,b,c∈ S. Removea,b,c from S.
for all r ∈ Sdo

if there is an edgeevisible fromr then
determine the sequence((vi ,vi+1),(vi+1,vi+2) . . . ,(v j−1,v j)) of edges that are weakly visible fromr.
replace the subsequence(vi+1, . . . ,v j−1) in L by r.

end if
end for

can be formulates as a simple arithmetic expression in pointcoordinates and hence orientation of three points
can be determined in constant time.

Algorithm 1 computes the convex hull ofn points inO(n2) time. For any pointr, we check all edges
of the current hull for visibility and maybe weak visibility. We also remove zero or more points from the
current hull. Thus any point is processed inO(n) time. The bound ofO(n2) follows. In Section 2.4 we will
improve the running time toO(nlogn).

2.3 The Orientation Predicate

LEMMA 3. Let p, q, and r be points in the plane.
(a) The signed area of the triangle△(p,q, r) is given by

1
2

∣

∣

∣

∣

∣

∣

1 1 1
xp xq xr

yp yq yr

∣

∣

∣

∣

∣

∣

(b) The orientation of(p,q, r) is equal to the sign of the determinant above.

Proof. Part(b) follows immediately from part (a) and the definitionof signed area. So we only need to show
part (a). We do so in two steps. We first verify the formula for the case thatp is the origin and then extend
it to arbitrary p. So let us assume thatp is equal to the origin. We need to show that the signed areaA of
△(p,q, r) is equal to(xqyr −xryq)/2.

Let α be the angle between the positivex-axis and the rayOqand letQ be the length of the segmentOq,
cf. Figure 2.4. Then cosα = xq/Q and sinα = yq/Q. Rotating the triangle△(O,q, r) by−α degrees about
the origin yields a triangle△(O,q′, r ′) with q′ = (Q,0) and the same signed area. Thus,A = Q ·yr ′/2.

Next observe thaty′r = Rsin(β −α), whereR is the length of the segmentOr andβ is the angle between
the positivex-axis and the rayOr. Since sin(β −α)= sinβ cosα−cosβ sinα andRcosβ = xr andRsinβ =
yr we conclude that

A = Q ·yr ′/2 = Q ·R·sin(β −α)/2

= (Qcosα ·Rsinβ −Qsinα ·Rcosβ)/2 = (xqyr −xryq)/2.

This verifies the formula in the case wherep is the origin.
Assume next thatp is different from the origin. Translatingp into the origin yields the triangle△(O,q′, r ′)

with q′ = q− p andr ′ = r − p1 . On the other hand subtracting the first column from the othertwo columns

1Strictly speaking, we would have to writeq′ = 0+(q− p) and similarly forr ′.

2.3. THE ORIENTATION PREDICATE 17

0

r

r ′
q

q′ = (Q,0)

α

β

Figure 2.4: Proof of Lemma 3.

of the determinant yields

∣

∣

∣

∣

∣

∣

1 1 1
xp xq xr

yp yq yr

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 0
xp xq−xp xr −xp

yq yq−yp yr −yp

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

xq′ xr ′

yq′ yr ′

∣

∣

∣

∣

which by the above is twice the area of the translated triangle.

Part (b) of the lemma above is the analytical formula for the orientation predicate:

Orientation(p,q, r) = sign(det





1 px py

1 qx qy

1 rx ry



) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). (1)

We haveOrientation(p,q, r) = +1 (resp.,−1, 0) iff the polyline(p,q, r) represents a left turn (resp., right
turn, collinearity). Interchanging two points in the triple changes the sign of the orientation.

We will frequently represent points by homogeneous coordinates. Consider a pointp with Cartesian
coordinatespx andpy. The homogeneous coordinates ofp are any triply(px, py, pw) such thatpx = px/pw
and py = py/pw. Homogeneous coordinates are not unique; multiplication by a non-zero factor does not
change the point represented. If the Cartesian coordinatesare rationals, we may choose the homogeneous
coordinates to be integral. In this situation,pw is a common denominator forx- and y-coordinate. In
homogeneous coordinates, we have

Orientation(p,q, r) = sign(det





1 px py

1 qx qy

1 rx ry



) = sign(det





1 px/pw py/pw
1 qx/qw qy/qw
1 rx/rw ry/rw



)

= sign(pw·qw· rw) ·sign(det





pw px py
qw qx qy
rw rx ry



)

= sign(pw·qw· rw) ·sign(pw· (qx· ry−qy· rx)−qw· (px· ry− py· rx)+ rw · (px·qy− py·qx)).

18 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

2.4 Efficiency

Our incremental algorithm for convex hulls runs inO(n2) time on an input ofn points. We show how to
improve the running time toO(nlogn). We first observe that the cost of updating the hull isO(n), once it is
known whether the new pointr sees some edge.

Indeed, ifr sees no edge, the old hull is the new hull and the cost of the update is zero. So assume
that r sees some edgee of the current hull. We walk frome in both directions as long as edges are weakly
visible. The cost of the walk isO(1+ x), wherex is the number of edges weakly visible fromr. We then
deletex edges from the convex hull and add two new edges. We chargeO(1) to the update and to each edge
removed. Since any edge can be removed only once and since at most 2n edges are every constructed, the
total charge for the update isO(n).

We next describe two techniques for finding a first visible edge or to decide that there is none.

2.4.1 A Sweep Algorithm

We simplify the search for a visible edge by processing the points in lexicographic order. A pointp precedes
a pointq in lexicographic order if eitherp has the smallerx-coordinate or thex-coordinates are the same
andp has the smallery-coordinate. Sorting points according to lexicographic order takesO(nlogn) time.

The advantage of processing the points in lexicographic order is twofold: First, any point is outside the
convex hull of the preceding points, and second, one of the edges incident to the lexicographically largest
vertex is visible from the next point. Thus the search for a visible hull edge is trivial and takesO(1) time.

THEOREM 4. The sweep hull algorithm constructs the convex hull of n points in the plane in O(nlogn) time.

2.4.2 Incremental Construction

We describe an alternative method for speeding up the searchfor a visible hull edge. The idea is to maintain
thehistory of the construction. Again, we start with the counter-clockwise triangle formed by the first threecredit? Boisson-

Yvinec? points. The algorithm maintains the current hull asa cyclically linked list of edges and also keeps all edges
that ever belonged to a hull. Every edge that is not on the current hull anymore points to the two edges
that replaced it. More precisely, assume thatS is the set of points already seen and thatp is a point outside
the current hullCH(S). There is a chainC of edges of the boundary ofCH(S) that do not belong to the
boundary ofCH(S∪ p). The chain is replaced by the two tangents fromp to the previous hull. All edges in
C are made to point to the two new edges, see Figure 2.5.

We are now ready to deal with the insertion of a pointp. We proceed in two steps. We first determine
whetherp is outside the current hull and then update the hull (ifp is outside).

In order to find out whetherp lies outside the current hull, we walk through the history ofhulls; see
algorithm 2. We first determine whetherp can see one of the edges of the initial triangle. If it can see no
edge of the initial triangle,p lies inside the current hull and we are done. So assume thatp can see an edge
of the initial triangle, saye. If e is an edge of the current hull,p lies outside the current hull ande is a visible
hull edge. Ife is not an edge of the current hull, letr0 andr1 be the two edges that replacede whenCH(S)
was enlarged toCH(S∪q). p is outsideCH(S∪q) if it sees eitherr0 or r1, see Figure 2.6. Ifp sees neither
r0 nor r1, we stop. Otherwise, we sete to a visible edge amongr0 andr1 and continue in the same fashion.
In this way, the search either stops or finds a hull edge visible from p. Once we have found such an edge,
we continue as in the basic algorithm.

2.4. EFFICIENCY 19

a

b

c

p1

p2

e1
e2

e3
e4

e5

e6
e7

Figure 2.5: The initial convex hull consists of the pointsa, b, andc. When pointp1 is added the edgese1

ande2 are deleted from the hull and the edgese4 ande5 are added, and whenp2 is added to the hull the
edgese3 ande4 are deleted from the hull and the edgese6 ande7 are added. The boundary of the current
hull consists of edgese7, e5, ande6 in counter-clockwise order. Every edge ever deleted from the hull points
to the two edges that replaced it, e.g.,e3 ande4 point toe6 ande7.

What is the running time of the incremental construction of convex hulls? The worst case running time
is O(n2) since the time to insert a point isO(n). The time to insert a point isO(n) since there are at most
2(k+1) edges after the insertion ofk points and since every edge is looked at at most once in the insertion
process.

The best case running time isO(n). An example for the best case is when the pointsa, b, andc span the
hull.

2.4.3 Randomized Incremental Construction∗

The average case running time isO(nlogn) as we will show next. What are we averaging over? We consider
a fixed but arbitrary setS of n points and average over then! possible insertion orders. The following
theorem is a special case of the by now famousprobabilistic analysis of incremental constructionsstarted
by Clarkson and Shor [13]. The books [48, 5, 47, 16] contain detailed presentations of the method. The
reader may skip the proof of Theorem 5. Why do we include a proof at all given the fact that the method is
already well treated in textbooks? We give a proof because the cited references prove the theorem only for
points in general position. We want to do without the generalposition assumption in this book.

THEOREM5. The average running time of the incremental construction method for convex hulls is O(nlogn).

Proof. We assume for simplicity that the points inSare pairwise distinct. The theorem is true without this
assumption; however, the notation required in the proof is more clumsy.

The running time of the algorithm is linear iff all points inS are collinear. So let us assume thatS
contains three points that are not collinear. In this case wewill first construct a triangle and then insert the

20 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Algorithm 2 The search for a visible edge of the current hull.
let ebe a visible edge of the initial triangle; stop, ifedoes not exist.
while (true)do

if e is an edge of the current hullthen
stop(“e is a visible hull edge”);

end if
if one of the replacement edgesr0 or r1 is visible then

let ebe a visible replacement edge;
else

stop(“p lies inside current hull”);
end if

end while

CH(S)

q

p
e

r0

r1

Figure 2.6:e is a (counter-clockwise) edge of the current hull andp lies to the right of it;e is replaced by
r0 andr1 when the pointq is added. Ifp lies neither to the right ofr0 nor to the right ofr1 thenp lies in the
shaded region and hence inCH(S∪q).

remaining points. Letp be one of the remaining points. Whenp is inserted, we first determine the position
of p with respect to the initial triangle (timeO(1)), then search for a hull edgee visible by p, and finally
update the hull. The time to update the hull isO(1) plus some bounded amount of time for each edge that
is removed from the hull. We conclude that the total time (= time summed over all insertions) spent outside
the search for a visible hull edge isO(n).

In the search for a visible hull edge we perform testsrightturn(x,y, p) wherex and y are previously
inserted points. We call a testsuccessfulif it returns true and observe that in each iteration of the while-loop
at most two rightturn tests are performed and that in all iterations except the last at least one rightturn test is
successful. It therefore suffices to bound the number of successful rightturn tests.

What characterizes hull edges? An oriented segmentxy is a CCW hull edge if there is no point inz∈ S
that weakly seesxy, i.e., either lies in the right halfplane ofℓ(x,y) or lies on the lineℓ(x,y) but not on the
segmentxy. For an ordered pair(x,y) of distinct points inSwe useKx,y to denote the set of pointsz in S
such thatrightturn(x,y,z) is true plus2 the set of points on the line through(x,y) but not betweenx andy,
see Figure 2.7. Every pointz∈ Kx,y is a witness forxy not being a CCW hull edge. We usekxy to denote the

2The set to be defined next is empty ifS is in general position. The probabilistic analysis of incremental constructions usually
assumes general position. We do not want to assume it here andhence have to modify the proof somewhat.

2.4. EFFICIENCY 21

y

x

Figure 2.7:Kx,y consists of all points in the shaded region plus the two solidrays.

cardinality ofKx,y, Fk to denote the set of pairs(x,y) with kxy = k, F≤k to denote the set of pairs(x,y) with
kxy ≤ k, and fk and f≤k to denote the cardinalities ofFk andF≤k, respectively. We have

LEMMA 6. The average number A of successful rightturn tests is bounded by∑k≥1 2 f≤k/k2.

Proof. Consider a pair(x,y) with kxy = k. If some point inKx,y is inserted before bothx andy are inserted
then(x,y) is never constructed as a hull edge and hence no rightturn tests (x,y,−) are performed. However,
if x andy are inserted before all points inKx,y then up tok successful rightturn tests(x,y,z) are performed.

The probability thatx andy are inserted before all points inKx,y is

2!k!/(k+2)!

since there are(k+2)! permutations ofk+2 points out of which 2!k! havex andy as their first two elements.
Thus the expected number of successful rightturn tests(x,y,z) is bounded by

2!k!/(k+2)! ·k = 2·k/(k+1)(k+2) < 2/(k+1).

The argument above applies to any pair(x,y) and hence the average number of successful rightturn tests
is bounded by

∑
k≥1

2 fk/(k+1).

We next writefk = f≤k− f≤k−1 and obtain

A ≤ ∑
k≥1

2(f≤k− f≤k−1)/(k+1) = ∑
k≥1

2 f≤k(1/(k+1)−1/(k+2))

= ∑
k≥1

2 f≤k/((k+1)(k+2)).

It remains to boundf≤k. We use random sampling to derive a bound.

LEMMA 7. f≤k ≤ 2e2n·k for all k, 1≤ k≤ n.

22 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Proof. There are onlyn2 pairs of points ofSand hence we always havef≤k ≤ n2. Thus, the claim is certainly
true forn≤ 10 ork≥ n/4.

So assume thatn ≥ 10 andk ≤ n/4 and letR be a random subset ofS of size r. We will fix r later.
Clearly, the convex hull ofR consists of at mostr edges. On the other hand, if for some(x,y) ∈ F≤k, x and
y are inR but none of the points inKx,y is in R, then(x,y) will be an edge of the convex hull ofR. The
probability of this event is

(n−i−2
r−2

)

(n
r

) ≥
(n−k−2

r−2

)

(n
r

) ,

wherei = kx,y ≤ k. Observe that the event occurs ifx andy are chosen and the remainingr −2 points inR
are chosen fromS\{x,y}\Kx,y. The expected number of edges of the convex hull ofR is therefore at least

f≤k ·
(n−k−2

r−2

)

(n
r

) .

Since the number of edges is at mostr we have

f≤k ·
(

n−k−2
r −2

)

/

(

n
r

)

≤ r

or

f≤k ≤ r ·
(

n
r

)

/

(

n−k−2
r −2

)

= r · n(n−1)

r(r −1)
· [n−2]r−2

[n−k−2]r−2
,

where[n]i = n(n−1) · · · (n− i +1). Next observe that

[n−2]r−2

[n−k−2]r−2
≤ [n]r

[n−k]r
=

r−1

∏
i=0

n− i
n−k− i

=
r−1

∏
i=0

(

1+
k

n−k− i

)

= exp

(

r−1

∑
i=0

ln(1+k/(n−k− i))

)

≤ exp(rk/(n−k− r)) ,

where the last inequality follows from ln(1+x) ≤ x for x≥ 0 and the fact thatk/(n−k− i) ≤ k/(n−k− r)
for 0 ≤ i ≤ r − 1. Settingr = n/(2k) and using the fact thatn− k− r ≥ n/4 for k ≤ n/4 andn ≥ 10, we
obtain

f≤k ≤ e2n2/r = 2e2nk.

Putting our two lemmas together completes the proof of Theorem 5

A≤ 4e2 ∑
k≥1

nk/k2 = O(nlogn).

There are two important situations when the assumptions of the theorem above are satisfied:

• When the points inSare generated according to a probability distribution for points in the plane.

• When the points are randomly permuted before the incremental construction process is started. We
then speak about arandomized incremental construction.

2.5. DEGENERACY 23

2.5 Degeneracy

We assumed that the first three points in the input span a proper triangle. How can we remove this assump-
tion?

In an off-line setting, i.e., all points are available at program start, we scan over the points once. Letp
be the first point. We scan until we find a pointq that is different fromp. If all input points are equal top,
the convex hull is equal to the set consisting only ofp. So assume we have two distinct pointsp andq. We
continue scanning until we find a pointr that is not collinear top andq. If there is no such point, the convex
hull is contained in the line passing throughp andq and we simply need to find the two extreme points on
the line. If there is such a point, we have found the initial triangle.

In an on-line setting, we have to work slightly harder. We initialize the hull to{p}. As long as input
points are equal top, there is nothing to do. As soon, as we encounter a pointq different fromp, we know
that the hull is at least one-dimensional. The current hull is the line segmentpq. As long as input points
are collinear top andq, the hull stays a segment and we update it accordingly. Once an input pointr that
is not collinear withp andq comes along, we know that the hull is two-dimensional and we switch to the
algorithm discussed in the preceding sections.

If no three points are collinear, the assumption is trivially satisfied. Also, there is no need to distinguish
between visible and weakly visible edges as there are no edges that are weakly visible but not visible.
Collinear points make the formulation of convex hull algorithms more complex and therefore we call them
adegenerate configurationfor the convex hull problem.

Geometric algorithms are frequently formulated under thenon-degeneracy assumptionor general posi-
tion assumption: The input contains no degenerate configuration. In Lecture?? we will study perturbation
as a general technique for ensuring general position.

2.6 Arbitrary Dimension

either in the text or as a remark in historial and implementation notes.

2.7 The Real-RAM

We have an algorithm for planar convex hulls.Do we have an implementation, i.e., is it straight-forward to
convert the discussion into a running program in a popular programming language? The answer is No.

In the formulation of the algorithm we have tacitly assumed the Real-RAMmodel of computation.
A Real-RAM is a random access machine with the capability of handling real numbers. Of course, the
operations on real numbers follow the laws of mathematics. The Real-RAM model is the natural computing
model for geometric computing and numerical analysis. After all geometric objects are usually specified by
real parameters: point coordinates are reals, the radius ofa circle is a real, plane coefficients are reals, and
so on.

Unfortunately, one cannot buy a Real-RAM. Real computers donot come with real arithmetic. They
provide only floating point arithmetic and bounded integer arithmetic. We will study the effect of floating
point arithmetic on geometry in the next lecture. We will seethat we are far from an implementation.

In Lectures?? to ?? we will then discuss the efficient realization of a Real-RAM to the extent needed
by the convex hull algorithm and any other geometric algorithm that deal only with linear objects.

24 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

2.8 Historical Notes

The sweep hull algorithm was proposed by Andrew [1]; it refines an earlier algorithm of Graham [34].
randomized incremental algorithm [13]. Dimension jumps first in

2.9 Implementation Notes

2.10 Exercises

Lecture 3

A First Implementation

We come to the implementation of our convex hull algorithm. There is one choice to be made.How do
we realize real arithmetic?We make the obvious choice. We use what computers offer us: floating point
arithmetic, i.e.,

Implementation of a Real RAM = RAM + double precision floatingpoint arithmetic.

Double precision floating point arithmetic is governed by the IEEE standard 754-1985 [32,?]). Modern
processors implement this standard and programming languages provide it under names such as “double”
(C++), “XXX” (Java), TODO.. Floating point arithmetic is the workhorse for numerical computations. TODO
Double precision floating point numbers have the form

± m2e

wherem= 1.m1m2 . . .m52, mi ∈ {0,1}, is the mantissa in binary ande is the exponent satisfying−1023<
e< 1024.1 We discuss floating point arithmetic in detail in Lecture??. At this point it suffices to know
that arithmetic in a floating point system is approximate and not exact. The result of any floating point
arithmetic operation is the exact result of the operation rounded to the nearest double (with ties broken using
some fixed rule). For example, in a decimal floating point system with a mantissa of two places, we have

0.36·0.11= 0.40

since the exact result 0.0396 is rounded to the approximate result 0.040.
We will see in this lecture that floating point arithmetic is apure substitute for real arithmetic and that

the floating point implementation of our algorithm can produce very strange results. We hope that, after
seeing these examples, our students look forward to the solution techniques that we present in later lectures.
The core of aC++ implementation of our algorithm is given in Section 3.2. Thefull code can be found in
the companion web page2 of article [42] on which this lecture is based.

3.1 The Geometry of Float-Orient

Our convex hull algorithms uses the orientation predicate for three points. In the last lecture we derived the
following formula for the orientation predicate. For threepoints p = (px, py), q = (qx,qy), andr = (rx, ry)

1We ignore here so calleddenormalizednumbers that play no role in our experiments and arguments.
2http://www.mpi-inf.mpg.de/departments/d1/ClassroomE xamples/

25

26 LECTURE 3. A FIRST IMPLEMENTATION

p :

(

0.5
0.5

)

q :

(

12
12

)

r :

(

24
24

)

(

0.50000000000002531
0.5000000000000171

)

(

17.300000000000001
17.300000000000001

)

(

24.00000000000005
24.0000000000000517765

)

(

0.5
0.5

)

(

8.8000000000000007
8.8000000000000007

)

(

12.1
12.1

)

(a) (b) (c)

Figure 3.1: The weird geometry of the float-orientation predicate: The figure shows the results of
float orient(px + Xux, py +Yuy,q, r) for 0 ≤ X,Y ≤ 255, whereux = uy = 2−53 is the increment between
adjacent floating-point numbers in the considered range. The result is color coded: Yellow (red, blue, resp.)
pixels represent collinear (negative, positive, resp.) orientation. The line throughq andr is shown in black.

in the plane let

Orientation(p,q, r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). (1)

We haveOrientation(p,q, r) = +1 (resp.,−1, 0) iff the polyline(p,q, r) represents a left turn (resp., right
turn, collinearity).When the orientation predicate is implemented in this way and evaluated with floating-
point arithmetic, we call it floatorient(p,q, r) to distinguish it from the ideal predicate.

What is the geometry offloat orient, i.e., which triples of points are classified as left-turns,right-turns, or
collinear? The following type of experiment addresses the question: We choose three pointsp, q, andr and
then computefloat orient(p′,q, r) for points p′ in the floating-point neighborhood ofp. More precisely, let
ux be the increment between adjacent floating-point numbers inthe range right ofpx; for example,ux = 2−53

if px = 1
2 andux = 4·2−53 if px = 2 = 4· 1

2. Analogously, we defineuy. We consider

float orient((px +Xux, py +Yuy),q, r)

for 0≤X,Y ≤ 255. We visualize the resulting 256×256 array of signs as a 256×256 grid of colored pixels:
A yellow (red, blue) pixel represents collinear (negative,positive, respectively) orientation. In the figures in
this section we also indicate an approximation of the exact line throughq andr in black.

Figure 3.1(a) shows the result of our first experiment: We usethe line defined by the pointsq= (12,12)
andr = (24,24) and query it nearp = (0.5,0.5). We urge the reader to pause for a moment and to sketch
what he/she expects to see. The authors expected to see a yellow band around the diagonal with nearly
straight boundaries. Even for points with such simple coordinates the geometry offloat orient is quite
weird: the set of yellow points (= the points classified as on the line) does not resemble a straight line and

3.1. THE GEOMETRY OF FLOAT-ORIENT 27

Figure 3.2: We repeat the example from Figure 3.1(b) and showthe result for all three distinct choices for
the pivot; namelyp on the left,q in the middle, andr on the right. All figures exhibit sign reversal.

the sets of red or blue points do not resemble half-spaces. Weeven have points that change the side of the
line, i.e., are lying left of the line and being classified as right of the line and vice versa.

In Figures 3.1(b) and (c) we have given our base points coordinates with more bits of precision by adding
some digits behind the binary point. This enhances the cancellation effects in the evaluation offloat orient
and leads to even more striking pictures. In (b), the red region looks like a step function at first sight. Note
however, it is not monotone, has yellow rays extending into it, and red lines extruding from it. The yellow
region (= collinear-region) forms blocks along the line. Strangely enough, these blocks are separated by
blue and red lines. Finally, many points change sides. In Figure (c), we have yellow blocks of varying
sizes along the diagonal, thin yellow and partly red lines extending into the blue region (similarly for the
red region), red points (the left upper corners of the yellowstructures extending into the blue region) deep
inside the blue region, and isolated yellow points almost 100 units away from the diagonal.

All diagrams in Figure 3.1 exhibit block structure. We now explain why: We focus on one dimension,
i.e., assume we keepY fixed and vary onlyX. We evaluatefloat orient((px + Xux, py +Yuy),q, r) for 0≤
X ≤ 255, whereux = uy is the increment between adjacent floating-point numbers inthe considered range.
Recall thatOrientation(p,q, r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)). We incur round-off errors in
the additions/subtractions and also in the multiplications. Consider first one of the differences, sayqx− px.
In (a), we haveqx = 12 andpx ≈ 0.5. Since 12 has four binary digits, we lose the last four bits of X in the
subtraction, in other words, the result of the subtractionqx− px is constant for 24 consecutive values ofX.
Because of rounding to nearest, the intervals of constant value are[8,23], [24,39], [40,55] Similarly, the
floating-point result ofrx− px is constant for 25 consecutive values ofX. Because of rounding to nearest, the
intervals of constant value are[16,47], [48,69], Overlaying the two progressions gives intervals[16,23],
[24,39], [40,47], [48,55], . . . and this explains the structure we see in the rows of (a).We see short blocks
of length 8, 16, 24, . . . in (a). In (b) and (c), the situation issomewhat more complicated. It is again true
that we have intervals forX, where the results of the subtractions are constant. However, sinceq andr have
more complex coordinates, the relative shifts of these intervals are different and hence we see narrow and
broad features.

Exercise 0.3: Download the code from the web page of the course and perform your own experiments.♦

28 LECTURE 3. A FIRST IMPLEMENTATION

(a) (b)

Figure 3.3: Examples of the impact of extended double arithmetic. We repeat the example from Figure 3.1(b)
with different implementations of the orientation test:(a) We evaluate(qx− px)(ry− py) and(qy− py)(rx−
px) in extended double arithmetic, convert their values to double precision, and compare them.(b) We
evaluatesign((qx− px)(ry− py)− (qy− py)(rx− px)) in extended double arithmetic. For both experiments,
we usedux = uy = 2−53, the same as for the regular double precision examples in Figure 3.1. Note that there
are no collinearities (yellow points) reported in(b).

Choice of a Pivot Point: The orientation predicate is the sign of a three-by-three determinant and this
determinant may be evaluated in different ways. Infloat orient as defined above we use the pointp as the
pivot, i.e., we subtract the row representing the pointp from the other rows and reduce the problem to the
evaluation of a two-by-two determinant. Similarly, we may choose one of the other points as the pivot.
Figure 3.2 displays the effect of the different choices of the pivot point on the example of Figure 3.1(b). The
choice of the pivot makes a difference, but nonetheless the geometry remains non-trivial and sign reversals
happen for all three choices. We will see in Lecture?? that the center point w.r.t. thex-coordinate (or the
y-coordinate) is the best choice for the pivot. However, no choice of pivot can avoid all sign errors.

Extended Double Precision: Some architectures, for example, Intel Pentium processors, offer IEEE ex-
tended double precision with a 64 bit mantissa in an 80 bit representation. Does this additional precision
help? Not really, as the examples in Figure 3.3 suggest. One might argue that the number of misclassified
points decreases, but the geometry offloat orient remains fractured and exploitable for failures similar to
those that we develop below for double precision arithmetic.

3.2 Implementation of the Convex Hull Algorithm

We describe ourC++ reference implementation of our simple incremental algorithm. We give the details
necessary to reproduce our results, for example, the exact parameter order in the predicate calls, but we
omit details of the startup phase when we search for the initial three non-collinear points and the circular
list data structure. We offer the full working source code based on CGAL [24], all the point data sets, and
the images from the analysis on our companion web pagehttp://www.mpi-inf.mpg.de/ ˜ kettner/

proj/NonRobust/ for reference.
We use our own plain conventionalC++ point type. Worth mentioning are equality comparison and

lexicographic order used to find extreme points among collinear points in the startup phase.

3.2. IMPLEMENTATION OF THE CONVEX HULL ALGORITHM 29

struct Point { double x, y; };

The orientation test returns+1 if the pointsp, q, andr make a left turn, it returns zero if they are collinear,
and it returns−1 if they form a right turn. We implement the orientation testas explained above withp as
pivot point. Not shown here, but we make sure that all intermediate results are represented as 64 bit doubles
and not as 80 bit extended doubles as it might happen, e.g., onIntel platforms.

int orientation(Point p, Point q, Point r) {
return sign((q.x-p.x) * (r.y-p.y) - (q.y-p.y) * (r.x-p.x));

}

For the initial three non-collinear points we scan the inputsequence and maintain its convex hull of up to
two extreme points until we run out of input points or we find a third extreme point for the convex hull.
From there on we scan the remaining points in our mainconvex hull function as shown below.

The circular list used in our implementation is self explaining in its use. We assume a Standard Template
Library (STL) compliant interface and extend it with circulators, a concept similar to STL iterators that
allow the circular traversal in the list without any past-the-end position using the increment and decrement
operators. In addition, we assume a function that can removea range in the list specified by two non-identical
circulator positions.

Our mainconvex hull function shown below has a conventional iterator-based interface like other
STL algorithms. It computes the extreme points in counterclockwise order of the 2d convex hull of the
points in the iterator range[first,last) . It uses internally the circular listhull to store the current
extreme points and copies this list to theresult output iterator at the end of the function. It also returns
the modifiedresult iterator.

template <typename ForwardIter, typename OutputIter>
OutputIter incr_convex_hull(ForwardIter first, ForwardIter last,

OutputIter result)
{

typedef std::iterator_traits<ForwardIter> Iterator_traits;
typedef typename Iterator_traits::value_type Point;
typedef Circular_list<Point> Hull;
typedef typename Hull::circulator Circulator;

Hull hull; // extreme points in counterclockwise (ccw) orientation
// first the degenerate cases until we have a proper triangle
first = find_first_triangle(first, last, hull);
while (first != last) {

Point p = * first;
// find visible edge in circular list of vertices of current hull
Circulator c_source = hull.circulator_begin();
Circulator c_dest = c_source;
do {

c_source = c_dest++;
if (orientation(* c_source, * c_dest, p) < 0) {

// found visible edge, find ccw tangent
Circulator c_succ = c_dest++;
while (orientation(* c_succ, * c_dest, p) <= 0)

c_succ = c_dest++;

30 LECTURE 3. A FIRST IMPLEMENTATION

p2, p3

p1

p2, p3

(a) (b) (c)

Figure 3.4: Results of a convex hull algorithm using double-precision floating-point arithmetic with the
coordinate axes drawn to give the reader a frame of reference. The implementation makes gross mistakes:
In (a), the clearly extreme pointp1 is left out. In (b), the convex hull has a large concave cornerand a (non-
visible) self intersection. In (c), the convex hull has a clearly visible concave chain (and no self-intersection).

// find cw tangent
Circulator c_pred = c_source--;
while (orientation(* c_source, * c_pred, p) <= 0)

c_pred = c_source--;
// c˙source is the first point visible, c˙succ the last
if (++c_pred != c_succ)

hull.circular_remove(c_pred, c_succ);
hull.insert(c_succ, p);
break; // we processed all visible edges

}
} while (c_source != hull.circulator_begin());
++first;

}
return std::copy(hull.begin(), hull.end(), result);

}

3.3 The Impact on the Convex Hull Algorithm

Let us next see the impact of approximate arithmetic on our convex hull algorithm. Figure 3.4 shows point
sets (we give the numerical coordinates of the points below)and the respective convex hulls computed by
the floating-point implementation of our algorithm. In eachcase the input points are indicated by small
circles, the computed convex hull polygon is shown in green,and the alleged extreme points are shown as
filled red circles. The examples show that the implementation may make gross mistakes. It may leave out
points that are clearly extreme, it may compute polygons that are clearly non-convex, and it may even run
forever.

3.4. FURTHER EXAMPLES∗ 31

We discuss in detail the output shown in Figure 3.4(b). We consider the points below. For improved
readability, we will write numerical data in decimals. Suchdecimal values, when read into the machine, are
internally represented by the nearest double. We have made sure that our data can be safely converted in this
manner, i.e., conversion to binary and back to decimal is theidentity operation. However, theC++ standard
library does not provide sufficient guarantees and we offer additionally the binary data in little-endian format
on the accompanying web page.

p1 = (24.00000000000005, 24.000000000000053)
p2 = (24.0, 6.0)
p3 = (54.85, 6.0)
p4 = (54.850000000000357, 61.000000000000121)
p5 = (24.000000000000068, 24.000000000000071)
p6 = (6.0, 6.0).

After the insertion ofp1 to p4, we have the convex hull(p1, p2, p3, p4). This is correct. Pointp5 lies
inside the convex hull of the first four points; butfloat orient(p4, p1, p5) < 0. Thusp5 is inserted betweenp4

andp1 and we obtain(p1, p2, p3, p4, p5). However, this error is not visible yet to the eye, see Figure3.5(a).

The point p6 sees the edges(p4, p5) and (p1, p2), but does not see the edge(p5, p1). All of this is
correctly determined byfloat orient. Consider now the insertion process for pointp6. Depending on where
we start the search for a visible edge, we will either find the edge(p4, p5) or the edge(p1, p2). In the former
case, we insertp6 betweenp4 andp5 and obtain the polygon shown in (b). It is visibly non-convexand has
a self-intersection. In the latter case, we insertp6 betweenp1 and p2 and obtain the polygon shown in (c).
It is visibly non-convex.

Of course, in a deterministic implementation, we will see only one of the errors, namely (b). This is
because in our sample implementation as given in the appendix, we haveL = (p2, p3, p4, p1), and hence the
search for a visible edge starts at edge(p2, p3). In order to produce (c) with our implementation we replace
the pointp2 by the pointp′2 = (24.0,10.0). Thenp6 sees(p′2, p3) and identifies(p1, p′2, p3) as the chain of
visible edges and hence constructs (c).

3.4 Further Examples∗

We give further examples for large effects of seemingly small errors. We give sequencesp1, p2, p3, . . . of
points such that the first three points form a counter-clockwise triangle (andfloat orient correctly discovers
this) and such that the insertion of some later point leads the algorithm astray (in the computations with
float orient). We also discuss how we arrived at the examples. All our examples involve nearly or truly
collinear points; we will see in Lecture?? that sufficiently non-collinear points do not cause any problems.
Does this make the examples unrealistic? We believe not. Many point sets contain nearly collinear points or
truly collinear points, which become nearly collinear by conversion to floating-point representation.

An extreme point is overlooked: Consider the set of points below. Figure 3.4(a) and 3.6(a) show the
computed convex hull; a point that is clearly extreme is leftout of the hull.

32 LECTURE 3. A FIRST IMPLEMENTATION

p2 p3

p4

p2 p3

p4

p6

p′2
p3

p4

p6

p1 p5 p1 p5 p1 p5

(a) (b) (c)

Figure 3.5:(a) The hull constructed after processing pointsp1 to p5. Pointsp1 andp5 lie close to each other
and are indistinguishable in the upper figure. The magnified schematic view below shows that we have a
concave corner atp5. The pointp6 sees the edges(p1, p2) and(p4, p5), but doesnot see the edge(p5, p1).
One of the former edges will be chosen by the algorithm as the chain of edges visible fromp6. Depending
on the choice, we obtain the hulls shown in(b) or (c). In (b), (p4, p5) is found as the visible edge, and in(c),
(p1, p2) is found. We refer the reader to the text for further explanations. The figures show the coordinate
axes to give the reader a frame of reference.

p1 = (7.3000000000000194, 7.3000000000000167)
p2 = (24.000000000000068, 24.000000000000071)
p3 = (24.00000000000005, 24.000000000000053)
p4 = (0.50000000000001621, 0.50000000000001243)
p5 = (8, 4) p6 = (4, 9) p7 = (15,27)
p8 = (26,25) p9 = (19,11)

float orient(p1, p2, p3) > 0
float orient(p1, p2, p4) > 0
float orient(p2, p3, p4) > 0
float orient(p3, p1, p4) > 0 (??)

What went wrong?Let us look at the first four points. They lie almost on the liney = x, andfloat orient
gives the results shown above. Only the last evaluation is wrong, indicated by “(??)”. Geometrically, these
four evaluations say thatp4 sees no edge of the triangle(p1, p2, p3). Figure 3.6(b) gives a schematic view
of this impossible situation. The pointsp5, . . . , p9 are then correctly identified as extreme points and are
added to the hull. However, the algorithm never recovers from the error made when consideringp4 and the
result of the computation differs drastically from the correct hull.

We next explain how we arrived at the instance above. Intuition told us that an example (if it exists at
all) would be a triangle with two almost parallel sides and with a query point near the wedge defined by

3.4. FURTHER EXAMPLES∗ 33

p1

p2, p3

p4

p5

p6

p7
p8

p9

����

����

����

����

p

q
r

x

(a) (b)

Figure 3.6:(a) The case of an overlooked extreme point: The pointp4 in the lower left corner is left out
of the hull. (b) Schematic view indicating the impossible situation of a point outside the current hull and
seeing no edge of the hull:x lies to the left of all sides of the triangle(p,q, r).

the two nearly parallel edges. In view of Figure 3.1 such a point might be mis-classified with respect to
one of the edges and hence would be unable to see any edge of thetriangle. So we started with the points
used in Figure 3.1(b), i.e.,p1 ≈ (17,17), p2 ≈ (24,24) ≈ p3, where we movedp2 slightly to the right so
as to guarantee that we obtain a counter-clockwise triangle. We then probed the edges incident top1 with
points p4 in and near the wedge formed by these edges. Figure 3.7(a) visualizes the outcomes of the two
relevant orientation tests. Each red pixel corresponds to apoint that sees no edge. The example obtained in
this way was not completely satisfactory, since some orientation tests on the initial triangle(p1, p2, p3) were
evaluating to zero.

We perturbed the example further, aided by visualizingfloat orient(p1, p2, p3), until we found the ex-
ample shown in (b). The final example has the nice property that all possiblefloat orient tests on the first
three points are correct. So this example is independent from any conceivable initialization an algorithm
could use to create the first valid triangle. Figure 3.7(b) shows the outcomes of the two orientations tests for
our final example.

A point outside the current hull sees all edges of the convex hull: Intuition told us that an example (if
it exists) would consist of a triangle with one angle close toπ and hence three almost parallel sides. Where
should one place the query point? We first placed it in the extension of the three parallel sides and quite a
distance away from the triangle. This did not work. The choice that worked is to place the point near one of
the sides so that it could see two of the sides and “float-see” the third. Figure 3.8 illustrates this choice. A
concrete example follows:

p1 = (200.0, 49.200000000000003)
p2 = (100.0, 49.600000000000001)
p3 = (−233.33333333333334, 50.93333333333333)
p4 = (166.66666666666669, 49.333333333333336)

float orient(p1, p2, p3) > 0
float orient(p1, p2, p4) < 0
float orient(p2, p3, p4) < 0
float orient(p3, p1, p4) < 0 (??)

The first three points form a counter-clockwise oriented triangle and according tofloat orient, the al-
gorithm believes thatp4 can see all edges of the triangle. What will our algorithm do?It depends on the

34 LECTURE 3. A FIRST IMPLEMENTATION

p1 : (17.300000000000001,17.300000000000001)
p2 : (24.000000000000068,24.000000000000071)
p3 : (24.00000000000005,24.000000000000053)
p4 : (0.50000000000000711,0.5)

(7.3000000000000194,7.3000000000000167)
(24.000000000000068,24.000000000000071)
(24.00000000000005,24.000000000000053)

(0.50000000000000355,0.5)

(a) (b)

Figure 3.7: The points(p1, p2, p3) form a counter-clockwise triangle and we are interested in the classifi-
cation of points(x(p4)+ Xux,y(p4)+Yuy) with respect to the edges(p1, p2) and(p3, p1) incident top1.
The extensions of these edges are indistinguishable in the pictures and are drawn as a single black line. The
red points do not “float-see” either one of the edges. These are the points we were looking for. The points
collinear with one of the edges are ocher, those collinear with both edges are yellow, those classified as
seeing one but not the other edge are blue, and those seeing both edges are green.(a) Example starting from
points in Figure 3.1.(b) Example that achieves “invariance” with respect to permutation of the first three
points.

implementation details. If the algorithm first searches foran invisible edge, it will search forever and never
terminate. If it deletes points on-line fromL it will crash or compute nonsense depending on the details of
the implementation ofL.

3.5 Non-Continuous Functions

Why can our convex hull algorithm produce outputs that are grossly incorrect? The reason is the use of
approximate arithmetic for computing non-continuous functions.

Three points are collinear or form a left or a right turn. Thisdiscontinuity is clearly visible in the
analytical formula for the orientation function:

Orientation(p,q, r) = sign((qx− px)(ry− py)− (qy− py)(rx− px)).

It is the sign of a real numbers; the sign function is a step function and hence non-continuous.
Geometric algorithms are based on the laws of geometry; e.g., a point lies outside a convex polygon if

and only if it can see one of its edges. Float-see is an incorrect implementation of “see” and hence points

3.6. GEOMETRIC COMPUTING VS. NUMERICAL ANALYSIS 35

p2

p4

p1
p3

Figure 3.8: Schematic view of a point seeing all hull edges: The point p4 sees all edges of the triangle
(p1, p2, p3).

are misclassified. Of course, only nearly collinear points are misclassified. So why doesn’t our algorithm
compute polygons that are close to the true hull? There are atleast two reasons, why we should not expect
this to be the case. First, a point far away from a convex polygon may be classified as lying inside the
polygon (see Figure 3.6(a)). Second, a misclassified point may create a slightly non-convex polygon. This
small error is amplified by later insertions (see Figure 3.4(b)).

Not only our primitive is non-continuous, the higher level geometric tasks are also tantamount to non-
continuous functions. In the convex hull problem, we ask forthe set of extreme points. This set is a
non-continuous function of the input. For example, if a point that lies of an edge of the convex hull moves to
the outside of the hull, the set increases in size. Figure 1.2provides another example. Observe that the blue
cylinder does not contribute to the output. However, as a result of shrinking it ever so slightly, a blue spot
will appear in the center of the front side of the result. Since the result of the computation is a data structure
that records the origin of each surface patch of the output, the output is again a non-continuous function of
the input. Figure 1.2 was produced with the CAD-software Rhine3D. We asked the system to compute

(((s1 ∩ s2) ∩ c2) ∩ c1).

If, the task is specified as

(((c1 ∩ c2) ∩ s1) ∩ s2,

the software returns an error.

3.6 Geometric Computing vs. Numerical Analysis

We contrast geometric computing and numerical analysis. Algorithms in numerical analysis are also de-
veloped for the Real-RAM model of computation. The standardimplementation of real numbers is float-
ing point arithmetic. Numerical analysts are well aware of the pitfalls of floating point computation [?].
Forsythe’s paper and many numerical analysis textbooks, see for example [17, page 9], contain instructive
examples of how popular algorithms, e.g., Gaussian elimination, can fail when used with floating point
arithmetic. These examples have played a guiding role in thedevelopment of robust numerical methods.

Many numerical algorithms are self-correcting, i.e., an error made at some time of the computation is
remedied at a later time. In contrast, the algorithm of computational geometry are non-self-correcting as
we have seen in our convex hull algorithms. Consider, for example, the Jacobi algorithm for solving a
symmetric linear systemAx= b. We writeA asL + D + R, whereD is a diagonal matrix consisting of the
diagonal entries ofA, L is a lower triangular matrix consisting of the below-diagonal elements ofA, andR is
an upper triangular matrix consisting of the above-diagonal elements ofA. ThenR= LT , sinceA is assumed
to be symmetric.

36 LECTURE 3. A FIRST IMPLEMENTATION

LEMMA 8. The Jacobi-iteration
xk+1 = −D−1(L+R)xk +D−1b

converges for every initial value x0 against the solution of Ax= b, if A is strictly diagonally dominant, i.e.,

|aii | > ∑
j 6=i

∣

∣ai j

∣

∣ for all i .

Proof. We argue in two steps. We first assume that the iteration converges and show that the fixpoint of the
iteration is the solution ofAx= b. In the second step, we show that the iteration converges.

Let x∗ be a fixpoint of the iteration, i.e.,x∗ = −D−1(L+R)x∗+D−1b. Then

x∗ = −D−1(L+R)x∗+D−1b ⇐⇒ Dx∗ = −(L+R)x∗ = b

⇐⇒ (D+L+R)x∗ = b

⇐⇒ x∗ = A−1b.

Let G = −D−1(L + R) andc = D−1b. Thenx∗ = Gx∗ + c. We next estimate the distance fromxk to the
fixpoint x∗. We have

xk−x∗ = Gxk−1 +c− (Gx∗+c)

= G(xk−1−x∗)

= Gk(x0−x∗)

and hence||xk−x∗|| ≤ ||G||k||x0−x∗|| for any matrix norm. The infinity norm ofG is less than one. Observe

that the sum of the absolute values of the entries of thei-th row ofG is ∑ j 6=i
|ai j |
|aii | which is less than one since

A is assumed to be diagonally dominant.

Assume next, that we make an error in every iteration, i.e, wecomputexk+1 = Gxk + c+ ek for some
vectorek with ||ek|| ≤ ε . Then

xk = Gxk−1 +c+ek−1

= G(G(xk−2 +c+ek−2)+c+ek−1

= G2xk−2 +(G+ I)c+Gek−2+ Iek−1

= . . .

= Gkx0 + ∑
1≤i≤k

Gi−1c+ ∑
1≤i≤k

Gi−1ek−i .

The first two terms converge againstx∗ = A−1b; observe that we know already that the exact iteration
converges againstx∗. The norm of the last term is bounded by

|| ∑
1≤i≤k

Gi−1ek−i || ≤ ∑
1≤i≤k

||G||i−1||ek−i || ≤
ε

1−||G|| .

We conclude that the total error stays bounded. Moreover, any error made in a particular step is dampened
by ||G|| in any later step.

Many problems of numerical analysis are continuous functions from input to output. For example, the
eigenvalues of a matrix are continuous functions of the entries of the matrix. In contrast, most problems in
geometric computing are non-continuous functions.

3.7. RELIABLE (GEOMETRIC) COMPUTING 37

However, numerical analysis also treats non-continuous problems. Linear system solving is a non-
continuous function. The systemAx= b has a solution if and only ifb is in the span of the columns ofA.
Thus solving a linear system implicitly answers a yes-no question, namely whetherb is in the span of the
columns ofA. This is, however, not the view of numerical analysis.

• Numerical analysis calls such problems ill-posed or at least ill-conditioned.

• We use arithmetic to make yes/no decisions, e.g., doesp lie on ℓ or not?

3.7 Reliable (Geometric) Computing

What can we do? Before discussing solution, we clearly statethe goal. We want reliable implementations.
We call a programreliable if it does what it claims to do, if it comes with a guarantee. Guarantees come in
different flavors.

(1) The strongest guarantee is to solve the problem for all inputs. For the example of the convex hull, this
amounts to computing the extreme vertices of the hull for allsetsSof input points. (2) A weaker, but still
very strong, guarantee is to solve the problem approximately for all inputs. For example, we might compute
a convex polygonP such thatP⊆Uε(convS) and convS⊆Uε(P), whereε is a small positive constant, say
ε = 0.01 andUε denotesε-neighborhood. (3) Or we might give one of the guarantees above, but only if the
coordinates of all input points are integers bounded byM, sayM = 220. (4) Or we might guarantee that the
program never crashes and always produces a polygon. Usually, this polygon is close (with an unspecified
meaning of close) to the convex hull. (5) Or we guarantee nothing.

We find guarantees 4 and 5 too weak. We will teach you techniques for achieving guarantees 1 to 3. The
techniques come in three kinds. The first approach is to ensure that the implementations of geometric pred-
icates always return the correct result. It is known as the exact geometric computation (EGC) paradigm and
has been adopted for the software librariesLEDA, CGALand CORE L IBRARY [?, 24, 45, 40]. It implements
a Real-RAM to the extent needed by a particular algorithm andis the approach mainly advocated in this
book. The second approach is to perturb the input so that the floating-point implementation is guaranteed
to produce the correct result on the perturbed input [35, 30]. We discuss this approach in Lecture??. The
third approach is to change the algorithm so that it can cope with the floating-point implementation of its
geometric predicates and still computes something meaningful. The definition of “meaningful” is crucial
and difficult. This approach is problem-specific. We discussit in Lecture??.

Reliability is our main concern, but efficiency is also of utmost importance. Efficiency comes in two
flavors. On the theoretical side, we aim for algorithms with low asymptotic running time. On the practical
side, we aim for programs that can compete with non-reliablealternatives.

3.8 Non-Solutions

Maybe, the reader finds that the problem should have an easy fix. We discuss two approaches that are
frequently suggested, but definitely do not solve the problem.

The first approach is specific to the planar convex hull problem. A frequently heard reaction to the
examples presented in this lecture is that all examples exploit the fact that the first few points are nearly
collinear. If one starts with a ”roundish” hull, or at least starts with a hull formed from the points of minimal
and maximalx- andy- coordinates, the problem will go away. We have two answers to this suggestion:
Firstly, neither way can cope with the situation that all input points are nearly collinear, and secondly, the

38 LECTURE 3. A FIRST IMPLEMENTATION

p :

(

0.5
0.50000000000833222

)

q :

(

12
12

)

r :

(

24
24

)

p :

(

0.50000000000833222
0.5

)

q :

(

12
12

)

r :

(

24
24

)

(a) (b)

Figure 3.9: The effect of epsilon-tweaking: The figures showthe result of repeating the experiment of
Figure 3.1(a), but using an absolute epsilon tolerance value of ε = 10−10, i.e., three points are declared
collinear if float orient returns a value less than or equal to 10−10 in absolute value. The yellow region of
collinearity widens, but its boundary is as fractured as before. Figure (a) shows the boundary in the direction
of the positivey-axis, and Figure (b) shows the boundary in the direction of the positivex-axis. The figures
are color coded: Yellow (red, blue, resp.) pixels representcollinear (negative, positive, resp.) orientation.
The black lines correspond to the linesOrientation(p,q, r) = ±ε .

example in Figure 3.5 falsifies this suggestion. Observe that we have a ”roundish” hull after the insertion of
the pointsp1 to p4 and then the next two insertions lead the algorithm astray. The example can be modified
to start with points of minimal and maximalx- coordinates first, which we suggest as a possible course
exercise.

Epsilon-tweaking is another frequently suggested and usedremedy, i.e., instead of comparing exactly
with zero, one compares with a small (absolute or relative) tolerance value epsilon. Epsilon-tweaking simply
activates rounding to zero. In the planar hull example, thiswill make it more likely for points outside the
current hull not to see any edges because of enforced collinearity and hence the failure that a point outside
the hull will see no edge of the hull will still occur. In the examples of Section 3.1, the yellow band in
the visualizations of collinear pixels becomes wider, but its boundary remains as fractured as it is in the
comparison with zero, see Figure 3.9.

Another objection argues that the examples are unrealisticsince they contain near collinear point triples
or points very close together (actually the usual motivation for Epsilon-tweaking). Of course, the examples
have to look like this, otherwise there would not be room for rounding errors. But they are realistic; firstly,
practical experience shows it. Secondly, degeneracies, such as collinear point triples, are on purpose in many
data sets, since they reflect the design intent of a CAD construction or in architecture. Representing such
collinear point triples in double precision arithmetic andfurther transformations lead to rounding errors that
turn these triples into close to collinear point triples. And thirdly, increasingly larger data sets increase the

3.9. WHERE DO WE STAND? 39

chance to have a bad triple of points just by bad luck, and a single failure suffices to ruin the computation.

3.9 Where Do We Stand?

Where do we stand?

1. We haveO(nlogn) algorithms for computing convex hulls in the plane. These algorithms use only
simple operations on points, namely lexicographic order and orientation.

2. If floating point arithemetic is used for implementing theorientation test, disaster can happen.

What can we do? We are in good shape as long as we can guarantee that lexicographic order and
orientation is determined correctly. So it seems natural torestrict the coordinates to subsets ofR, where we
can guarantee this. We will see in the next lecture that we cando so forQ and also for the set of floating
point numbers. Later in the course, we will see how to do so foralgebraic expressions and then algebraic
numbers.

3.10 Historical Notes

Numerical analysts are well aware of the pitfalls of floatingpoint computation [?]. Forsythe’s paper and
many numerical analysis textbooks, see for example [17, page 9], contain instructive examples of how
popular algorithms, e.g., Gaussian elimination, can fail when used with floating point arithmetic. These
examples have played a guiding role in the development of robust numerical methods.

The first implementations of geometric algorithms were either restricted the input so that integer arith-
metic was sufficient or used floating point arithmetic as the implementation of real arithmetic. Many im-
plementers reported that they found it very cumbersome to get their implementations to work. KM had the
following experiences. He asked a student to implement an algorithm for Voronoi diagrams of line seg-
ments; see Figure??. The implementation worked only for a small number of examples. More seriously,
the first implementations of geometric algorithms in LEDA would not work on all inputs; all of them would
break for some inputs.

The literature contains a small number of documented failures due to numerical imprecision, e.g., For-
rest’s seminal paper on implementing the point-in-polygontest [25], Fortune’s example for a variant of
Graham’s scan [?], Shewchuk’s example for divide-and-conquer Delaunay triangulation [52], Ramshaw’s
braided lines [45, Section 9.6.2], Schirra’s example for convex hulls [45, Section 9.6.1], and Mehlhorn
and Näher’s examples for the sweep line algorithm for line segment intersection and boolean operations on
polygons [45, Sections 10.7.4 and 10.8.4]. This lecture is based on an article by Kettner et al. [42].

Software and hardware reliability goes much beyond geometric computing. A version of the Pentium
chip contained an error in the division hardware [4]. The error costed Intel millions of dollars. The Ariane
V rocket was lost because of a bug in the control software. FURTHER EXAMPLES IN Chee’s write-up

3.11 Implementation Notes

3.12 Exercises

Exercise 0.4: Formulate more guarantees. ♦

40 LECTURE 3. A FIRST IMPLEMENTATION

Lecture 4

Number Types I

We will study arbitrary precision integers, rationals, fixed precision floating point numbers, and arbitrary
precision floating point numbers. In later lectures, we willlearn about algebraic expressions and general
algebraic numbers. We start out with a short discussion of arbitrary precision integers and rationals. The
bulk of the lecture will be about floating point numbers.

Floating point numbers are of the form
s·m·2e

wheres is a sign bit (−1 or +1), m is a non-negative number calledmantissaande is an integer called
exponent. The number of digits available for the mantissa is either fixed (all hardware floating point systems)
or arbitrary (most software floating point systems). The exponent either comes from a fixed range (hardware
floating point numbers and some software floating point systems) or is arbitrary (some software floating
point systems). Already the first programmable computer offered floating point numbers. In 1938, Konrad
Zuse completed the ”Z1”, the first programmable computer. Itworked with 22-bit floating-point numbers
having a 7-bit exponent, 15-bit significant (including one implicit bit), and a sign bit. The Z3, completed
in 1941, implemented floating point arithmetic exceptions with representations for plus and minus infinity
and undefined. The first commercial computers offering floating point arithmetic in hardware are Zuse’s Z4
in 1950, followed by the IBM 704 in 1954. The IEEE standard 754-1985 [36] defines single and double
precision floating point arithmetic which is implemented inhardware on all modern processors. Floating
point arithmetic (hardware and software) is the workhorse for all scientific and geometric computations and
therefore we need to study it carefully. The preceding statement concerning the importance of floating point
computations seems to contradict the findings of Lecture 3. It does not. In the preceding lecture, we showed
that a naive substitution of floating point arithmetic for real arithmetic does not work. In the course we will
learn that the wise use of floating point arithmetic is one of cornerstones of reliable and efficient geometric
computing.We will teach you how to draw reliable conclusions from approximate arithmetic.

4.1 Built-In Integers and Arbitrary Precision Integers

Hardware and programming languages provide fixed precisioninteger arithmetic, usually in signed and
unsigned form. Letwbe the word size of the machine and letm= 2w. Most current workstations havew= 32
or w= 64. The unsigned integers consist of the integers between 0 andm−1 (both inclusive) and arithmetic
is modulom. The signed integers form an interval [MININT ,MAXINT]. On most machines signed integers
are represented in two’s complement. ThenMININT = −2w−1 andMAXINT= 2w−1 − 1. An arithmetic

41

42 LECTURE 4. NUMBER TYPES I

operation on signed integers may produce a result outside the range of representable numbers; one says
that the operation underflows or overflows. The treatment of overflow and underflow is not standardized, in
particular, it is not guaranteed that they lead to a runtime error, in fact they usually do not. For example,
the additionMAXINT+ MAXINThas result−2 on the KM’s machine, since adding 011. . .1 to itself yields
11. . .10, which is the representation of−2 in two’s complement.

Arbitrary integers are readily implemented in software, for example, in packages [31] and [37, Class
BigInteger]. The running time of addition and subtraction is linear in the number of digits. All packagesreferences??
implement some form of fast integer multiplication. Depending on the method used, the running time of
multiplication isO(Llog3) or O(L logL log logL), whereL is the number of digits in the operands.

Exercise 0.5: The greatest common divisor of two integersx andy with x≥ y≥ 0 can be computed by the
recursionGCD(x,y) = x if y = 0 andGCD(x,y) = GCD(y,x mody) if y > 0. Prove that the number
of recursive calls is at most proportional to the length ofy. Hint: Assumex > y and letx0 = x and
x1 = y. For i > 1 andxi−1 6= 0 let xi = xi−2 modxi−1. Let xk = 0 be the last element in the sequence
just defined. Relate this sequence to the gcd-algorithm. Show thatxk−1 > 0 andxi−2 ≥ xi−1 + xi for
i < k. Conclude thatxk− j is at least as large as thej-th Fibonacci number. ♦

Exercise 0.6: The standard algorithm for multiplying twoL-bit integers has running timeO(L2). Karat-
suba’s method ([41]) runs in timeO(Llog3). In order to multiply two numbersx and y it writes
x = x1 · 2L/2 + x2 andy = y1 · 2L/2 + y2, wherex1, x2, y1, andy2 haveL/2 bits. Then it computes
z= (x1+x2) · (y1 +y2) and observes thatx·y = x1 ·y1 ·2L +(z−x1y1−x2y2) ·2L/2 +x2y2. In this way
only three multiplications ofL/2-bit integers are needed to multiply twoL-bit integers. The standard
algorithm requires four. ♦

4.2 Rational Numbers

A rational number is the quotient of two integers. Addition and multiplication of rational numbers are exact.
A rational is normalized, if numerator and denominator are relatively prime. Normalization requires to find
the greatest common divisor of numerator and denominator and two divisions to remove it. Normalization
is fairly costly. However, one should be aware that some algorithms lead to non-normalized numbers and re-
quire normalization for efficiency. A prime example is Gaussian elimination. Consider Gaussian elimination
of a 3×3 matrix.





a b e
c d f
g h i



→





a b e
0 d−b(c/a) f −e(c/a)
0 h−b(g/a) i −e(g/a)





→





a b e
0 (ad−bc)/a (a f −ec)/a)
0 (ah−bg)/a (ai−eg)/a





→







a b e
0 (ad−bc)/a (a f −ec)/a)

0 0 (ai−eg)/a− (ah−bg)/a
(ad−bc)/a(a f −ec)/a







4.3. FLOATING POINT NUMBERS 43

We now have a close look at the element in position(3,3). We have:

(ai−eg)/a− (ah−bg)/a
(ad−bc)/a

(a f −ec)/a =
(ai−eg)(ad−bc)− (ah−bg)(a f −ec)

a(ad−bc)

=
all terms containinga+(egbc−bgec)

a(ad−bc)
,

i.e., numerator and denominator contain the common factora. If common factors are not cleared out in
Gaussian elimination, the length of the numbers grows exponentially in the dimension of the matrix. If
entries are kept in normalized form, Gaussian elimination is polynomial [?].

The use of rational arithmetic is inefficient and should be avoided.

4.3 Floating Point Numbers

We start out with a definition of binary floating point systems. We explain the representation of numbers
and the key properties of floating point arithmetic. We move on to derive error bounds for the evaluation of
expressions. We will use them extensively in the course: foroptimized evaluations of geometric predicates in
this lecture, as the basis for an efficient linear kernel (Lecture??), for the analysis of perturbation techniques
(Lecture??), as the computational basis for the exact evaluation of algebraic expressions (Lecture??) and,
more generally, arithmetic with algebraic numbers (Lecture ??).

Hardware floating point arithmetic is standardized in the IEEE floating point standard [32, 33, 36]. A
floating point number is specified by a signs, a mantissam, and an exponente. The sign is+1 or−1. The
mantissa consists oft bits m1, . . . , mt , ande is an integer in the range[emin,emax]. The range of possible
exponents contains zero andemin = −∞ and/oremax= +∞ is allowed.

TODO: doesemin = −∞ really make sense? ThenF is dense inR at 0. Check that all arguments stay
valid. TODO

The number represented by the triple(s,m,e) is as follows:

• If emin < e≤ emax, the number iss· (1+ ∑1≤i≤t mi2−i) ·2e. This is called anormalizednumber.

• If e= emin then the number iss·∑1≤i≤t mi2−i2emin+1. This is called asubnormalnumber. Observe
that the exponent isemin+ 1. This is to guarantee that the distance of the largest subnormal number
(1−2−t)2emin+1 and the smallest normalized number 12emin+1 is small.

• In addition, there are the special numbers−∞ and+∞ and a symbol NaN which stands for not-a-
number. It is used as an error indicator, e.g., for the resultof a division by zero.

Double precision floating point numbers are represented in 64 bits. One bit is used for the sign, 52 bits for the
mantissa (t = 52) and 11 bits for the exponent. These 11 bits are interpreted as an integerf ∈ [0..211−1] =
[0..2047]. The exponente= f −1023; f = 2047 is used for the special values and henceemin = −1023 and
emax= 1023. The rules forf = 2047 are:

• If all mi are zero andf = 2047 then the number is+∞ or−∞ depending ons.

• In f = 2047 and somemi is non-zero, the triple represents NaN (= not a number).

44 LECTURE 4. NUMBER TYPES I

Let F = F(t,emin,emax) be the set of real numbers (including+∞ and−∞) that can be represented as above.
A number inF is calledrepresentable, a number inR \F is callednon-representable. Observe that for
normalized numbers, the leading 1 is not stored. It is sometimes called the hidden bit. The largest positive
representable number (except for∞) is MAXF = (2−2−t) ·2emax, the smallest positive representable number is
MINF = 2−t ·2emin+1 = 2−t+emin+1, and the smallest positive normalized representable number isMINNORMF =∞????
1·2emin+1 = 2emin+1. We define thenormal rangeof F as

[−MAXF ,−MINNORMF]∪ [MINNORMF ,MAXF]

and thesubnormal rangeas the open interval(−MINNORMF ,+MINNORMF). Observe that 0 lies in the sub-∞???
normal range. Therangeof F is the closed interval[−MAXF ,+MAXF]. We requireMINNORMF ≤ 2−t. This

guaranteesMIN1/2
F ≥ MINNORMF .

Exercise 0.7: Specialize the definitions above to double precision floating point numbers. ♦

4.3.1 Rounding

F is a discrete subset ofR. For any realx, let1 flu(x) be the smallest floating point number greater then or
equal tox and letfld(x) be the largest floating point number smaller than or equal tox, i.e.,

flu(x) = min{z∈ F | x≤ z} and fld(x) = max{z∈ F | z≤ x}.

If x is representable,flu(x) = fld(x) = x. If x > MAXF , flu(x) = +∞ andfld(d) = MAXF , and if 0≤ x≤ MINF ,
flu(x) = MINF andfld(x) = 0.

Rounding a real numberx yields flu(x) or fld(x). There are several rounding modes:Rounding away
from zeroyieldsflu(x) for a nonnegativex andfld(x) for a negativex. Rounding towards zeroyieldsfld(x)
for a nonnegativex andflu(x) for a negativex. Rounding to nearestyields flu(x) or fld(x) depending on
which number is closer tox. If both numbers are equally close, i.e.,x = (flu(x)+fld(x))/2, the result of the
rounding has an even last bit in the mantissa. The latter rulemakes the rounding deterministic; also there
is empirical evidence [?] that “rounding to even” in the case of ties has superior computational properties.
Rounding to nearest is the default rounding mode in the IEEE standard and we follow this convention. We
use fl(x) to denote the result of roundingx to the nearest floating point number. Ifx > MAXF , we define
fl(x) = ∞, and ifx < −MAXF , we define fl(x) = −∞. The following theorem states that rounding of numbers
in the normal range incurs a small relative error.

THEOREM 9. If x ∈ R lies in the normal range,

max(|x−flu(x)| , |x−fld(d)|) ≤ 2−t min(|x| , |fld(x)| , |flu(x)|) (1)

and

|x−fl(x)| ≤ 2−t−1min(|x| , |fl(x)|). (2)

If |x| > MAXF , |x−fl(x)| ≤ 2−t−1 |fl(x)|.
1flu stands for “float-up” andfld stands for “float-down”.

4.3. FLOATING POINT NUMBERS 45

Proof. We may assume thatx is positive. ThenMINNORMF ≤ x≤ MAXF and hencex = m2e for somem and
e with 1≤ m< 2 andemin ≤ e≤ emax. If e= emax, we have in additionm≤ 2−2−t . The distance between
adjacent floating point numbers with exponente is 2−t+e. Also, min(|x| , |fld(x)| , |flu(x)|) ≥ 2e. Thus

max(|x−flu(x)| , |x−fld(d)|) ≤ 2−t+e ≤ 2−t min(|x| , |fld(x)| , |flu(x)|).

The second claim follows from|x−fl(x)| ≤ 2−t−1+e. Finally, if |x| > MAXF , |fl(x)| = ∞ and this implies the
third claim.

For subnormal numbers, the relative error of rounding may bearbitrarily large. For example for,x =
MINF/2 we have fl(x) = 0 and hence|fl(x)−x| = x. Relative tox, the error is 1, and relative to fl(x), the
error in+∞. However, the absolute error is bounded.

LEMMA 10. Let x∈ R be in the subnormal range. Then

|x−fl(x)| ≤ 2−t−1+emin+1 = 2−t−1
MINNORMF .

Proof. The distance between subnormal floating point numbers is 2−t+emin+1.

The quantities 2−t and 2−t−1 are so important that they deserve a name. We callε = 2−t theprecision
of the floating point system andu = 2−t−1 theunit of roundoff.

THEOREM 11 (Quality of Rounding Function).For any real x,

|x−fl(x)| ≤ umax(|fl(x)| ,MINNORMF) (3)

4.3.2 Arithmetic on Floating Point Numbers

Arithmetic on floating point numbers is only approximate; itincurs roundoff error. Although floating point
arithmetic is inherently inexact, the IEEE standard guarantees that the result of any arithmetic operation is
close to the exact result, frequently as close as possible. It is important to distinguish between mathematical
operations and their floating point implementations. We use⊕, ⊖, ⊙, and⊘ for the floating point imple-
mentations of addition, subtraction, multiplication and division, respectively. Only in this lecture, we use
1/2 for the square-root operation and√ for its floating point implementation. Generally, we use ˜◦ for the

floating point implementation of◦. The floating point implementations of the operations+, −, ·, /, and1/2

yield the best possible result.This is an axiom of floating point arithmetic.

DEFINITION 1. If x,y∈ F and◦ ∈ {+,−, ·,/} then

x ◦̃y = fl(x◦y)

and √
x = fl(x1/2).

As an immediate consequence of this definition and Theorem 11we obtain:

46 LECTURE 4. NUMBER TYPES I

THEOREM 12 (Error Bound for Single Operations).If x,y∈ F and◦ ∈ {+,−, ·,/} then

|x ◦̃y−x◦y| ≤ umax(|x ◦̃y| ,MINNORMF) (4)

|x◦y| ≤ (1+u)max(|x ◦̃y| ,MINNORMF) (5)
∣

∣

∣

√
x−x1/2

∣

∣

∣
≤ umin(x1/2,

√
x). (6)

x1/2 ≤ (1+u)
√

x. (7)
√

x≤ (1+u)x1/2. (8)

Proof. Inequality (4) follows immediately from Theorem 11 and inequality (5) is a short calculation.

|x◦y| ≤ |x◦y−x ◦̃y|+ |x ◦̃y| ≤ umax(|x ◦̃y| ,MINNORMF)+ |x ◦̃y| ≤ (1+u)max(|x ◦̃y| ,MINNORMF).

Inequality (6) certainly holds ifx = 0 and hencex1/2 =
√

x = 0 or if x = +∞ and hencex1/2 =
√

x = ∞.
If x > 0, and hencex≥ MINF, we havex1/2 ≥ MINNORMF and hence

√
x≥ MINNORMF . Inequality (6) then

follows from (2). Inequalities (7) and (8) are immediate consequences of (6).

Observe that the floating point operations⊕, ⊖, ⊙, ⊘ and√ must return the exact result if this is
representable. This is too much to ask for more complex operation, for example logarithms or exponentials.
There one requires that the implementation either returns the exact result (if representable) or one of the two
adjacent floating point numbers.

We will also need the following properties.

(a) Floating point arithmetic is monotone, i.e., ifa1 ≤ a2 andb1 ≤ b2 then a1 ⊕ a2 ≤ b1 ⊕ b2 and if
0≤ a1 ≤ a2 and 0≤ b1 ≤ b2 thena1⊙a2 ≤ b1⊙b2.

(b) Multiplication by a power of two incurs no roundoff error, i.e., if a∈ F is a power of two,b∈ F and
2a andabare in the range ofF , thena⊕a = 2·a anda⊙b = a·b.

(c) If a+b is representable, thena⊕b = a+b and ifab is representablea⊙b = ab.

(d) If x∈ N, x < 2t+1 andt ≤ e≤ emax, thenx2e is representable.

The IEEE standard also defines the results for “strange” combinations of arguments. Of course, division
by zero yields NaN. Also, if one of the arguments of an addition is NaN or the addition has no defined result,
e.g.,−∞+ ∞, then the result is NaN.

Exercise 0.8: Leta,b∈F with 1
2 ≤ a

b ≤ 2. Show thata⊖b= a−b. This was first observed by Sterbenz [53].
♦

Exercise 0.9: Assume for this exercise that point coordinates are doublesin [1/2,1]. Show

• Orientation(p,q, r) = 0 impliesfloat orient(p,q, r) = 0.

• float orient(p,q, r) 6= 0 impliesOrientation(p,q, r) = float orient(p,q, r).

• What does this mean for a figure such as Figure???

• Can you find examples as in Section 3.3 when point coordinatesare restricted to doubles in
[1/2,1]?

♦

4.4. AN OPTIMIZED EVALUATION ORDER FOR THE ORIENTATION PREDICATE 47

4.3.3 Floating Point Integers

We briefly discuss the use of double precision hardware floating point arithmetic for 53-bit integer arith-
metic. Let us call an integer afloating point integerif it belongs to the intervalI := [−(253−1)..253−1].
The numbers inI can be represented as double precision floating point numbers. Consider a non-negative
integerx = ∑0≤i≤53xi2i ∈ I . If x = 0, x is a double. Ifx > 0, let j be maximal such thatx j 6= 0. Then
x = (1+ ∑1≤i≤ j x j−i2−i)2 j and hencex is a double. Double precision floating point arithmetic on numbers
in I is exact.

LEMMA 13. Assume x∈ I, y ∈ I and x◦y∈ I where◦ ∈ {+,−, ·}. Then x̃◦y = x◦y.

Lemma 13 is useful if points have integer Cartesian or homogeneous coordinates of bounded size.

LEMMA 14. Assume that points have integral Cartesian coordinates. Then

(bx−ax) · (cy−ay)− (by−ay) · (cx−ax)

is computed without roundoff error if the absolute value of all coordinates is bounded by2L − 1, where
2(L+1)+1≤ 53.

Proof. The absolute value of the expression is strictly bounded by

(2L +2L) · (2L +2L)+ (2L +2L) · (2L +2L) = 22L+3.

Thus if 2L+3≤ 53, the value is inI and hence computed correctly.

Exercise 0.10: Prove an analogous lemma for the orientation predicate and points with integer homoge-
neous coordinates and for the side-of-circle predicate andpoints with integer Cartesian or homoge-
neous coordinates. ♦

Built-in 32-bit integer arithmetic can only handle integers whose absolute value is bounded by 231−1.
So it supports the orientation predicate for integer coordinates with at most 14 bits. In contrast, doubles sup-
port the orientation predicate for integer coordinates with up to 25 bits. One may paraphrase this observation
asdoubles are the better ints.

4.4 An Optimized Evaluation Order for the Orientation Predi cate

TODO, Chee’s note are a good source.

4.5 An Error Analysis for Arithmetic Expressions

We study the evaluation of simple arithmetic operations in floating point arithmetic. Any real is an arithmetic
expression and ifA andB are arithmetic expression, then areA+B, A−B, A·B, andA1/2. The latter assumes
that the value ofA is non-negative. For an arithmetic expressionE, let Ẽ the result of evaluatingE with
floating point arithmetic. We want to bound

∣

∣Ẽ−E
∣

∣ .

48 LECTURE 4. NUMBER TYPES I

E condition Ẽ mE dE

a a is non-representable fl(a) max(MINNORMF , |fl(a)|) 1

a a is representable a max(MINNORMF , |a|) 0

A+B Ã⊕ B̃ mA⊕mB 1+max(dA,dB)

A−B Ã⊖ B̃ mA⊕mB 1+max(dA,dB)

A ·B Ã⊙ B̃ max(MINNORMF ,mA⊙mB) 1+dA +dB

A1/2 Ã < umA 0 2(t+1)/2√mA 2+dA

A1/2 Ã≥ umA

√
Ã max(

√
Ã,mA⊘

√
Ã) 2+dA

Table 4.1: The recursive definition ofmE andindE. The first column contains the case distinction according
to the syntactic structure ofE, the second column contains the rule for computingẼ and the third and fourth
columns contain the rules for computingmE andindE; ⊕, ⊖, ⊙, and⊘ denote the floating point implemen-
tations of addition, subtraction, and multiplication, and√ denotes the floating point implementation of the
square-root operation. Observe thatmE = ∞ if either mA = ∞ or mB = ∞.

Such a bound can be used to draw a reliable conclusion about the sign of an expression, because
∣

∣Ẽ−E
∣

∣≤ B and
∣

∣Ẽ
∣

∣> B implies sign(E) = sign(Ẽ).

This observation is very important. It shows that we may be able to determine the sign of an expression
with floating point arithmetic although it might be impossible to determine its value with floating point
arithmetic.
We will derive a bound of the form

∣

∣E− Ẽ
∣

∣≤ B where B = ((1+u)dE −1) ·mE ≤ (dE +2)⊙u⊙mE,

anddE andmE are defined in Table 4.1. The intuitive interpretation is as follows: mE upper bounds̃E and
dE measures the levels of rounding. The operators+, −, and· introduce one additional level of rounding,
the square-root-operator accounts for two levels. In an addition, the arguments contribute the maximum of
their levels, and in a multiplication, the arguments contribute their sum. Each level of rounding increases
the range of uncertainty by a multiplicative factor of 1+ ε . The subtraction of a−1 reflects the fact that we
are interested in the error.

Before we establish the error bound, we will show that((1+u)d −1) is approximately equal todu and
we will also give an example.

LEMMA 15. If d ≤
√

1/u−1 then((1+u)d −1) ≤ (d+1)u. For all d, ((1+u)d −1) ≥ du.

Proof. We have

(1+u)d −1 = ∑
1≤i≤d

(

d
i

)

ui ≤ ∑
i≥1

(d ·u)i = du/(1−du).

Next observe thatdu/(1−du) ≤ (1+d)u iff d/(1−du) ≤ (1+d) iff d ≤ d+1−d2u−du iff d(d+1) ≤
1/u. This is certainly the case when(d+1)2 ≤ u or d ≤

√

1/u−1. The lower bound follows immediately
from the expansion of(1+u)d.

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 49

The conditiond ≤
√

1/u− 1 is hardly constraining. Foru = 2−53, it amounts tod < 226.5. As an
example, we use the orientation predicate for pointsa, b, andc given by their Cartesian coordinates. Then

Orientation(a,b,c) = (bx−ax) · (cy−ay)− (by−ay) · (cx−ax).

We compute thed-value of this expression. The degree of any argument is one,the degree of(bx−ax) is 2,
the degree of(bx−ax) · (cy−ay) is 5 and the degree of the entire expression is 6. We conclude that the error
of evaluatingOrientation(a,b,c) with floating point arithmetic is at most

7·u ·mOrientation(a,b,c).

This bound is worth to be formulated as a Lemma.

LEMMA 16. If points are given by their Cartesian coordinates and the orientation predicate is computed by
the formula above, the roundoff error in a floating point evaluation is bounded by7 ·u ·mOrientation(a,b,c)
(8⊙u⊙mOrientation(a,b,c)).

Lemma 16 leads to the following code for evaluation of the orientation predicate. We assume that the
Cartesian coordinates belong to some number typeNT for which we have exact arithmetic available. We first
convert all coordinates to a floating point number and then evaluate the orientation precision with floating
point arithmetic. If the absolute value of the floating pointresult is sufficiently big, we return its result. If it
is too small we resort to exact computation.

int orientation(point_2d p, point_2d q, point_2d r){
NT px = p.xcoord(), py = p.ycoord(), qx = q.xcoord(), ;
// evaluation in floating point arithmetic
float pxd = fl(px), pyd = fl(py), qxd = fl(qx),;
float Etilde = (qxd - pxd) * (ryd - pyd) - (qyd - pyd) * (rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), aqxd = abs(qxd), ;
float mes = (aqxd + apxd) * (aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 8 * uu * mes) return (sign Etilde);
// exact evaluation
NT E = (qx - px) * (ry - py) - (qy - py) * (rx - px);
return sign E;
}

Exercise 0.11: Assume that a pointp is given by its homogeneous coordinates(px, py, pw). Assuming
sign(aw·bw·cw) = 1, we have

Orientation(a,b,c) = aw· (bx·cy−by·cx)−bw· (ax·cy−ay·cx)+cw· (ax·by−ay·bx).

Compute thed-value of this expression. ♦

Exercise 0.12: Assume that fori, 1≤ i ≤ 8, xi is an integer with|xi | ≤ 220. Evaluate the expression((x1 +
x2) · (x3 +x4)) ·x5 +(x6 +x7) ·x8 with double precision floating point arithmetic. Derive a bound for
the maximal difference between the exact result and the computed result. ♦

THEOREM 17 (Error Bound for Arithmetic Expressions).If mE and dE are computed according to Table 4.1
then

mE ≥ MINNORMF and mE ≥
∣

∣Ẽ
∣

∣ and
∣

∣Ẽ−E
∣

∣≤ ((1+u)dE −1) ·mE

50 LECTURE 4. NUMBER TYPES I

Proof. We use induction on the structure of the expressionE. The claimsmE ≥ MINNORMF andmE ≥
∣

∣Ẽ
∣

∣

follow immediately from the table and the monotonicity of floating point arithmetic. For the third claim we
have to work harder. We use induction on the structure ofE and start by observing that the claim is obvious
if mE = ∞. The base case is obvious. IfE = a anda is representable,̃E = E. If a is non-representable we
invoke Theorem 11.

For the induction step we make a case distinction according to the operation combiningA andB. Assume
first thatE = A+B. Then

∣

∣Ẽ−E
∣

∣=
∣

∣Ã⊕ B̃− (A+B)
∣

∣≤
∣

∣Ã⊕ B̃− (Ã+ B̃)
∣

∣+
∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣ .

Inequality (4) bounds the first term byumax(
∣

∣Ã⊕ B̃
∣

∣ ,MINNORMF). Next observe that

max(
∣

∣Ã⊕ B̃
∣

∣ ,MINNORMF) ≤ max(mA⊕mB,MINNORMF) = max(mE,MINNORMF) = mE

by monotonicity of floating point arithmetic and sincemE ≥ MINNORMF . For the other two terms we use the
induction hypothesis to conclude

∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣≤ ((1+u)dA −1) ·mA +((1+u)dB −1) ·mB

≤ ((1+u)max(dA,dB)−1) · (mA +mB)

≤ ((1+u)max(dA,dB)−1) · (1+u) ·mE by inequality (5).

Putting the two bounds together we obtain:
∣

∣Ẽ−E
∣

∣≤ [u+((1+u)max(dA,dB)−1) · (1+u)] ·mE

= [(1+u)1+max(dA,dB)−1] ·mE.

Subtractions are treated completely analogously.
We turn to multiplications,E = A ·B. We have

∣

∣Ẽ−E
∣

∣=
∣

∣Ã⊙ B̃−A ·B
∣

∣≤
∣

∣Ã⊙ B̃− Ã· B̃
∣

∣+
∣

∣Ã· B̃−A · B̃
∣

∣+
∣

∣A · B̃−A ·B
∣

∣ .

Inequality (4) and monotonicity of floating point arithmetic bound the first term by

umax(
∣

∣Ã⊙ B̃
∣

∣ ,MINNORMF) ≤ umax(mA⊙mB,MINNORMF) = umE.

For the second term we use the induction hypothesis to conclude
∣

∣Ã· B̃−A · B̃
∣

∣=
∣

∣Ã−A
∣

∣ ·
∣

∣B̃
∣

∣

≤ ((1+u)dA −1) ·mA ·mB

≤ ((1+u)dA −1) · (1+u) ·max(mA⊙mB,MINNORMF) by inequality (5)

= ((1+u)dA −1) · (1+u) ·mE,

and for the third term we conclude similarly
∣

∣A · B̃−A ·B
∣

∣= |A| ·
∣

∣B̃−B
∣

∣

≤ (
∣

∣Ã
∣

∣+
∣

∣Ã−A
∣

∣) ·
∣

∣B̃−B
∣

∣

≤ (1+u)dA ·mA · ((1+u)dB −1) ·mB

≤ (1+u)1+dA · ((1+u)dB −1) ·max(mA⊙mB,MINNORMF) by inequality (5)

= (1+u)1+dA · ((1+u)dB −1) ·mE

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 51

Putting the three bounds together, we obtain
∣

∣Ẽ−E
∣

∣≤ (u+(1+u) · ((1+u)dA −1)+ (1+u)1+dA · ((1+u)dB −1))mE

= (u+(1+u)dA+1−1−u+(1+u)1+dA+dB − (1+u)1+dA)mE

= ((1+u)1+dA+dB −1)mE

and the induction step is completed for the case of multiplications.
We finally come to square roots,E = A1/2. We distinguish cases according to the relative size ofÃ and

mA. Assume first that̃A is tiny compared tomA, formally, Ã < u ·mA. We setẼ = 0. Then
∣

∣

∣
Ẽ−A1/2

∣

∣

∣
=
∣

∣

∣
A1/2

∣

∣

∣

≤ (
∣

∣Ã
∣

∣+
∣

∣Ã−A
∣

∣)1/2

≤ (u ·mA+((1+u)dA −1) ·mA)1/2

≤ (u+((1+u)dA −1))1/2(1+u) ·√mA by inequality (7)

≤ ((1+u)dA+2−1) ·√mAu−1/2,

where the last inequality uses

(u+((1+u)dA −1))1/2(1+u) = [(u+((1+u)dA −1))(1+u)2]1/2

≤ ((1+u)dA+2−1)1/2

≤ (u(dA +3))1/2

≤ (u(dA +2))u−1/2

≤ ((1+u)dA+2−1)u−1/2.

Assume next that̃A≥ u ·mA. Then
∣

∣

∣

√

Ã−A1/2
∣

∣

∣≤
∣

∣

∣

√

Ã− Ã1/2
∣

∣

∣+
∣

∣

∣Ã1/2−A1/2
∣

∣

∣

≤ u ·
√

Ã+

∣

∣Ã−A
∣

∣

Ã1/2 +A1/2
by inequality (6)

≤ u ·
√

Ã+
((1+u)dA −1) ·mA

Ã1/2

≤ u ·
√

Ã+((1+u)dA −1)(1+u) · mA√
Ã

by inequality (8)

≤ u ·
√

Ã+((1+u)dA −1)(1+u)2 ·max(mA⊘
√

Ã,MINNORMF) by inequality (5)

≤ (u+((1+u)dA −1)(1+u)2) ·max(mA⊘
√

Ã,
√

Ã,MINNORMF)

= ((1+u)dA+2−1) ·max(mA⊘
√

Ã,
√

Ã),

where the last inequality follows from̃A> 0 and hence
√

Ã≥ MINNORMF . This completes the induction step
for the case of square roots.

THEOREM 18. If dE ≤
√

1/u−1 then
∣

∣E− Ẽ
∣

∣≤ (dE +1) ·u ·mE ≤ (dE +2)⊙mE ⊙u.

52 LECTURE 4. NUMBER TYPES I

X X̃ cX kX dX

a fl(a) 1 1 1

A+B Ã⊕ B̃ cA +cB max(kA,kB) 1+max(dA,dB)

A−B Ã⊖ B̃ cA +cB max(kA,kB) 1+max(dA,dB)

A ·B Ã⊙ B̃ cAcB kA +kB 1+dA +dB

Table 4.2: The recursive definition ofcX, kX anddX . The first column contains the case distinction according
to the syntactic structure ofX, the second column contains the rule for computingX̃ and the third to fifth
columns contain the rules for computingcX, kX, anddX .

Proof. Follows immediately from Theorem 17 and Lemma 15.

Exercise 0.13: Consider the computation ofmE according to Table 4.1. Show that the rule for square roots
cannot lead to overflow (ifemax> t +1). Give examples, where the rules for addition, subtraction, and
multiplication overflow.

Answer: We havemA < (2−1/2t)2emax. There are two rules for computingE = mA1/2. If Ã < umA,
we definemE = 2(t+1)/2 ⊙√

mA. The square-root operation cannot overflow; if the multiplication
overflows we certainly have

√
mA > 2emax−(t+1)/2 or mA > 22emax−(t+1) > 2emax, a contradiction. If

Ã≥ umA, we definemE = max(
√

Ã,mA⊘
√

Ã). SinceÃ≤mA, the computation of
√

Ãcannot overflow.
Also, sinceÃ≥ umA,

√
Ã≥ u1/2√mA and hence

mA⊘
√

Ã) ≤ mA⊘u1/2√mA ≤ 2(t+1)/2(1+u)3√mA

and we already shown that the latter quantity does not overflow. ♦

4.6 A Simplified Error Analysis for Polynomial Expressions

The error bounds of the preceding section are for machine consumption and not for human consumption.
They should be used to filter the evaluation of geometric predicates. For the analysis of perturbation methods
in Lecture??a weaker and simpler bound suffices. We next derive such a bound for polynomial expressions,
i.e., expressions using only additions, subtractions, andmultiplications. We show that

∣

∣Ẽ−E
∣

∣≤ ((1+u)dE −1)cEMkE ,

wheredE, cE andkE are defined as in Table 4.2 andM is the smallest power of two such that

M ≥ max(1,max{lf (|a|) | a is an operand inE}).

Exercise 0.14: ProveM ≥ flu(|a|) for all operandsa in E. ♦

THEOREM 19. Let M be defined as above. Then for every subexpression X of E,

cX ≥ 1 and kX ≥ 0 and
∣

∣X̃−X
∣

∣≤ ((1+u)dX −1)cXMkX ,

4.6. A SIMPLIFIED ERROR ANALYSIS FOR POLYNOMIAL EXPRESSIONS 53

where cX, kX and dX are defined as in Table 4.2. This assumes that cXMkX is representable2 for all X. The
latter assumption also guarantees that the computation of no mX overflows.

Proof. We use structural induction. Observe that the rules fordX are the same as in Theorem 17. It therefore
suffices to prove

mX ≤ cXMkX

for all X. This is clear for operands. IfX = a∈ R, mX = max(MINNORMF ,fl(a)) ≤ M. Consider an addition
or subtraction next. Then

mX = mA⊕mB ≤ cAMkA ⊕cBMkB ≤ caMkX ⊕cBMkX = (cA +cB)MkX = cXMkX ,

where the next to last equality follows from the assumption thatcXMkX is representable. Finally, we come
to a multiplication. IfmX = MINNORMF , the claim is obvious sinceM ≥ 1, kX ≥ 0 andcX ≥ 1. So assume
mX = mA⊙mB. Then

mX = mA⊙mB ≤ cAMkA ⊙cBMkB = (cAcB)MkX = cXmkX ,

where again the next to last equality follows from our assumption thatcXMkX is representable.
Finally, since 0≤ mX ≤ cXMkX and the latter quantity is assumed to be representable, the computation

of mX does not overflow.

We continue our discussion of the orientation predicate forpointsa, b, andc given by their Cartesian
coordinates. Then

Orientation(a,b,c) = sign((bx−ax) · (cy−ay)− (by−ay) · (cx−ax)).

We already determined the degree of this expression as 6. Thec- and k-values are as follows. For any
argument, both values are one, forX = bx−ax, we havecX = 2 andkX = 1, for X = (bx−ax) · (cy−ay), we
havecX = 4 andkX = 2, and finally for the entire expression we havecX = 8 andkX = 2. We conclude that
the roundoff error in evaluatingOrientation(a,b,c) with floating point arithmetic is at most

7·u ·8·M2 = 56·u ·M2.

whereM is the smallest non-negative power of two bounding all Cartesian coordinates. In particular, ifM =
210 and double precision arithmetic is used, the error is at most54·2−53 ·220≤ 2−27. Next recall that the ex-
pression underlyingOrientation is twice the signed area of the triangle∆(a,b,c). Thus, if coordinates are at
most 210 and the (unsigned) area of∆(a,b,c) is at least 2−26, thenfloat orient(a,b,c) = Orientation(a,b,c).
Sofloat orient errs only for very skinny triangles. Figure 3.1 suggested this, but now we know for sure. We
will exploit the correctness offloat orient for non-skinny triangles in Lecture??.

Exercise 0.15: Redo the analysis above for points given by their homogeneous coordinates. We continue
our discussion of the orientation predicate for points given by their homogeneous coordinates. As-
suming sign(aw,bw,cw) = 1, we have

Orientation(a,b,c) = aw· (bx·cy−by·cx)−bw· (ax·cy−ay·cx)+cw· (ax·by−ay·bx).

2This is certainly the case ifcX ≤ 2t+1 andMkX ≤ 2emax.

54 LECTURE 4. NUMBER TYPES I

We already determined the degree of this expression as 8. Thec- andk-values are as follows. For any
argument, both values are one, forX = bx·cy, we havecX = 1 andkX = 2, for X = (bx·cy−by·cx),
we havecX = 2 andkX = 2, for X = aw·(bx·cy−by·cx) we havecX = 2 andkX = 3, for X = aw·(bx·
cy−by·cx)−bw· (ax· cy−ay· cx) we havecX = 4 andkX = 3, and finally for the entire expression
we havecX = 6 andkX = 3. We conclude that the roundoff error in evaluatingOrientation(p,q, r)
with floating point arithmetic is at most

9·u ·6·M3 = 54·u ·M3.

whereM is the smallest non-negative power of two bounding the absolute value of all arguments. In
particular, ifM = 210 and double precision arithmetic is used, the error is at most54·2−53·230≤ 2−17.
If, we increase mantissa length to 99, the error bound becomes 2−64. ♦

Exercise 0.16: Assume that fori, 1≤ i ≤ 8, xi is an integer with|xi | ≤ 220. Evaluate the expression((x1 +
x2) · (x3 +x4)) ·x5 +(x6 +x7) ·x8 with double precision floating point arithmetic. Derive a bound for
the maximal difference between the exact result and the computed result. ♦

Exercise 0.17: Extend Theorem?? to include square-roots. This requires to extend Table?? and the proof
of the theorem. We do not have a satisfactory answer for this exercise. ♦

4.7 A More Precise Error Analysis∗

[[I will probably move this section to the chapter on deciding the sign of algebraic expressions.]]

Consider the expression
E = (a+b)−a

whena≫ b. The error analysis of Section 4.5 assumes that the error in the subtraction may be as large as

umE ≈ u(2a+b).

However, the actual error is approximately

u · Ẽ ≈ u ·b,

which is much smaller. Can we improve our error analysis? Recall our formulae for estimating the error in
additions (subtractions) and multiplications. We useerrE to denoteẼ−E. ForE = A+B, we have

errE =
∣

∣Ã⊕ B̃− (A+B)
∣

∣≤
∣

∣Ã⊕ B̃− (Ã+ B̃)
∣

∣+
∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣

≤ u
∣

∣Ã⊕ B̃
∣

∣+
∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣ ≤ u⊙
∣

∣Ẽ
∣

∣+errA +errB).

and forE = A ·B, we have

|errE| =
∣

∣Ã⊙ B̃−A ·B
∣

∣=
∣

∣Ã⊙ B̃− Ã· B̃+ Ã· B̃−A · B̃+A · B̃−A ·B
∣

∣

≤ u
∣

∣Ã⊙ B̃
∣

∣+
∣

∣Ã−A
∣

∣ ·
∣

∣B̃
∣

∣+ |A|
∣

∣B̃−B
∣

∣

≤ u
∣

∣Ẽ
∣

∣+ |errA| ·
∣

∣B̃
∣

∣+ |A| · |errB|

These error bounds are more costly to evaluate than the bounds in Section 4.5. We will use them in Chap-
ter ??.

4.8. ARBITRARY PRECISION FLOATING POINT NUMBERS 55

4.8 Arbitrary Precision Floating Point Numbers

In Section 4.3, we introduced the floating point systemF(t,emin,emax). Software floating point systems are
usually more flexible. They allow the user to changet during the computation, either by setting it to a fixed
value at the beginning of the computation or by changing it freely during a computation. For some value,
one wants a mantissa length of 1000 bits, and for another value, one wants 2000 bits, and for another value,
one wants no rounding3 Exponents are arbitrary integer, i.e.,emin = −∞ andemax= +∞. The systems also
support the different rounding modes of the IEEE standard. The mode can either be chosen for the entire
computation or for a single operation.

As an example, consider the following LEDA program snippet computing an approximation of Euler’s
numbere≈ 2.71. Letm be an integer. Our goal is to compute a bigfloatz such that|z−e| ≤ 2−m. Euler’s
number is defined as the value of the infinite series∑n≥01/n!. The simplest strategy to approximatee is to
sum a sufficiently large initial fragment of this sum with a sufficiently long mantissa, so as to keep the total
effect of the rounding errors under control. Assume that we compute the sum of the firstn0 terms with a
mantissa length oft bits for still to be determined values ofn0 andt, i.e., we execute the following program.

bigfloat::set_rounding_mode(TOZERO);
bigfloat::set_precision(t);
bigfloat z = 2; integer fac = 2; int n = 2;
while (n < n0)

{ // fac = n! and z approximates 1/0! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * n;

}

Let z0 be the final value ofz. Thenz0 is the value of∑n<n0
1/n! computed with bigfloat arithmetic with

a mantissa length oft binary places. We have incurred two kinds of errors in this computation: a truncation
error since we summed only an initial segment of an infinite series and a rounding error since we used
floating point arithmetic to sum the initial segment. Thus,

|e−z0| ≤
∣

∣

∣

∣

∣

e− ∑
n<n0

1/n!

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
n<n0

1/n! −z0

∣

∣

∣

∣

∣

= ∑
n≥n0

1/n! +

∣

∣

∣

∣

∣

∑
n<n0

1/n! −z0

∣

∣

∣

∣

∣

The first term is certainly bounded by 2/n0! since, for alln≥ n0, n! = n0! · (n0 +1) · . . . ·n≥ n0! ·2n−n0 and
hence∑n≥n0

1/n! ≤ 1/n0! · (1+1/2+1/4+ . . .) ≤ 2/n0!. What can we say about the total rounding error?
We observe that we use one floating point division and one floating point addition per iteration and that there
aren0−2 iterations. Also, since we set the rounding mode to rounding-to-zero, the value ofz always stays
below e and hence stays bounded by 3. Thus, the results of all bigfloatoperations are bounded by 3 and
hence each bigfloat operation incurs a rounding error of at most 3·2−t . Thus

|e−z0| ≤ 2/n0! +2n0 ·3·2−t .

3Additions, subtractions, and multiplications are exact ifno rounding is performed and mantissas are allowed to have arbitrary
length.

56 LECTURE 4. NUMBER TYPES I

We want the right-hand side to be less than 2−m−1; it will become clear in a short while why we want
the error to be bounded by 2−m−1 and not just 2−m. This can be achieved by making both terms less than
2−m−2. For the first term this amounts to 2/n0! ≤ 2−m−2. We choosen0 minimal with this property and
observe that if we use the expressionfac.length()| < m+ 3 as the condition of our while loop then this
n0 will be the final value ofn; fac.length() returns the number of bits in the binary representation offac.
From n0! ≥ 2n0 and the fact thatn0 is minimal with 2/n0! ≤ 2−m−2 we concluden0 ≤ m+ 3 and hence
6n02−t ≤ 6(m+3) ·2−t ≤ 2−m−2 if t ≥ 2m; actually,t ≥m+ log(m+3)+5 suffices. The following program
implements this strategy and computesz0 with |e−z0| ≤ 2−m−1.

We could outputz0, but z0 is a number with 2m binary places and hence suggests a quality of approxi-
mation which we are not guaranteeing. Therefore, we roundz0 to the nearest number with a mantissa length
of m+3 bits. Sincez0 ≤ 3 this will introduce an additional error of at most 3·2−m−3 ≤ 2−m−1. We conclude
that the program below computes the desired approximation of Euler’s number.

bigfloat::set_precision(2 * m);
bigfloat::set_rounding_mode(TOZERO);
bigfloat z = 2; integer fac = 2; int n = 2;
while (fac.length() < m + 3)

{ // fac = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * n;

}
// |z - e| <= 2ˆ{m-1} at this point

z = round(z,m+3,TONEAREST);
}

Exercise 0.18: Show how to computeπ with an error less than 2−200. ♦

4.9 Notes

In notes we do historical notes, implementation notes, and pointers to additional material.
Error analysis for floating point computations was pioneered by Wilkinson [?]. Most books on numerical

analysis contain a section on error analysis. Detailed discussions can be found in [?]. The analysis presented
here is based on [27, 44, 45, 29].

The optimal choice of pivot in the orientation test is discussed in [28].
Error bounds similar to the ones derived in this lecture are used as floating point filters in the linear

kernels of LEDA and CGAL. We discuss linear kernels in the next lecture.
Arbitrary precision integer and floating point arithmetic is provided by several software packages. Pop-

ular packages are the GNU Multiple Precision Arithmetic Library [31] and and the Java [37] classes BigIn-
teger and BigDecimal. The former package is the most comprehensive.

The orientation test and the side-of-circle test amount to computing the sign of a determinant. In low
dimensions, it is easy and efficient to expand the determinant into an arithmetic formula. In higher dimen-
sions, this becomes infeasible. An obvious method for computing the sign of a determinant is to compute
the value of the determinant and then take its sign. Better algorithms are discussed in [14, 2, 6].

4.10. MATERIAL FOR THE LECTURE 57

The following sentence is from the LEDA book. We need a similar sentence in the introduction. Based
on the bad experiences made by us and many others, we and others laid the theoretical foundations for
correct and efficient implementations of geometric algorithms [38, 27, 26, 12, 55, 14, 44, 11, 9, 8, 7, 46, 18,
3, 56, 49, 6].

4.10 Material for the Lecture

It is not clear yet, where the following remarks should go.
Dynamic filters are more costly but also more precise than semi-dynamic filters. Observe that the com-

putation oferrE in the case of an addition requires two additions and two multiplications. The computation
of mE requires only one addition. We concluded from our experiments in [44] that the additional cost is not
warranted for the rational kernel.

We do use dynamic filters in the number type —real—, see Section ??, since the cost of exact computa-
tion is very high for —reals— and hence a higher computation time for the filter is justified.

However, the necessary conditional branching could impairperformance significantly. If one is willing
to invest that time, one could also think of using an exact implementation scheme based on floating-point
filter techniques, e.g. [27, 52], see [54] for results of an experimental comparison. Further details are beyond
the scope of this paper.

58 LECTURE 4. NUMBER TYPES I

Lecture 5

A First Geometric Kernel

This lecture will be quite different from the preceding one.There will be no definitions and theorem; this
lecture will be about software design. We will address two issues: how to package basic geometric objects
into a geometric kernel and how to make use of approximate arithmetic in an exact kernel. We will also study
the efficiency of such a kernel. We will see that generic programming techniques support a clean separation
between algorithms and basic objects through the introduction of kernel without sacrificing efficiency.

5.1 A Kernel

A kernelcomprises basic geometric objects and operations on these objects. It reveals nothing about the
representation of the objects. Amodelof the kernel is a concrete implementation of the objects in the
kernel. Algorithms are formulated in terms of the kernel andcan be instantiated with any model of the
kernel.

The most basic kernel offers only one kind of object, namely points in the plane, and a small collection
of operations on them, e.g., the orientation function of three points, lexicographic comparison of points, and
access to the Cartesian coordinates of a point. Depending onthe programming language, it may also have
to provide additional functions. For example,C++ requires constructors and an assignment operator. In
pseudo-code (we will see theC++ formulation in the next section) we might write:

concept basic_kernel {
object: point_2d;
operations: NT x_coordinate();

NT y_coordinate();
ops required by the language

int orientation(point_2d,point_2d,point_2d);
}

In programming language parlor (TODO: is this correct, or isit only C++ parlor), a kernel is aconcept. A
concept is a collection of objects, operation on these objects, and a set of requirements. In our example, the
requirements are that the orientation-function actually computes the orientation of its arguments and that the
access function return the Cartesian coordinates. We mightalso require that these functions run in constant
time.

59

60 LECTURE 5. A FIRST GEOMETRIC KERNEL

You have seen the notion of a concept in your math-courses. For example, a vector space is a concept.
It comprises a ringF (another concept), a setV, a special element 0∈ V, and two operations+ and ·.
Addition realizes a commutative group with neutral element0. And multiplication by a scalar takes a field
elementk and a vectorv∈V and yields a vectork·v such that 0·v = 0, 1·v = v, (k1 +k2) ·v = k1 ·v+k2 ·v,
(k1k2) ·v = k1 · (k2 ·v)), k · (v+w) = k ·v+k ·w. A model of this concept is any concrete vector space, e.g.,
F = R andV = Rd. Addition of vectors and multiplication by a scalar is component-wise. The notions of
linear-independence and basis are defined for vector-spaces. The theorem that all bases of a vector space
have the same cardinality is proved generally for vector spaces. Of course, the theorem then holds for any
concrete vector space.

The role of a concept in programming is exactly the same, except that we do not prove theorems but
write algorithms. We write algorithms in terms of concepts and the algorithm will then run for any model
of the concept. For example, we could formulate our convex hull algorithm from Lecture?? as follows:get the inputs

algorithm convex_hull based on concept linear_kernel {
// the algorithm as in Lecture XXX using the names in the kerne l;
point_2d p; // declaration of a point p
...
}

5.2 Concrete Kernels

We discuss models of the basic kernel. We have many choices. We may present points by their Cartesian
coordinates or by their homogeneous coordinates or as the intersection of two lines or We discuss the
first choice and ask the reader to work out the second choice inthe exercises.

In the Cartesian model, a point has two data membersx and y, the access functionsx_coord and
y_coord returnx andy, respectively, and orientation is implemented by formula XXX from Lecture??.
The Cartesian coordinates come from a number type NT which supports exact computations of signs. We
have seen three such types in Lecture 4: arbitrary precisionintegers, rational numbers, and arbitrary preci-
sion floating point numbers without rounding.

model Cartesian_Points of concept basic_kernel {
struct point_2d { NT x,y;
real x_coord() { return x; }
real y_coord() { return y;}
}
int orientation(point_2d p, point_2d q, point_2d r){ retur n sign ; }
}

Exercise 0.19: Formulate a model of the basic kernel, in which points are represented by their homogeneous
coordinates. ♦

An Unusual Kernel: To see the flexibility of the approach, we give another example. The example may
seem weird, but is actually inspired by reduction of Delaunay triangulations to lower convex hulls in one
higher dimension. We will see this reduction in Lecture??.

We are interested only in points on the parabolay = x2. So a point has a single data member, itsx-
coordinate. They-coordinate is computed as the square of thex-coordinate. Orientation can be computed

5.3. C++ FORMULATION∗ 61

simpler than in the general case. Assume thatp lies left ofq. Thenp, q, r form a right turn, ifr lies between
p andq.

model parabola_points of concept basic_kernel {
struct point_2d{ NT x;
int x_coord(){ return x; }
int y_coord(){ return xˆ2; }
}
int orientation(point_2d p, point_2d q, point_2d r)
{ if (p.x_coord() < q.x_coord() < r.x_coord) return -1;

....
}
}

5.3 C++ Formulation∗

We use pseudocode to introduce the notions concept and model. In C++ , the formulation is as follows.

//! a simple cartesian kernel for points (and operations on t hem)
template < class NT >
class Cartesian_kernel {

public:

// GEOMETRIC TYPES (ref-counted ones would be better)

//! Type of Point (with cartesian x- and y-coordinates)
class Point {

public:

//! default constructor constructs origin
Point() :

m_x(0), m_y(0) // assumes that NT is constructible from Smal lIntConstant
{}

//! constructor from two given coordinates
Point(NT x, NT y) :

m_x(x), m_y(y) // assumes that NT is copy-constructible
{}

//! returns x-coordinate of point
NT x() const { return m_x; }

//! returns y-coordinate of point

62 LECTURE 5. A FIRST GEOMETRIC KERNEL

NT y() const { return m_y; }

private:

//! x-coordinate of point
NT m_x;

//! y-coordinate of point
NT m_y;

};

// GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& q, const Point & r) const {

NT det = (q.x() - p.x()) * (r.y() - p.y()) -
(q.y() - p.y()) * (r.x() - p.x());

if (det < 0) { // assumes that NT has operator<(int)
return -1;

} else if (det > 0) { // assumes that NT has operator>(int)
return 1;

}

return 0;

}

};

C++purists would probably criticize the code above on two accounts. Identifiers for template param-
eters should not be used as types. It is advised to useNT_ as parameter and to declare a public type
typedef NT_ NT subsequently. It is also recommended to implement predicates and constructions ’func-
tors and to use an enumeration type instead of ‘int’ as the result type of the orientation function.

//! a simple kernel for points on a parabola (and operations o n them)
template < class NT >
class Parabolic_kernel {

public:

// GEOMETRIC TYPES (ref-counted ones would are encouraged)

class Point {

5.3. C++ FORMULATION∗ 63

public:

//! default constructor constructs origin
Point() :

m_x(0) // assumes that NT is constructible from SmallIntCon stant
{}

//! constructor from one given coordinate
Point(NT x) :

m_x(x) // assumes that NT is copy-constructible
{}

//! returns x-coordinate of point
NT x() const { return m_x; }

//! returns y-coordinate of point
NT y() const { return m_x * m_x; }

private:

//! x-coordinate of point
NT m_x;

};

// GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& q, const Point & r) const {
std::cerr << "Parabolic Orientation not complete!" << std: :endl;

if (p.x() < q.x()) { // assumes that NT has operator<(int)
if (q.x() < r.x()) {

return -1;
}

}
// else
return 0;

}
};

Next comes the convex hull algorithm. We give only a stub.

//! class stub for convex hull
template < class Kernel >
class Convex_hull {

64 LECTURE 5. A FIRST GEOMETRIC KERNEL

public:

//! the kernel’s point type
typedef typename Kernel::Point Point;

template < class InputIterator, class OutputIterator >
OutputIterator operator()(InputIterator begin, InputIt erator end,

OutputIterator result) {

/ * CONVEX HULL algorithm for points in [begin,end) * /

InputIterator it = begin;

while (it != end) {

Point p = * it;

// do process p

// next
it++;

}

return result;
}

};

and finally the main program.

#include <iostream>
#include <list>

#include "KMCartesian_kernel.h"
#include "KMParabolic_kernel.h"
#include "KMConvex_hull.h"

template < class NT >
void cartesian() {

typedef Cartesian_kernel< NT > Kernel;

typedef typename Kernel::Point Point;

5.3. C++ FORMULATION∗ 65

// construct some points
Point o;
Point p1(-1,1); // requires NT to be ConstructibleFromSmal lInt
Point p2(-5,5);
Point pl(-2,3);
Point pr(-4,1);

// orientation of points
Kernel kernel;
std::cout << "Orientation(o,p1,p2) = " << kernel.orientat ion(o,p1,p2) << std::endl;
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat ion(o,p1,pl) << std::endl;
std::cout << "Orientation(o,p1,pr) = " << kernel.orientat ion(o,p1,pr) << std::endl;

std::list< Point > input;
input.push_back(o);
input.push_back(p1);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

// Convex hull
typedef Convex_hull< Kernel > CH;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul l));

}

template < class NT >
void parabolic() {

typedef Parabolic_kernel< NT > Kernel;

typedef typename Kernel::Point Point;

// construct some points
Point o;
Point p1(1); // requires NT to be ConstructibleFromSmallIn t
Point p2(5);
Point pl(2);
Point pr(4);

// orientation of points

66 LECTURE 5. A FIRST GEOMETRIC KERNEL

Kernel kernel;
std::cout << "Orientation(o,p1,p2) = " << kernel.orientat ion(o,p1,p2) << std::endl;
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat ion(o,p1,pl) << std::endl;
std::cout << "Orientation(o,p1,pr) = " << kernel.orientat ion(o,p1,pr) << std::endl;

std::list< Point > input;
input.push_back(o);
input.push_back(p1);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

// Convex hull
typedef Convex_hull< Kernel > CH;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul l));

}

int main() {

std::cout << "CARTESIAN with ’int’" << std::endl;
cartesian< int >();
std::cout << std::endl;

std::cout << "CARTESIAN with ’unsigned int’ - evil, because of ’-1’ in input"
cartesian< unsigned int >();
std::cout << std::endl;

std::cout << "CARTESIAN with ’double’" << std::endl;
cartesian< double >();
std::cout << std::endl;

std::cout << "PARABOLIC with ’int’" << std::endl;
parabolic< int >();
std::cout << std::endl;

std::cout << "PARABOLIC with ’double’" << std::endl;
parabolic< double >();
std::cout << std::endl;

}

5.4. A FLOATING POINT FILTER 67

Exercise 0.20: Redo the above in the programming language of your choice. ♦

5.4 A Floating Point Filter

Exact arithmetic is much slower than hardware floating pointarithmetic. However, floating point arithmetic
is only approximate and we have seen in Lecture?? that a naive use of floating point arithmetic can lead
to disaster. In Lecture 4 we learned how to estimate the errorerrors in floating point computations. We
will now put this knowledge to use. We will obtain an exact kernel that is also efficient. We will give
experimental evidence in the next section and theoretical analysis in Lecture??.

The idea is to preface the evaluation of any expression (herethe expression defining the orientation
predicate) by an evaluation with floating point arithmetic.We also compute a bound on the roundoff error.
If the absolute value of the float value is larger than the bound on the roundoff error, we return the sign of
the float value. Otherwise, we evaluate the expression with exact arithmetic. This scheme is called afloating
point filter. The following code realizes this strategy for the orientation predicate.

int orientation(point_2d p, point_2d q, point_2d r){
NT px = p.xcoord(), py = p.ycoord(), qx = q.xcoord(), ;
// evaluation in floating point arithmetic
float pxd = fl(px), pyd = fl(py), qxd = fl(qx),;
float Etilde = (qxd - pxd) * (ryd - pyd) - (qyd - pyd) * (rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), aqxd = abs(qxd), ;
float mes = (aqxd + apxd) * (aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 7 * uu * mes) return (sign Etilde);
// exact evaluation
NT E = (qx - px) * (ry - py) - (qy - py) * (rx - px);
return sign E;
}

According to Lemma 16, this implementation is correct.

Exercise 0.21: Formulate a floating point filter for points represented by their homogeneous coordinates.
♦

5.5 Performance of the Floating Point Filter

We study the performance of the floating point filter under twoaspects. How often is it necessary to resort to
exact computation and how much do we save in running time? This section is based on [45, Section 9.7.4].

[[TODO: repeat the experiments and make them available on the companion page of the book.]]
Table 5.1 sheds light on the first question. The following experiment was performed. First, a setSof n

random points with 52 bit Cartesian coordinates either on the unit circle or in the unit square was generated.
A random point in the unit square is generated by choosing itscoordinates as follows: Generate a random
integer i ∈ [0,252− 1..] and then set the coordinate toi/252. The generation of points on the unit circle
is the topic of Section 5.6. Then the Cartesian coordinates were truncated tod bits for different values of
d, i.e., a pointp with Cartesian coordinates(px, py) was turned into a pointp′ with Cartesian coordinates
(
⌊

2d px
⌋

,
⌊

2d py
⌋

). Let S′ be the resulting set of points. The Delaunay triangulation of S′ was constructed . Explain Algorithm

68 LECTURE 5. A FIRST GEOMETRIC KERNEL

Compare Orientation Side of circle
d N number exact % number exact % number exact %

8 1883 157814 0 0.00 19909 0 0.00 7242 0 0.00
10 5298 187379 0 0.00 58263 0 0.00 20736 5743 27.70
12 8383 216679 0 0.00 89307 0 0.00 35931 24693 68.72
22 9999 230556 0 0.00 98899 0 0.00 46410 42454 91.48
32 9999 231656 0 0.00 90664 137 0.15 40003 39797 99.49
42 9999 231665 0 0.00 91205 152 0.17 40083 40083 100.00
∞ 9999 231665 125 0.05 44279 87 0.20 13082 13082 100.00

8 9267 230060 0 0.00 130431 0 0.00 64176 0 0.00
10 9953 236690 0 0.00 147814 0 0.00 77409 136 0.18
12 9996 236661 0 0.00 149233 0 0.00 78693 105 0.13
22 10000 235727 0 0.00 149057 0 0.00 78695 113 0.14
32 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15
42 10000 235729 0 0.00 149059 0 0.00 78695 115 0.15
∞ 10000 235729 574 0.24 149059 0 0.00 78695 115 0.15

Table 5.1: Efficacy of floating point filter: The top part contains the results for random points on the unit
circle and the lower part contains the results for random points in the unit square. In each case we generated
10000 points. The first column shows the precision (= number of binary places) used for the homogeneous
coordinates of the points, the second column contains the number of distinct points in the input. The other
columns contain the number of tests, the number of exact tests, and the percentage of exact tests performed
for the compare, the orientation, and the side of circle primitive.

Table 5.1 confirms the theoretical considerations from the beginning of the section. For each test there
is a value ofd below which the floating point computation is able to decide all tests. For the orientation test
this value ofd is somewhere between 22 and 32 (we argued above that the valueis 47/2) and for the side of
circle test the value is somewhere between 8 and 10 (we ask thereader in the exercises to compute the exact
value). Also, the percentage of the tests, where the filter fails, is essentially an increasing function ofd.

The compare, orientation, and side of circle functions seemto be tests of increasing difficulty. This is
easily explained. The compare function decides the sign of alinear function of the Cartesian coordinates of
two points, the orientation function decides the sign of a quadratic function of the Cartesian coordinates of
three points, and the side of circle function decides the sign of a polynomial of degree four in the Cartesian
coordinates of four points. The larger the degree of the polynomial of the test, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the unit circle are much more difficult than the
random points in the unit square, in particular, for the sideof circle test. Again this is easily explained.

For the side of circle test, four almost co-circular points or four exactly co-circular points are the most
difficult input, and for sufficiently larged the situation that

∣

∣Ẽ
∣

∣ ≤ B andB > 1 arises frequently. Points on
(or near) the unit circle cause no particular difficulty for the compare and the orientation function. Points on
(or near) a segment would prove to be difficult for the orientation test.

For random points in the unit square the filter is highly effective for all three tests; the filter fails only
for a very small percentage of the tests.

We turn to the question of how much a filter saves with respect to running time. The following exper-

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 69

d Float kernel Rational kernel RK without filter

8 0.73 1.12 4.35
10 1.3 2.43 7.8
12 1.85 5.09 11.18
22 2.17 7.93 14.4
32 2.02 7.79 13.29
42 2.01 8.32 15.46
∞ 2∗ 5.09 9.19

8 2.58 3.59 16.33
10 2.8 3.98 18.36
12 2.83 4.04 18.63
22 2.82 4.02 20.51
32 2.86 3.96 20.77
42 2.83 4.01 26.02
∞ 2.83 3.99 33.2

Table 5.2: Efficiency of the floating point filter: The top partcontains the results for random points on the
unit circle and the lower part contains the results for random points in the unit square. The first column
shows the precision (= number of binary places) used for the Cartesian coordinates of the points. The other
columns show the running time with the floating point filter, with the rational kernel with the floating point
filter, and with the rational kernel without its floating point filter. A star in the second column indicates that
the computation with the floating point kernel produced an incorrect result.

iment continues the preceding experiment. The computationof the Delaunay diagram was performed in
three different ways:

• naive use of floating point arithmetic: the truncated Cartesian coordinates were stored as double
precision floating point numbers and Delaunay diagram algorithm was run with double precision
arithmetic.

• exact integer arithmetic with a floating point filter.

• exact integer arithmetic without the floating point filter turned off.

. Table 5.2 summarizes the outcome. Let us first look at individual columns.
The running time with the floating point kernel does not increase with the precision of the input. Ob-

serve, that ford < 22 and points on the unit circle, the input contains a significant fraction of multiple points
(see the second column of Table 5.1) and hence the first three lines really refer to simpler problem instances.
For d ≥ 22 and points on the unit circle and ford ≥ 10 and points in the unit square the input contains
almost no multiple points and the running times are independent of the precision. The computation with the
floating point kernel is not guaranteed to give the correct result. In fact, it produced an incorrect result in
one of the experiments (indicated by a∗).

The running time with the rational kernel and no filter increases sharply as a function of the precision.
This is due to the fact that larger precision means larger integers and hence larger computation time for
the integer arithmetic. We see one exception in the table. For points on the unit circle the computation on

70 LECTURE 5. A FIRST GEOMETRIC KERNEL

d 43 44 45 46 47 48 49 50 51 52

diff C C C F F F F F F F
easy C C C C C C C C C C

Table 5.3: Correctness of floating point computation: A detailed view for d ranging from 43 to 52. The
second row corresponds to points on the unit circle and the last row corresponds to points in the unit square.
A “C” indicates that the computation produced the correct result and a “F” indicates that a incorrect result
was produced.

the exact points is faster than the computation with the rounded points. The explanation can be found in
Table 5.1. The number of tests performed is much smaller for exact inputs than for rounded inputs. Observe,
that for points that lie exactly on a circle any triangulation is Delaunay.

The running time for the rational kernel (with the filter) increases only slightly for the second set of
inputs and increases more pronouncedly for the points on theunit circle. This is to be expected because the
filter fails more often for the points on the unit circle. skip

Let us next compare columns.
The comparison between the last two columns shows the efficiency gained by the floating point filter.

The gains are impressive, in particular, for the easier set of inputs. For random points in the unit square,
the computation without the filter is between five and almost ten times slower. For random points on a unit
circle the gain is less impressive, but still substantial. The running time without the filter is between two and
five times higher than with the filter.

The comparison between the second and the third column showswhat we might gain by further improv-
ing our filter technology. For our easier set of inputs the computation with the rational kernel is about 50%
slower than the computation with the floating point kernel. This increase in running time stems from the
computation of the error boundB in the filter. For our harder set of inputs the difference between the ratio-
nal kernel and the floating point kernel is more pronounced. This is to be expected since the rational kernel
resorts to exact computation more frequently for the harderinputs. The floating point kernel produced the
incorrect result in one of the experiments.

[[The remainder of this section is obsolete. The discussionis superseded by the the work on controlled
perturbation. We should add an experiment where the points are all on a small segment of the circle.]]

We were very surprised when we first saw Table 5.2. We expectedthat the floating point computa-
tion would fail more often, not only when the full 52 bits are used to represent Cartesian coordinates of
points. After all, the rational kernel resorts to integer arithmetic most of the time already for much smaller
coordinate length and the difficult set of inputs.

Exercise 0.22: Repeat the experiments of this section for points that lie ona segment. Predict the outcome
of the experiment before making it. ♦

We generated Table 5.3 to gain more insight1. It gives more detailed information ford ranging from
43 to 52. For our difficult inputs the floating point computation fails whend is 46 or larger and for our

1While writing this section, our work was very much guided by experiments. We had a theory of what floating point filters can
do. Based on this theory we had certain expectations about the behavior of filters. We made experiments to confirm our intuition.
In some cases the experiments contradicted our intuition and we had to revise the theory.

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 71

easy inputs it never fails. Ford < 45 and both sets of inputs it produces the correct result. Ourtheoretical
considerations give a guarantee only ford < 10.

In the remainder of this section we try to explain this discrepancy. We find the explanation interesting2

but do not know at present whether it has any consequences forthe design of floating point filters.
Let D = 2d and consider four pointsa, b, c, andd on the unit circle3. We use pointsa′, b′, c′, andd′ with

integer Cartesian coordinates⌊axD⌋, ⌊ayD⌋, The side of circle function is the sign of the determinant
∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ax bx cx dx

ay by cy dy

a2
x +a2

y b2
x +b2

y c2
x +c2

y d2
x +d2

y

∣

∣

∣

∣

∣

∣

∣

∣

as will be shown in Section??. The value of this determinant is a homogeneous fourth degree polynomial
p(ax,ay, . . .). We need to determine the sign ofp(a′x,a

′
y, . . .). Let us relatep(ax,ay, . . .) andp(a′x,a

′
y, . . .).

We have
a′x = ⌊axD⌋ = axD+ δax,

where−1 < δax ≤ 0, and analogous equalities hold for the other coordinates.Thus

p(a′x,a
′
y, . . .) = p(axD+ δax,ayD+ δay, . . .)

= p(axD,ayD, . . .) + q3(axD,δax,ayD,δay, . . .)

+ q2(axD,δax,ayD,δay, . . .) + q1(axD,δax,ayD,δay, . . .)

+ q0(axD,δax,ayD,δay, . . .),

whereqi has degreei in theaxD, ayD, . . . and degree 4− i in theδax, δay, Since the four pointsa, b, c,
andd are co-circular, we have

p(axD,ayD, . . .) = D4p(ax,ay, . . .) = 0.

Up to this point our argumentation was rigorous. From now on we give only plausibility arguments.
Since the valuesaxD may be as large asD and since the valuesδax are smaller than one, the sign of
p(a′x,a

′
y, . . .) is likely to be determined by the sign ofq3. Sinceq3 is a third degree polynomial in the

axD we might expect its value to be aboutf ·D3 for some constantf . The constantf is smaller than one but
not much smaller. Expansion of the side of circle determinant shows that the coefficient ofδax in q3 is equal
to

∣

∣

∣

∣

∣

∣

1 1 1
byD cyD dyD

(b2
x +b2

y) ·D2 (c2
x +c2

y) ·D2 (d2
x +d2

y) ·D2

∣

∣

∣

∣

∣

∣

= D3(cy−ay−by),

where we used the fact thatp2
x + p2

y = 1 for a pointp on the unit circle. We conclude thatf has the same
order as they-coordinate of a random point on the unit circle and hencef ≈ 1/2.

We evaluatep(a′x,a
′
y, . . .) with floating point arithmetic. By Theorem 17, the maximal error in the

computation ofp is g·D4 ·2−53 for some constantg; the actual error will be less. The argument in the proof
of Lemma?? shows thatg ≤ 28. Thus we might expect that the floating point evaluation ofp(a′x,a

′
y, . . .)

gives the correct sign as long asg·D4 ·2−53 < f ·D3 or d < 53− logg+ log f ≈ 53−8−1 = 44. This agrees
quite well with Table 5.3.

2We all know from our physics classes that the important experiments are the ones that require a new explanation.
3In the final round of proof-reading we noticed that we used with two meanings. In the sequeld is a point, except in the final

sentence of the section.

72 LECTURE 5. A FIRST GEOMETRIC KERNEL

(0,1)

p

p′

Figure 5.1: Pointp= (px, py) lies on the unit circle, pointp′ = (a,0) lies on thex-axes, and points(0,1), p,
andp′ lies on a common line. .

5.6 Points on a Circle

A point on the unit circle has Cartesian coordinates(cosα ,sinα), where 0≤ α < 2π. In general, sines and
cosines are non-rational numbers, e.g., cosπ/4 =

√
2/2. In this section, we will show how to find a dense

set of points with rational Cartesian coordinates on the unit circle. For anyα and anyε > 0, we will show
how to find a triple(a,b,w) of integral homogeneous coordinates such that

a2 +b2 = w2 and
∣

∣α −α ′∣
∣≤ ε where cosα ′ = a/w and sinα ′ = b/w.

A triple (a,b,w) of integers witha2 +b2 = w2 is called a Pythagorean triple.

LEMMA 20. For any rational point p= (px, py) on the unit circle there is a rational a and integers n and m
such that

(px, py) =

(

2a
a2 +1

,
a2−1
a2 +1

)

=

(

2mn
n2 +m2 ,

n2−m2

n2 +m2

Proof. Stereographic projection is a one-to-one correspondence between the points on the unit circle and
the points onx-axes, see Figure 5.1. Ifp = (px, py) lies on the unit circle,p′ = (a,0) lies on thex-axis, and
(1,0), p andp′ lie on a common line, then

a =
px

1− py
and px =

2a
a2 +1

, py =
a2−1
a2 +1

as a simple computation shows. Thus, ifp has rational coordinates,p′ has rational coordinates, and ifp′ has
rational coordinates,p has rational coordinates. We conclude that every rational point on the unit circle has
coordinatespx = 2a./(a2 +1) andpy = (a2−1)/(a2 +1) for some rationala. Let a = n/m. Then

px =
2(n/m)

(n/m)2 +1
=

2nm
n2 +m2 and py =

a2−1
a2 +1

=
(n/m)2−1
(n/m)2 +1

=
n2−m2

n2 +m2 .

Exercise 0.23: Why can there be no Pythagorean triple(a,b,c) with a andb odd? ♦

5.6. POINTS ON A CIRCLE 73

If we would not insist ona being rational, we could simply choosea such that

cosα =
2a

a2 +1
or a =

1
cosα

±
√

1
cos2 α

−1.

The two choices fora correspond to the two possible values for sinα . However, we wanta to be rational.
An obvious way to obtain a rational approximation with errorat most 2−s is as follows. We compute a
floating point approximation ˜a of a with error at most 2−s as shown in Section 4.8; ˜a is the desired rational
approximation. The fraction obtained in this way has a numerator and denominator ofs bits.

One can obtain usually obtain better approximations with fewer bits as we discuss next. The less mathe-
matically inclined reader may proceed directly to the end ofthe section. We first show that there is always a
good rational approximation with small denominator and then show how to compute such an approximation.

THEOREM 21 (Dirichlet, 1842).For any real x and any positiveε there is a rational number p/q such that

q≤ 1
ε

and

∣

∣

∣

∣

x− p
q

∣

∣

∣

∣

<
ε
q
.

Proof. If ε ≥ 1, we simply takep = ⌊x⌋ andq = 1. So assumeε < 1. Let M = ⌊1/ε⌋ and consider the
numbers. For eachi, 0≤≤ M, let fi be the fractional part ofix, i.e., fi = ix−⌊ix⌋. The fractional parts lie
between 0 and 1 and hence there are distincti and j such that

∣

∣ f j − fi
∣

∣≤ 1/M. Assumej > i. Then

|(j − i)x− (⌊ jx⌋−⌊ix⌋)| =
∣

∣ f j − fi
∣

∣≤ 1
M

and hence
∣

∣

∣

∣

x− ⌊ jx⌋−⌊ix⌋
j − i

∣

∣

∣

∣

≤ 1
(j − i)M

≤ ε
j − i

.

Setq = j − i andp = ⌊ jx⌋−⌊ix⌋.

The standard technique for approximating a real by a rational is to compute its continued fraction ex-
pansion. For anx∈ R≥0, define a sequencex0, x1, x2, . . . of reals and a sequencea0, a1, a2, . . . of integers as
follows.

x0 = x a0 = ⌊x0⌋

x1 =
1

x0−a0
a1 = ⌊x1⌋

x2 =
1

x1−a1
a2 = ⌊x2⌋

...
...

If somexi is integral, the sequence ends withai . Otherwise, the sequence is infinite. Clearly,xi − ai < 1
for all i. If ai = xi , the sequence ends, ifai < xi , xi+1 > 1 and henceai+1 ≥ 1. We call[a0;a1,a2, . . .] the
continued fraction expansionof x. We will next derive some properties of this expansion. Observe first that
xi = ai +1/xi+1 wheneverxi+1 is defined and hence

x = x0 = a0 +
1

x1
= a0 +

1

a1 +
1

x2

= a0 +
1

a1 +
1

a2 +
1

x3

=

74 LECTURE 5. A FIRST GEOMETRIC KERNEL

A finite continued fraction defines a rational number. The converse is also true as we will see below. The
continued fraction[a0;a1, . . . ,an] is a rational number. We call it then-th convergent ofx. The convergents
of a continued fraction have many nice properties.

LEMMA 22. Let x∈ R≥0 and let[a0;a1,a2, . . .] be the continued fraction expansion of x. Define p−2 = 0,
q−2 = 1, p−1 = 1, q−1 = 0, and

pn = anpn−1 + pn−2 and qn = anqn−1 +qn−2 for n≥ 0.

Then

1.
pn

qn
= [a0;a1, . . . ,an] is the n-th convergent of x.

2. pnqn−1− pn−1qn = (−1)n+1 for n≥−1.

3.
∣

∣

∣

pn+1
qn+1

− pn
qn

∣

∣

∣
= 1

qnqn+1
for n≥ 0.

4. qn ≥ (3/2)n−1 for n≥ 0.

5. p−2
q−2

< p0
q0

< p2
q2

< .. . ≤ x≤ . . . p3
q3

< p1
q1

< p−1
q−1

.

6. The n+2-th convergent is closer to the n+1-th convergent than to the n-th convergent.

7. x− pn/qn is strictly decreasing in n.

Proof. Let zbe variable. Define
Mn(z) = [a0;a1, . . . ,an +z].

We will show that
Mn(z) =

pn + pn−1z
qn +qn−1z

by induction onn. Forn = 0, we have

M0(z) = a0 +z=
p0 + p−1z
q0 +q−1z

.

For n+1≥ 1, we have

Mn+1(z) = Mn(
1

an+1 +z
) =

pn + pn−1
1

an+1+z

qn +qn−1
1

an+1+z

=
an+1pn + pn−1+ pnz
an+1qn +qn−1 +qnz

=
pn+1 + pnz
qn+1 +qnz

.

Mn(0) is then-th convergent ofx. Thus[a0;a1, . . . ,an] = pn/qn. This proves (1).
We turn to (2). Observe first thatp−1q−2− p−2q−1 = 1 = (−1)0. Forn≥ 0, we have

pnqn−1− pn−1qn = (anpn−1 + pn−2)qn−1− pn−1(anqn−1−qn−2)

= pn−2qn−1− pn−1qn−2 = (−1) · (−1)n = (−1)n+1.

(3) follows from a simple calculation.
∣

∣

∣

∣

pn+1

qn+1
− pn

qn

∣

∣

∣

∣

=
|pn+1qn− pnqn+1|

qnqn+1
=

1
qnqn+1

.

5.6. POINTS ON A CIRCLE 75

(4) is a simple induction.q0 = 1≥ (3/2)−1 andq1 = a1 ≥ (3/2)0 and forn≥ 2,

qn = anqn−1 +qn−2 ≥ (3/2)n−2 +(3/2)n−3 = (3/2)n−3(3/2+1) = (3/2)n−35/2≥ (3/2)n−1.

We turn to (5). Assume inductively thatpn/qn ≤ x ≤ pn−1/qn−1 for evenn. This is certainly true for
n = −2. Mn(z) is an increasing function ofz, Mn(0) = pn/qn, Mn(∞) = pn−1/qn−1, andMn(1/xn+1) = x.
Now an+1 = ⌊xn+1⌋ and hence 1/an+1 ≥ 1/xn+1. Thus thatx≤ pn+1/qn+1 = Mn(1/an+1) < pn−1/qn−1. A
similar argument showspn/qn < pn+2/qn+2 ≤ x.

For (6), we consider the case of evenn. We have

pn+2

qn+2
− pn

qn
=

pn+1

qn+1
− pn

qn
−
(

pn+1

qn+1
− pn+2

qn+2

)

=
1

qnqn+1
− 1

qn+1qn+2
>

1
qn+1qn+2

=
pn+1

qn+1
− pn+2

qn+2
,

where the inequality follows fromqn+2 ≥ qn+1 +qn > 2qn. The proof for oddn is similar.
(7) is an easy consequence of (6). Consider an evenn. Thenpn/qn < pn+2/qn+2 ≤ x≤ pn+1/qn+1 and

pn+1

qn+1
−x≤ pn+1

qn+1
− pn+2

qn+2
≤ pn+2

qn+2
− pn

qn
≤ x− pn

qn
.

The convergentspn/qn are in lowest terms, because otherwise we could not havepnqn−1 − pn−1qn =
(−1)n+1. The even convergents converge tox from below and the odd convergents converge tox from above.
We have

pn

qn
=

p0

q0
+ ∑

1≤i≤n

pn

qn
− pn−1

qn−1
= a0 + ∑

1≤i≤n

(−1)i+1

qiqi−1
.

Thusx = a0 + ∑i≥1(−1)i+1/(qiqi−1).

LEMMA 23. Let x∈ R≥0 and let[a0;a1,a2, . . .] be the continued fraction expansion of x. The convergents
are optimal approximation of x in the following sense: Assume q< qn. Then

∣

∣

∣

∣

x− p
q

∣

∣

∣

∣

≥
∣

∣

∣

∣

x− pn

qn

∣

∣

∣

∣

for all p. The continued fraction expansion is finite if and only if x is rational.

Proof. Let nbe minimal such thatqn > q. The convergentspn−1/qn−1 andpn/qn bracketx and have distance
1/(qn−1qn) from each other. This is smaller than 1/qn−1q. If p/q is closer tox thanpn/qn then the distance
of p/q to eitherpn−1/qn−1 or pn/qn must be smaller than the distance between these points. However,

min(

∣

∣

∣

∣

p
q
− pn

qn

∣

∣

∣

∣

,

∣

∣

∣

∣

p
q
− pn−1

qn−1

∣

∣

∣

∣

≥ min(
1

qqn
,

1
qqn−1

) =
1

qqn−1

and hencep/q cannot lie closer tox thanpn/qn.
If the fraction is finite,x is rational. So assumex is rational, sayx = p/q. If the expansion is infinite,

there is a convergentpn/qn with qn > q. Thenpn/qn is closer tox thanp/q. This is a contradiction.

76 LECTURE 5. A FIRST GEOMETRIC KERNEL

It is now clear how to proceed. We compute an approximation of

a =
1

cosα
±
√

1
cos2 α

−1

using floating point arithmetic (of sufficient precision) and then compute a rational approximation ofa of
sufficient precision.

Exercise 0.24: Give more details on how to compute a rational approximationof a with error at mostε . ♦

Exercise 0.25: Extend the previous exercise and show how to guarantee an approximation of cosα with
error at mostε (an approximation ofα with error at mostε . ♦

5.7 Notes

Generic programming,

Determinants: Many geometric predicates, e.g., the orientation and the insphere predicates, are naturally
formulated as the sign of a determinant. The efficient computation of the signs of determinants has therefore
received special attention [14, 2, 6]. None of the methods isavailable in LEDA.

Specialized Arithmetics: The orientation predicate for points with integral homogeneous coordinates.

sign(pw·qw· rw) ·sign(pw· (qx· ry−qy· rx)−qw· (px· ry− py· rx)+ rw · (px·qy− py·qx)).

If the coordinates are less than 2L, the value of the orientation expression is at most 3·23L+1. With this
knowledge, one could try to optimize the arithmetic, i.e., instead of using a general purpose package for
the computation with arbitrary precision integers (such asthe class —integer—) one could design integer
arithmetic optimized for a particular bit length. This avenue is taken in [27, 52].

Section 5.6 is based on [12].
[[The following should go to the lectures on perturbation.]] What happens ifL is larger? The floating

point computation is able to deduce the sign ofE if
∣

∣Ẽ
∣

∣> B. SinceE is twice the signed area (see Lemma 3)
of the triangle with vertices(a,b,c), the floating point computation is able to deduce the correctsign for any
triple of points which span a triangle whose area is at least 8·2−53 ·22L+3/2. Devillers and Preparata [19]
have shown that for a random triple of points and forL going to infinity, the probability that the area of the
spanned triangle is at least 8·2−53 ·22L+3/2 goes to one. Thus for largeL and for triples of random points,
the floating point computation will almost always be able to deduce the sign ofE and exact computation
will be rarely needed.

Observe that the result cited in the previous paragraph depends crucially on the fact that the points are
chosen randomly. In an actual computation orientation tests will not be performed for random triples of
points even if the input consists of random points. It is therefore not clear what the result says about actual
computations.

Lecture 6

Delaunay Triangulations and Voronoi
Diagrams

discuss an algorithm for Delaunay Triangulations, e.g., randomized incremental. Discuss Voronoi diagrams
as the dual.

also do conceptual perturbation: walk through a triangulation. to get the code right. This is discussed in
the LEDAbook and also in my 2000 course notes.

6.1 Notes

77

78 LECTURE 6. DELAUNAY TRIANGULATIONS AND VORONOI DIAGRAMS

Lecture 7

Perturbation

Computational geometers tend to formulate their algorithms for inputs in general position. What is an input
in general position? General position is always defined withrespect to a set of predicates. A set of points is
in general position with respect to the orientation predicate if no three points are collinear. It is in general
position with respect to the side-of-circle predicate if nofour points are co-circular. It is general position
with respect to the orientation predicate and the side-of-circle predicate if no three points are collinear and
no four points are co-circular. Generally, iff1, . . . , fk are functions of geometric objects, then a set of objects
is in general position with respect to these functions, if all function evaluations for objects in the set yield
nonzero.

Geometric algorithms branch on the outcome geometric predicates. In general, the branches are three-
way branches: positive sign, negative sign, and zero. If theinput is in general position, the zero branch is
never taken. This simplifies the algorithm. We have already seen several examples to this effect. In the
convex hull algorithm, we had to distinguish between visibility and weak visibility and we had to cope with
inputs that are contained in a lower dimensional subspace. In the Delaunay triangulation algorithm, we had
to cope with co-circular points and with inputs that are contained in a lower dimensional subspace.

So the general position assumption simplifies the life of an algorithm designer. However, at the cost of
the programmer. A program has to cope with all inputs and so has to deal with degenerate inputs. What can
a programmer do? There are essentially two approaches:

• Redesign the algorithm so that it handles degenerate inputs.

• Use perturbation to bring the input into general position.

Whenever we discuss an algorithm in this book, we follow the first approach. We make sure that the
algorithms works for all inputs. In this lecture and the next, we study perturbation techniques.The idea is to
solve the problem not on the given input, but on a nearby input. The nearby input is obtained by perturbing
the given input. The perturbed input will then be in general position and, since it is near the original input,
the result for the perturbed input will hopefully still be useful. This hope has to be substantiated in any
application of the perturbation technique. We cannot make general claims with respect to this hope. We
give a positive and a negative example. If the input objects are derived from some physical measurement,
then a perturbation within the precision of the measuring device should be acceptable. On the other hand,
for an algorithm whose task is to decide whether the input is in general position, perturbation makes no
sense.

79

80 LECTURE 7. PERTURBATION

Exercise 0.26: Go through the examples in the first lecture. For which of themis perturbation a reasonable
technique? Discuss two additional examples of your own choice. ♦

Perturbation comes in two flavors: symbolic and numerical. In symbolic perturbation, one perturbs in-
puts by infinitesimal amounts, and in numerical perturbation, one actually changes the coordinates. (REWRITE).

7.1 Symbolic Perturbation

It is convenient to summarize the input into a single vectorx ∈ RN. For example, if the input isn points
in the plane, we would setN = 2n and pack all 2n coordinates into a single vector. A test function is then
simply a function f : RN 7→ R. Let F be a collection of test functions. For example, if an algorithm uses
the geometric predicates lex-compare, orientation, and side-of-circle forn points in the plane,F contains
(n

2

)

test functions corresponding to lex-compare (one for each pair of distinct points),
(n

3

)

test functions
corresponding to orientation, and

(n
4

)

test functions corresponding to side-of-circle.

DEFINITION 2. Let f : RN 7→ R be a test function andσ = f−1(0) be its zero set. We call fwell-behaved
if every straight lineℓ is either contained inσ or every bounded segment ofℓ intersectsσ in finitely many
points.

Many functions are well-behaved, e.g., all polynomials andall rational functions. In particular, for any
geometric test used in this book, the underlying function iswell-behaved.

THEOREM 24. Let F be a collection of well-behaved continuous functions and let a∈ RN be a vector that
is in general position with respect to F, i.e., f(a) 6= 0 for all f ∈ F. Then for any f∈ F and any q∈ RN

f (q) := lim
ε→0+

signf (q+ ε(a−q))

exists and is non-zero. Moreover, if f(q) 6= 0, f (q) = signf (q).

Proof. The functionε 7→ q+ ε(a−q) defines a lineℓ passing throughq anda. Since f (a) 6= 0, ℓ is not
contained inσ and hence the segmentqa intersectsσ only finitely often. Thus there is anε0 > 0 such that
f (q+ ε(a−q)) 6= 0 for 0< ε < ε0. Since f is continuous, signf (q+ ε(a−q)) is constant for 0< ε < ε0.
Thus f (q) exists and is non-zero.

Assume next thatf (q) 6= 0. Sincef is continuous, there is anε0 > 0 such thatf (q+ ε(a−q)) 6= 0 for
0≤ ε < ε0. Again by continuity, signf (q) = f (q).

COROLLARY 25. Consider any algorithm that branches only on the sign of a function f from a class F
of well-behaved continuous functions applied to the input q∈ RN. Also assume that a∈ RN that is non-
degenerate for all f∈ F. Branching onf (q) instead of onsignf (q) has the following effect:

• The zero branch is never taken, and

• If q is in general position, the computation does not change.

Proof. This follows immediately from Theorem 24. Sincef (q) 6= 0 for all q, the zero branch is never taken,
and sincef (q) = signf (q) wheneverf (q) 6= 0, the computation does not change for an input in general
position.

7.1. SYMBOLIC PERTURBATION 81

The corollary may be paraphrased asif you know just one input in general position, any input can be
perturbed into general position. We still need to address two questions. How do we find inputs in general
position and how can we computef (q)? We address both questions first for the orientation predicate of n
points in the plane.

LEMMA 26. The points ai = (i, i2), 1≤ i ≤ n, are in general position with respect to the orientation predi-
cate.

Proof. Lines intersect the parabolay = x2 in at most two points. Thus no threeai are collinear.

We next discuss how to evaluate the orientation predicate. Assume our inputs are the pointsqi , 1≤ i ≤ n.
We replaceqi by qi + ε(ai −qi). For three distinct pointsqi , q j , andqk, we then have:

Orientation(qi ,q j ,qk) = lim
ε→0+

sign

∣

∣

∣

∣

∣

∣

1 (1− ε)x(qi)+ ε i (1− ε)y(qi)+ ε i2

1 (1− ε)x(q j)+ ε j (1− ε)y(q j)+ ε j2

1 (1− ε)x(qk)+ εk (1− ε)y(qk)+ εk2

∣

∣

∣

∣

∣

∣

Expansion and collecting terms according to powers ofε yields

= Orientation(qi ,q j ,qk)+ lim
ε→0+

sign



εP(qi,q j ,qk)+ ε2

∣

∣

∣

∣

∣

∣

1 i i2

1 j j 2

1 k k2

∣

∣

∣

∣

∣

∣



 ,

whereP(qi ,q j ,qk, i, j,k) is a polynomial. Thus

Orientation(qi ,q j ,qk) =











Orientation(qi ,q j ,qk) if Orientation(qi ,q j ,qk) 6= 0

sign(P(qi ,q j ,qk)) if Orientation(qi ,q j ,qk) = 0 andP(qi ,q j ,qk) 6= 0

Orientation(ai ,a j ,ak) if Orientation(qi ,q j ,qk) = 0 = P(qi ,q j ,qk)

We next address the equations more generally. We exhibit inputs in general position for the set of
test functions introduced in the introductory paragraph. We do so for arbitrary dimensiond and not only
for the plane. We considern points chosen from the positive branch (i.e.,t > 0) of the moment curve
t 7→ (t, t2, . . . , td). No two points on this curve agree in any coordinate. Nod + 1 points lie in a common
hyperplane. Consider the equationa0 + ∑1≤i≤d aixi of any hyperplane. Pluggingx = (t, t2, . . . , td) into this
equation gives a polynomial of degreed in t. We conclude that the hyperplane intersects the moment curve
in at mostd points. Finally, the positive branch of the moment curve intersects no sphere ind+ 2 or more
points. Let∑1≤i≤d(xi −ci)

2−r2 = 0 be the equation of a sphere. Pluggingx= (t, t2, . . . , td) into this equation
gives the following polynomial int:

∑
1≤i≤d

(t i −ci)
2− r2.

Descartes rule of signs (Theorem??) states that the number of positive roots of a polynomial is bounded by
the number of sign changes in its coefficient sequence. The polynomial above can have at mostd+ 1 sign
changes since the coefficients of the powerst j with j > d are nonnegative (any such coefficient is either zero
or one).

We first show how to computef (q) for polynomials f . We useq1 to qN to denote the coordinates ofRN

and assume thatf (q1, . . . ,qn) is a polynomial of total degreed. Then.

f (q+ ε(a−q)) = f (q1 + ε(a1−q1), . . . ,qN + ε(aN −qN)) = ∑
0≤i≤d

pi(q1, . . . ,qn)ε i,

82 LECTURE 7. PERTURBATION

where thepi are polynomials of total degree at mostd. We claim

f (q) = signpi(q) wherei = min{ j | p j(q) 6= 0}.
We know from Theorem?? that the sign off (q+ ε(a−q)) is constant and nonzero for sufficiently smallε .
Therefore at least onep j(q) must be non-zero. Leti be minimal withpi(q) 6= 0. Then

f (q+ ε(a−q)) = pi(q)ε i

(

1+ ∑
j>i

p j(q)

pi(q)
ε j−i

)

.

Let M = max
∣

∣p j(q)/pi(q)
∣

∣. Then
∣

∣∑ j>i p j(q)/pi(q)ε j−i
∣

∣≤ M/(1− ε) < 1/2 for sufficiently smallε .

7.2 Numerical Perturbation

[[the following is copied from Funke/Klein/Mehlhorn/Schmitt. It needs to rewritten so that it fits better.]]

7.3 Some Words of Caution

Perturbation is not a cure-all. It removes burden from the algorithm designer and implementer. However, it
has two drawbacks.

The running time of an algorithm may increase as a result of perturbation. We give two examples.
Assume we are givenn line segments passing through the origin. We will see in Section ?? that we can
compute their arrangement in timeO(nlogn). However, perturbing the line segments into general position
(no three intersect in a point) will generate an arrangementwith Θ(n2) intersection points. The second
example is even more extreme. Assume we are givenn identical points inRd. Any sensible convex hull
algorithm should be able to handle this input in linear time.However, the perturbation scheme of Section 7.1
moves then points onto thed-dimensional moment curve. The resulting hull will haveΩn⌊d/2⌋ facets and
hence any algorithm will need timeΩn⌊d/2⌋ for computing the hull of the perturbed points.

Exercise 0.27: Prove bound for points on the moment curve. ♦
The second drawback is that we solve the problem on a perturbed input and not on the original input.

The output for the perturbed input may tell us little about the output for the original input.
The symbolic scheme has another drawback. It requires exactcomputation.
Neither approach to perturbation will apply if some test function is identically zero. For example, if one

tests whether a pointp lies on a line involvingp as one of the defining points, the outcome will be “on line”
no matter who one perturbs the input. The reader may think that test functions that are identically zero can
only arise as a consequence of stupid programming. However,they can also arise because the algorithm
designer misses a theorem, see Figure 7.1.

7.4 Notes

[20] introduced symbolic perturbation and applied it to theorientation predicate. [22, 51, 21, 57] extended
and simplified the technique. Our presentation follows [51]. An implementation of the scheme is available
in CGAL [15]. CITATION IS INCOMPLETE.

Section?? is based on [30].
Section 7.3 is based on [10].

7.5. PROPOSED CONTENTS 83

Figure 7.1: p1, p2, p3 are three arbitrary points on a lineℓ1 andq1, q2, q3 are three arbitrary points on a
line ℓ2. For 1≤ i ≤ 3 let{ j,k} = {1,2,3}\ i and letr i be the intersection ofℓ(p j ,qk) andℓ(pk,q j). Pappus
(ca. 300 AD) proved thatr1, r2 andr3 are collinear. So perturbing the input will not help.

7.5 Proposed Contents

discuss SoS by Edelsbrunner and Muecke, Seidel
discuss controlled perturbation. This can be based on the SODA article by Funke/Klein/Mehlhorn/Schmitt.
Reference to Devillers/Preparata.
also do conceptual perturbation: walk through a triangulation. to get the code right. This is discussed in

the LEDAbook and also in my 2000 course notes.

84 LECTURE 7. PERTURBATION

Bibliography

[1] A. Andrew. Another efficient algorithm for convex hulls in two dimensions.Information Processing
Letters, 9:216–219, 1979.

[2] F. Avnaim, J.-D. Boissonnat, O. Devillers, and F. Preparata. Evaluating signs of determinants with
floating point arithmetic.Algorithmica, 17(2):111–132, 1997.

[3] R. Banerjee and J. Rossignac. Topologically exact evaluation of polyhedra defined in CSG with loose
primitives. Computer Graphics Forum, 15(4):205–217, 1996. ISSN 0167-7055.

[4] M. Blum and H. Wasserman. Reflections on the pentium division bug. IEEE Transaction on Comput-
ing, 45(4):385–393, 1996.

[5] J.-D. Boissonnat and M. Yvinec.Algorithmic Geometry. Cambridge University Press, Cambridge,
1998.

[6] H. Brönnimann, I. Emiris, V. Pan, and S. Pion. Computingexact geometric predicates using modular
arithmetic with single precision. InProceedings of 13th Annual ACM Symposium on Computational
Geometry (SCG’97), pages 174–182, 1997.

[7] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Astrong and easily computable separation
bound for arithmetic expressions involving square roots. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’97), pages 702–709, 1997.www.mpi-sb.mpg.de/

˜ mehlhorn/ftp/sepbound.ps .

[8] C. Burnikel, S. Funke, and M. Seel. Exact arithmetic using cascaded computation. InProceedings of
the 14th Annual Symposium on Computational Geometry (SCG’98), pages 175–183, 1998.

[9] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments:
Theoretical and experimenta l results. InProceedings of the 2nd Annual European Symposium on
Algorithms - ESA’94, volume 855 of Lecture Notes in Computer Science, pages 227–239. Springer,
1994.

[10] C. Burnikel, K. Mehlhorn, and S. Schirra. On Degeneracyin Geometric Computations. InProceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA’94), pages 16–23, 1994.

[11] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracyin geometric computations. InProceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA’94), pages 16–23, 1994.

85

86 BIBLIOGRAPHY

[12] J. Canny, B. Donald, and G. Ressler. A rational rotationmethod for robust geometric algorithms. In
A.-S. ACM-SIGGRAPH, editor,Proceedings of the 8th Annual ACM Symposium on Computational
Geometry (SCG ’92), pages 251–260, 1992.

[13] K. Clarkson and P. Shor. Applications of random sampling in computational geometry, II.Journal of
Discrete and Computational Geometry, 4:387–421, 1989.

[14] K. L. Clarkson. Safe and effective determinant evaluation. IEEE Foundations of Computer Sci.,
33:387–395, 1992.

[15] J. Comes and M. Ziegelmann. An easy to use implementation of linear perturbations within CGAL.
In Algorithm Engineering, pages 169–182, 1999.

[16] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf.Computational Geometry: Algorithms
and Applications. Springer, 1997.

[17] P. Deuflhard and A. Hohmann.Numerische Mathematik: Eine algorithmisch orientierte Einführung.
Walter de Gruyter, 1991.

[18] O. Devillers, G. Liotta, F. Preparata, and R. Tamassia.Checking the convexity of polytopes and the
planarity of subdivisions. Technical report, Center for Geometric Computing, Department of Computer
Science, Brown Universi ty, 1997.

[19] O. Devillers and F. Preparata. A probabilistic analysis of the power of arithmetic filters.Discrete &
Computational Geometry, 20:523–547, 1998.

[20] H. Edelsbrunner and E. Mücke. Simulation of simplicity: A technique to cope with degenerate cases
in geometric algorithms.ACM Transactions on Graphics, 9(1):66–104, Jan. 1990.

[21] I. Emiris, J. Canny, and R. Seidel. Efficient perturbations for handling geometric degeneracies.Algo-
rithmica, 19:219–242, 1997.

[22] I. Z. Emiris and J. F. Canny. A general approach to removing degeneracies.SIAM Journal on Com-
puting, 24(3):650–664, June 1995.

[23] A. Fabri, E. Fogel, B. Gärtner, M. Hoffmann, L. Kettner, S. Pion, M. Teillaud, R. Veltkamp, and
M. Yvinec. The CGAL manual. 2003. Release 3.0.

[24] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S.Schönherr. On the design of CGAL a compu-
tational geometry algorithms library.Softw. – Pract. Exp., 30(11):1167–1202, 2000.

[25] A. R. Forrest. Computational geometry in practice. In R. A. Earnshaw, editor,Fundamental Algorithms
for Computer Graphics, volume F17 ofNATO ASI, pages 707–724. Springer-Verlag, 1985.

[26] S. Fortune. Robustness issues in geometric algorithms. In Proceedings of the 1st Workshop on Ap-
plied Computational Geometry: Towards Geometric Engineering (WACG’96), volume 1148 of Lecture
Notes in Computer Science, pages 9–13, 1996.

[27] S. Fortune and C. van Wyk. Static analysis yields efficient exact integer arithmetic for computational
geometry.ACM Transactions on Graphics, 15:223–248, 1996. preliminary version in ACM Confer-
ence on Computational Geometry 1993.

BIBLIOGRAPHY 87

[28] S. J. Fortune. Numerical stability of algorithms for 2dDelaunay triangulations.Int’l. J. Comput.
Geometry and Appl., 5(1):193–213, 1995.

[29] S. Funke. Exact arithmetic using cascaded computation. Master’s thesis, Fachbereich Informatik,
Universität des Saarlandes, Saarbrücken, 1997.

[30] S. Funke, C. Klein, K. Mehlhorn, and S. Schmitt. Controlled Perturbation for Delaunay Triangulations.
SODA, pages 1047–1056, 2005.

[31] GMP (GNU Multiple Precision Arithmetic Library).http://gmplib.org/ .

[32] D. Goldberg. What every computer scientist should knowabout floating-point arithmetic.ACM Com-
puting Surveys, 23(1):5–48, 1990.

[33] D. Goldberg. Corrigendum: “What every computer scientist should know about floating-point arith-
metic”. ACM Computing Surveys, 23(3):413–413, 1991.

[34] R. L. Graham. An efficient algorithm for determining theconvex hulls of a finite point set.Information
Processing Letters, 1:132–133, 1972.

[35] Halperin and Shelton. A perturbation scheme for spherical arrangements with application to molecular
modeling.CGTA: Computational Geometry: Theory and Applications, 10, 1998.

[36] IEEE standard 754-1985 for binary floating-point arithmetic, 1987.

[37] Java.http://www.java.com/en/ .

[38] M. Jünger, G. Reinelt, and D. Zepf. Computing correct Delaunay triangulations.Computing, 47:43–49,
1991.

[39] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A corelibrary for robust numeric and geometric
computation. InProceedings of the 15th Annual ACM Symposium on Computational Geometry, pages
351–359, Miami, Florida, 1999.

[40] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A Corelibrary for robust numerical and geometric
computation. In15th ACM Symp. Computational Geometry, pages 351–359, 1999.

[41] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.Soviet Physics Dok-
lady, 7(7):595–596, 1963.

[42] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap.Classroom Examples of Robustness Problems
in Geometric Computations. InESA, volume 3221 ofLNCS, pages 702–713, 2004. full paper to appear
in CGTA.

[43] LEDA (Library of Efficient Data Types and Algorithms).www.algorithmic-solutions.com .

[44] K. Mehlhorn and S. Näher. The implementation of geometric algorithms. InProceedings of the
13th IFIP World Computer Congress, volume 1, pages 223–231. Elsevier Science B.V. North-Holland,
Amsterdam, 1994.www.mpi-sb.mpg.de/ ˜ mehlhorn/ftp/ifip94.ps .

[45] K. Mehlhorn and S. Näher.The LEDA Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

88 BIBLIOGRAPHY

[46] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S.Schirra, and C. Uhrig. Checking geometric
programs or verification of geometric structures.Computational Geometry, 12(1-2):85–103, 1999.

[47] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, 1995.

[48] K. Mulmuley. Computational Geometry. Prentice Hall, 1994.

[49] S. Schirra. Robustness and precision issues in geometric computation. to appear, preliminary version
available as MPI report.

[50] M. Seel. Eine Implementierung abstrakter Voronoidiagramme. Master’s thesis, Fachbereich Infor-
matik, Universität des Saarlandes, Saarbrücken, 1994.

[51] R. Seidel. The nature and meaning of perturbations in geometric computing.Discrete & Computational
Geometry, 19(1):1–17, 1998.

[52] J. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.Dis-
crete & Computational Geometry, 18:305–363, 1997.

[53] P. Sterbenz.Floating Point Computation. Prentice Hall, 1974.

[54] J. Tusch and S. Schirra. Experimental comparison of thecost of approximate and exact convex hull
computation in the plane. InCCCG, 2006.

[55] C. Yap. Towards exact geometric computation. InProceedings of the 5th Canadian Conference on
Computational Geometry (CCCG’93), pages 405–419, 1993.

[56] C. Yap and T. Dube. The exact computation paradigm. InComputing in Euclidean Geometry II. World
Scientific Press, 1995.

[57] C.-K. Yap. Geometric consistency theorem for a symbolic perturbation scheme.J. Comput. Syst. Sci.,
40(1):2–18, 1990.

