Lectures on Reliable Geometric Computing

November 2, 2009

Contents

Introduction 5
1.1 Geometric Computing e e e e e e 5
1.2 Previewofthe Course e 7
1.3 Historical Notes e e e 10
1.4 Implementation Notes e e e 10
1.5 EXEICISES . . . o o e 11
A First Algorithm: Planar Convex Hulls 13
2.1 The Convex Hull Problem e 13
2.2 AFirstAlgorithm e 13
2.3 The Orientation Predicate i i i 16
2.4 Efficiency e 18
2.4.1 ASweepAlgorithm e 18
2.4.2 Incremental Construction e 18
2.4.3 Randomized Incremental Construction. 19
2.5 Degeneracy e e e e e e 23
2.6 Arbitrary DImension e e 23
2.7 TheReal-RAM e 23
2.8 Historical Notes e e e 24
2.9 Implementation Notes e e e 24
2.10 EXEICISES . . . v i i i e e e 24
A First Implementation 25
3.1 The Geometry of Float-Orient ma e 25
3.2 Implementation of the Convex Hull Algorithm 28
3.3 The Impact on the Convex Hull Algorithm 30
3.4 FurtherExamplés e 31
3.5 Non-Continuous FUNCtions e e e 34
3.6 Geometric Computing vs. Numerical Analysis 35
3.7 Reliable (Geometric) Computing e e e e e 37
3.8 NON-Solutions e e e 37
3.9 WhereDoWeStand? e e 39
3.10 Historical Notes e e e e 39
3.11 Implementation NOteS e e e 39
3.12 EXEICISES . . . v i i e e e e e 39

Number Types |

4.1 Built-In Integers and Arbitrary Precision Integers
4.2 Rational Numbers
4.3 Floating Point Numbers
4.3.1 Rounding
4.3.2 Arithmetic on Floating Point Numbers
4.3.3 Floating Point Integers
4.4 An Optimized Evaluation Order for the Orientation Poadi
4.5 An Error Analysis for Arithmetic Expressions
4.6 A Simplified Error Analysis for Polynomial Expressions
4.7 A More Precise Error Analysis
4.8 Arbitrary Precision Floating Point Numbers
49 Notes
4.10 Material for the Lecture

A First Geometric Kernel

51 AKemnel.
5.2 Concrete Kernels
5.3 C++ Formulatiori
5.4 A Floating Point Filter
5.5 Performance of the Floating Point Filter
5.6 Points on a Circle
57 Notes,

Delaunay Triangulations and Voronoi Diagrams
6.1 Notes,

Perturbation

7.1 Symbolic Perturbation

7.2 Numerical Perturbation
7.3 Some Words of Caution
74 Notes
7.5 Proposed Contents

CONTENTS

Lecture 1

Introduction

We give examples of geometric computing tasks and an outfitiee course.

1.1 Geometric Computing

Geometric computing refers to computation with geometbjects such as points, lines, hyperplanes, disks,
curves, surfaces, and solids.. These objects live in anearhbpace. In this book, ambient space will be add
mainly two- and three-dimensional Euclidean space. Gewrmsimputing is ubiquitous. We illustrate its
richness by way of examples.

Computer-aided Design: Computer-aided design is about the construction of geaor@ijects. Starting
from a ground set of geometric objects, e.g., half-planigsles, ellipsoids in the plane or cubes, spheres,
cylinders, tori, one constructs complex shapes by applgegmmetric operations to previously constructed
objects. Figures 1.1 and 1.2 show examples in two and threerdiions, respectively. FiguR® shows a
more complex example.

Robotics: A central task of robotics is the planning of collision-frpaths. Consider a simple situation;
the goal is to move a disk-like robot amongst polygonal afdetain the plane, see FiguP@. The Voronoi
diagram of the obstacles is an appropriate data structurénéotask. It consists of all points of maximal
clearance from the obstacles; a disk grown at a point of thend diagram hits two or more obstacles
simultaneously. The diagram represents paths for maxiaietys In order to move a disk from a poiAtto

a pointB, we first move it fromA to a point on the Voronoi diagram, then along the Voronoi diag and
finally from the Voronoi diagram t@&.

Graphics: A 3D scanner is a device that analyzes a real-world objeatwir@nment to collect data on its
shape and possibly its appearance (i.e. color). In its sisaffbrm it returns a set of points on the surface
of the object, see Figure 1.4. The geometric computing ®&#hen to construct a digital three dimensional
model of the object from the collected data. The task ariseéké production of movies and video games.
Other common applications of this technology include indaisdesign, orthotics and prosthetics, reverse
engineering and prototyping, quality control/inspectin documentation of cultural artifacts.

5

6 LECTURE 1. INTRODUCTION

[~ Polygons with Holes BB [~ Polygons with Holes i) [~ Polygons with Holes
polygonl [Toriginalcomplemert polygonl [Toriginalcomplemerit polygonl [Toriginalcomplemert
polygon2 | original complemerit polygon2 [original complemenit polygon2 igi dl
operation i iof_union _|difference|_symdiff [null operation i fior_union _[difference]_symdiff |__null | operation intersectiof _union _[differencel symdiff | __null
move | _quit move | _quit move | _quit

Intersection (10/ 0)

£

Symmetric Difference (217 1)

/4 @@@

powered by LEDA powered by LEDA

Figure 1.1: The left part shows two polygonal regions witlekdin light and dark grey). The middle part
shows the intersection of these regions and the right parshhe symmetric difference. The figure was
produced with the LEDA demo polygoogo [45, 43].

Linear Programming: Linear programming is concerned with the optimization (imazation or mini-
mization) of a linear function subject to linear constraint

maximize c¢'x subjectto Ax<b,

wherex is a vector ofn variables,c € R" defines the objective functio®y € R™" is am x n real matrix
andb € RMis a real vector. Each roa of A and the corresponding enthy of b defines a linear inequality
aix < b. Geometrically, the set of satisfying this inequality form a halfspacel®. The set ok satisfying
all constraintsAx < b is the intersection of halfspaces, i.e., a convex polyhe&@m R". Figure 1.5 shows
an example. The aim of linear programming is to find a pgiatP that maximizes”x. The maximum is
attained at a vertex d? that is maximal in directiort.

Mathematics: Algebraic curves and algebraic surfaces are an important to mathematics. An alge-
braic curve is the zero set of a polynomjz#k, y) in two variables and an algebraic surface is the zero set of
a polynomialp(x,y, z) in three variables. In applications of algebraic curves surfaces, it is important to
visualize them. Figure 1.6 shows some examples.

More Examples: continue definition with pictures, give examples, examplesuld come form computa-
tional geometry, but also from fields outside CS, e.g.,

e medicine: reconstruction of artery system in brain from Niiiges

searching for patterns in astronomy

have a look at Danny Halperin's page: he has nice exampléspigtures. Also he taught a course on
applied computational geometry.

GIS: map overlay, map simplification, map labelling,

examples from the book of Overmars

1.2. PREVIEW OF THE COURSE 7

C1
S1
S C, .

Figure 1.2: The left part shows four solids: two cylindersl dwo spheres. The right part shows their
intersection. The surface of the intersection composedadd (surface patches stemming from one of the
solids), vertices (intersection curves between two inplitds) and vertices (points in common to three or
more input solids). The picture was produced with the CABvgare Rhino3D.

1.2 Preview of the Course

Now that we have developed an intuition for geometric corations, we are ready for an overview of the
course. We will discuss the subject along three axes.

1. Geometric Algorithms
2. Geometric Objects and Predicates
3. Applications.

A geometric algorithm takes geometric objects and produess geometric objects from them, e.qg.,
it produces the convex hull of a set of points, or a surfacerpiating a point cloud, or the intersection
of a set of solids, or a path for a robot amidst obstacles. Tharithms operate on geometric objects,
guery these objects through geometric functions or prégcand construct new objects through geometric
constructors. For example, an algorithm may wish to knowldhation of point relative to a circle defined
by three other points (side-of-circle predicate) or cargta point as the intersection of two curves. We will
build on knowledge from discrete mathematics, geometmylinatorial algorithms, and data structures.

How do we represent geometric objects? Primitive geomebjects such as points, lines, hyperplanes,
curves, amd surfaces are represented by their coordinatagioequations. A point may be specified by
its Cartesian coordinates and a line through its line egnaff he curve shown in Figurg? is the zero set
of the polynomial.... Predicates and constructors are then functions of thesglicates and equations.
We will build on knowledge from analytical geometry, nunoati analysis, and algebra. More complex
geometric objects are composed of primitive geometricaibjand hence we will data structures for these
compositions.

Applications are ubiquitous as we seen in the precedingoseciVe will discuss some of them so that
our readers see the full picture.

8 LECTURE 1. INTRODUCTION

Figure 1.3: Robot motion planning: The figure shows four golys (the letters M, P, I, and 1) enclosed in
a square frame. The space between the polygons and the spaimthe polygon in partitioned into cells
by the Voronoi diagram of the polygons. Imagine to grow a disitered in an arbitrary point of the plane.
In general, the first collision of the growing disk with onetbé& polygons will be with a single polygon.
The Voronoi diagram consists of all points, where this fidtision involves two or more polygons. The
Voronoi diagram (also called Medial axes) comprises thatsaf maximum clearance from the disks. The
figure was created by Michael Seel [50].

Lecture Il: We will start with a simple geometric problem, the computatdf the convex hull of a fi-
nite set of points in the plane. We will see several algorghor solving the problem based on different
computational paradigm: incremental computation, sweaeg,divide-and-conquer. We will formulate the
algorithms in terms of geometric predicates. The primitguired for the convex hull problem is the ori-
entation predicate for three points. Given three pomis andr in the plane, the predicate tells whether the
points form a left turn, are collinear, or form a right turepsFigure?? for an illustration. The triplép,q,r)

is a left turn if p £ g andr lies to the left of the line passing throughandq and oriented fronp to g.

Lecture lll: Points are usually represented by their Euclidean coaienaNe derive an analytical for-
mula that expresses the orientation of three points in teffrtfseir coordinates. We will see that

1 pc py
Orientation(p,q,r) =signdet| 1 ax ay |),
1o 1y

wherep, and py are thex- andy-coordinate ofp, respectively. The sign is1 if (p,q,r) form a left turn, is
0 if they are collinear, and is 1 if they form a right turn.

Point coordinates are real numbers as are the parameteningedither geometric objects, e.g., the
coordinates of the center and the radius of a disk. Therdfi@ra@atural model of computation for geometric
computing is theReal-RAM It is a random access machine with the additional capghifihandling real
numbers. Of course, the operations on real numbers follevailis of mathematics. The Real-RAM model
is also used successfully in numerical analysis.

1.2. PREVIEW OF THE COURSE 9

Figure 1.4: The left part of the picture shows a point clouthisted from a 3D-scan of a bust of Max
Planck. The middle part and right part show reconstructiminhe object (non-smoothed and smoothed).
The reconstruction is by Tamal Dey, University of Ohio.

Real computers do not come with real arithmetic. They pmwadly floating point arithmetic and
bounded integer arithmetic. We will study the effect of fiogtpoint arithmetic on geometry. We will first
see the effect on the orientation predicate (see Fig@yand then the effect on our convex hull algorithm
(see Figure??). The former effect will be surprising, the latter disastrous

We continue to give more examples of geometric programsdéna& and commercial) that break on
some inputs. Why is it that

Lecture IV:

Lecture V:

Lecture VI:

Lecture VII:

Lecture VIII:

Lecture IX:

Lecture X:

10 LECTURE 1. INTRODUCTION

[~ LEDA 3D Convex Hull Demo T [=][=][x]/

input cube ||quuard para |mesh|spherd line |

points [@ 1000|2000|4000|8000/1 6000320040
+ 52 _ e

setup [filter trace|checkl[elim [solid [edges

gen | file | run | stepl join |setup| exit

left: zoom up middle:zoom down right: start rotation

powered by LEDA

Figure 1.5: A convex polyhedron in three dimensional spdcgas generated as the convex hull of a set of
points (using the LEDA demo 3d-hull [45, 43]). Alternatiyeit could be constructed as the intersection of
the halfspaces corresponding to the faces of the polyhediioear programming finds the extreme vertex
in the direction of the objective function.

Lecture XI:
Lecture XlI:

Lecture XIllI:

1.3 Historical Notes

1.4 Implementation Notes

CGAL [23], LEDA [43, 45], and CORE [39] are designed accogdio the principles put forward in this
course. They package much of the content of the course.

Also point to other resources.

1.5. EXERCISES 11

Figure 1.6: A figure of an algebraic curve (from Pavel's gglle close-up view of a singularity, a figure of
a triangulated surface. Show the equations, either in ttieten the caption.

1.5 Exercises

Exercise 0.1: Collect three further examples of geometric computing amxlichent them on the wiki-page
of the course. &

Exercise 0.2: &

12

LECTURE 1.

INTRODUCTION

Lecture 2

A First Algorithm: Planar Convex Hulls

We will start with a simple geometric problem, the computatof the convex hull of a finite set of points in
the plane. We will formulate a basic algorithm that condsube planar hull in quadratic time. It accesses
the input points through a single predicate, the oriemapicedicate for three points. We will see how this
predicate can be realized by a simple formula in the pointdinates. Next we discuss two techniques for
improving the running time t®(nlogn), wheren is the number of input points. Collinear points require
special care in convex hull algorithms and hence we call taatageneracy. Finally, the algorithm would
lead directly to an implementation if we had a Real-RAM to disposal.

2.1 The Convex Hull Problem

A set is calledconvexif for any two pointsp andq in the set the entire line segmepd) is contained in the
set, see Figure 2.1. Tlwdnvex hullconvS of a setS of points is the smallest (with respect to set inclusion)
convex set containing, see Figure 2.1. A poinp € Sis called anextreme poinof Sif there is a closed
halfspace containin§such thafp is the only point inSthat lies in the boundary of the halfspace.

From now on we restrict our discussion to the plane. We defiaednvex hull problem as the problem
of computing the extreme points of a finite set of points asaiaally ordered list of point, see Figure 2.1.
The cyclic order is the counter-clockwise order in which éixereme points appear on the hull.

2.2 A First Algorithm

The simplest method for constructing the convex hull wotégatively. We start with the convex hull of the
first three points; we assume for simplicity that the firsethpoints ofSare not collinear and come back to
this assumption in Section 2.5. For every point, we first maitee whether it lies outside the current hull or
not. If it is contained in the current hull, we do nothing. ©thise, the point is an extreme point of the new
hull and we update the hull by constructing the tangents fiteemew point to the old hull, see Figure 2.2a.

How can we determine whether a poinis contained in the current hull? Recall that the current hul
is represented by its cyclic list of extreme points in cotwateckwise order, saywvo, Vi, ..., Vk-1,Vk = Vo).
Consider a paifv;,Vvi;1) of consecutive extreme points. Any point in the current hef on or to the left
of the oriented line/(vi,vi+1) and every point to the right of(vi,vi;1) lies outside the current hull, see
Figure 2.2b. The geometric predicate of locating a poinhwgispect to an oriented line is so important that
we give it a name.

13

14 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

V1
p
Vo
', Wo
(@) (b

)
Figure 2.1: (a) shows a convex and a non-convex set, (b) stveavpoint sets and their convex hulls. The
extreme pointsp, Vi, Vo, andvs, respectivelywy andw; are highlighted as solid disks. The pojmties on
the boundary of the hull, but is not an extreme point. Theicydbckwise list of extreme points i, vi,
Vo, V3 andwp, Wy (or any cycle shifts thereof), respectively.

W1

Definition: Let p, g, andr be points in the plane (see Figure 2.3)pH q, let¢(p,q) be the line passing
throughp andqg and oriented fronp to g. Then

+1 if p# qandr lies to the left of¢(p,q)
Orientation(p,q,r) =<0 if p=qor p## qandr lies on/(p,q)
—1 if p# gandr lies to the right of¢(p,q).

If Orientation(p,q,r) =+1 (—1), we say thatp,q,r) form a left (right) turn, ifOrientation(p,q,r) =
+1, the points are collinear. We next specialize to the corwak problem. Assume that; andvi
are consecutive extreme points in the counter-clockwiskeroof extreme points. If lies to the right of
2(vi,Vi+1), we also say that seesthe (counter-clockwise) hull edgev;,1 and that this hull edge igisible
fromr.

THEOREM 1. A point r lies outsideconvs if and only if it can see at least one edgeoifvsS.

Proof. If r can see a hull edge, it is clearly outside cBnAssume next that ¢ convSand letz be the point
in convSclosest ta. If r lies in the interior of some hull edge thercan see this edge. So assume that
an extreme point 08, sayz=v;. Thenr sees at least one of the two hull edges incidemn.to O

We now know how to check whether a new pointies outside the current hull. We simply check
whether it can see some hull edge. We will see more efficietihoas in Sectior??. We next turn to the
update step. We need the notionvegak visibility If r lies to the right of or or/(v;,vi11), we say that
weekly seethe hull segment;v;, 1 and that this segment igeakly visiblefromr.

THEOREM 2. Let (vp,v1,...,W-1) be the sequence of extreme pointsafvS in counter-clockwise order
and assume that¢ convS. The hull edges weakly visible from r form a contiguousemixsnce and so do
the edges that are not weakly visible.

If (Vi,Vit1), ..., (Vj—1,V;) is the subsequence of weakly visible edges, the updateds fabtained by
replacing the subsequenc¢e.1,...,vj_1) by r. The subsequencg;,...,v;j) is taken in the circular sense,
i.e., ifi > j then the subsequence(ig, ..., Vik_1,Vo, ..., Vj).

2.2. AFIRST ALGORITHM 15

Vi

Vo

V2

V3

(b)

Figure 2.2: In (a) the current hull is shown as a polygon whzmendary is indicated by solid segments.
The pointr lies outside the current hull. The tangents fromo the current hull touch the hull in vertices
andv;. The boundary of the new hull consists of the segnmeptfollowed by the part of the old hull from
vj tov;, followed by the segmenvr.

In (b) the oriented lin€(vp,Vv1) is highlighted. Every point to the right of this line lies side the current
hull.

Y p
@) (b) (©)

Figure 2.3: (a) shows a left turn, (b) shows collinear pgiatsl (c) shows a right turn.

Proof. Consider the tangentg andt, fromr to convS. A tangent; intersects the boundary of coBeither

in a single vertex or in an edge. In either casezléte the tangent point of maximal distance. Then one of
the hull edges incident tg is weakly visible fromr and one is not. Moreover; andz split the boundary

of convSinto two chains. In one chain all edges are weakly visiblenfrg and in the other chain, no edge
is weakly visible fromr. The boundary of cor\BUr) consists of the chain of edges that are not weakly
visible fromr plus the two segmenigr andrz. O

Theorems 1 and 2 lead to the incremental convex hull algarghown as Algorithm 1. We still need to
explain how we find all edges weakly visible franand how we updatk. Starting from the visible edge
we move counter-clockwise along the boundary until a noaklyevisible edge is encountered. Similarly,
we move clockwise frone until a non-weakly-visible edge is encountered.

How to update the list? We can delete the vertices(w..1,...,vj_1) after all visible edges are found,
as suggested in the above sketch (“the off-line strategyieocan delete them concurrently with the search
for weakly visible edges (“the on-line strategy”).

We have now almost completed the description of our first ggomalgorithm. We still need to discuss
the implementation of the orientation predicate. We widl sethe next section that the orientation predicate

16 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Algorithm 1 Incremental Convex Hull Algorithm
initialize L to a counter-clockwise triangi@, b, c) with a,b,c € S Removea, b, c from S
forall r € Sdo
if there is an edge visible fromr then
determine the sequen¢y;, Vi 1), (Vit1,Vi4+2) ..., (Vj_1,Vj)) of edges that are weakly visible from
replace the subsequen@g,1,...,vj_1)in L byr.
end if
end for

can be formulates as a simple arithmetic expression in poridinates and hence orientation of three points
can be determined in constant time.

Algorithm 1 computes the convex hull afpoints inO(n?) time. For any point, we check all edges
of the current hull for visibility and maybe weak visibilitye also remove zero or more points from the
current hull. Thus any point is processedd(n) time. The bound 00(n?) follows. In Section 2.4 we will
improve the running time t®(nlogn).

2.3 The Orientation Predicate

LEMMA 3. Let p, g, and r be points in the plane.
(a) The signed area of the triangl@(p,q,r) is given by

1 1 1

Xp Xq X
Yo Yg Yr

(b) The orientation ofp,q,r) is equal to the sign of the determinant above.

Proof. Part(b) follows immediately from part (a) and the definitafrsigned area. So we only need to show
part (a). We do so in two steps. We first verify the formula for tase thap is the origin and then extend
it to arbitrary p. So let us assume thatis equal to the origin. We need to show that the signed Aref
A(p,q,r) is equal to(Xqyr —XYq)/2.

Let a be the angle between the positixaxis and the rappgand letQ be the length of the segme@,
cf. Figure 2.4. Then cas = X4/Q and simx = y,/Q. Rotating the triangle\ (O, q,r) by —a degrees about
the origin yields a trianglé\ (O, d’,r’") with d = (Q,0) and the same signed area. Thiisz Q-y,/2.

Next observe that, = Rsin(f3 — a), whereR s the length of the segmeftr andp is the angle between
the positivex-axis and the ra®r. Since siff3 — a) = sinf cosa — cosB sina andRcosf = x andRsinf =
yr we conclude that

A = Qy/2=Q-R-sinB—a)/2
= (Qcosa -RsinB —Qsina - RcosB)/2 = (Xqyr — %Yq)/2.
This verifies the formula in the case wheyés the origin.

Assume next thap is different from the origin. Translatinginto the origin yields the trianglé\ (O, q,r’)
with f = g— p andr’ =r — p' . On the other hand subtracting the first column from the dihercolumns

Lstrictly speaking, we would have to writg= 0+ (q— p) and similarly forr’.

2.3. THE ORIENTATION PREDICATE 17

0 q/ = (Q7 0)

Figure 2.4: Proof of Lemma 3.

of the determinant yields

1 1 1 1 0 0 %
Xp Xg X | = Xp Xg=Xp Xr—=Xp | = ;q, Vi ‘
Yo Yg W Yo Ya—Yp Yr—Yp @
which by the above is twice the area of the translated treang| O

Part (b) of the lemma above is the analytical formula for thertation predicate:

1 py
1 o q
1oy 1y

Orientation(p,q,r) = sign(det) = sign((ak — Pe) (ry — Py) — (Gy = Py) (k= Px))- (1)

We haveOrientation(p,q,r) = +1 (resp.,—1, 0) iff the polyline(p,q,r) represents a left turn (resp., right
turn, collinearity). Interchanging two points in the teépthanges the sign of the orientation.

We will frequently represent points by homogeneous coattdin Consider a poirg with Cartesian
coordinategp, andpy. The homogeneous coordinatespadre any triply(px, py, pw) such thatp, = px/pw
and py = py/pw. Homogeneous coordinates are not unique; multiplicatip@a on-zero factor does not
change the point represented. If the Cartesian coordigaiegationals, we may choose the homogeneous
coordinates to be integral. In this situatiopw is a common denominator for and y-coordinate. In
homogeneous coordinates, we have

1 pc py 1 px/pw pypw
Orientation(p,q,r) =sign(det| 1 ax ay |)=sign(det| 1 agx/qw qy/qw |)
1o 1y 1 rx/rw ry/rw
pw px py
= sign(pw-qw-rw) -signidet| qw gx qy |)
rw rx ry

= sign(pw- qw- rw) - sign(pw- (gx- ry — gy-rx) —qw- (px:ry — py-rx) 4 rw- (px- qy— py- gx)).

18 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

2.4 Efficiency

Our incremental algorithm for convex hulls runs@in?) time on an input of points. We show how to
improve the running time t®(nlogn). We first observe that the cost of updating the huD{®), once it is
known whether the new poimtsees some edge.

Indeed, ifr sees no edge, the old hull is the new hull and the cost of thatagd zero. So assume
thatr sees some edgeof the current hull. We walk frone in both directions as long as edges are weakly
visible. The cost of the walk i®(1+ x), wherex is the number of edges weakly visible framWe then
deletex edges from the convex hull and add two new edges. We cl@beto the update and to each edge
removed. Since any edge can be removed only once and sincesaBmedges are every constructed, the
total charge for the update @&(n).

We next describe two techniques for finding a first visibleeedgto decide that there is none.

2.4.1 A Sweep Algorithm

We simplify the search for a visible edge by processing thietpdn lexicographic order. A poirp precedes
a pointq in lexicographic order if eithep has the smallex-coordinate or thex-coordinates are the same
and p has the smalley-coordinate. Sorting points according to lexicographigenitake<O(nlogn) time.

The advantage of processing the points in lexicographierasdtwofold: First, any point is outside the
convex hull of the preceding points, and second, one of tigeethcident to the lexicographically largest
vertex is visible from the next point. Thus the search forsible hull edge is trivial and take3(1) time.

THEOREM4. The sweep hull algorithm constructs the convex hull of nigamthe plane in @nlogn) time.

2.4.2 Incremental Construction

We describe an alternative method for speeding up the séarehvisible hull edge. The idea is to maintain

edit? Boisson-the history of the constructianAgain, we start with the counter-clockwise triangle fodvimy the first three

nec?

points. The algorithm maintains the current hulhayclically linked list of edges and also keeps all edges
that ever belonged to a hull. Every edge that is not on thesntitiull anymore points to the two edges
that replaced it. More precisely, assume tB& the set of points already seen and thad a point outside
the current hullCH(S). There is a chailC of edges of the boundary @&H(S) that do not belong to the
boundary ofCH(SU p). The chain is replaced by the two tangents frpito the previous hull. All edges in

C are made to point to the two new edges, see Figure 2.5.

We are now ready to deal with the insertion of a pgntWe proceed in two steps. We first determine
whetherp is outside the current hull and then update the hulp(g outside).

In order to find out whethep lies outside the current hull, we walk through the historyhafls; see
algorithm 2. We first determine whethprcan see one of the edges of the initial triangle. If it can see n
edge of the initial trianglep lies inside the current hull and we are done. So assumeptbaih see an edge
of the initial triangle, sa. If eis an edge of the current hulp,lies outside the current hull areds a visible
hull edge. Ifeis not an edge of the current hull, letandr; be the two edges that replacevhenCH(S)
was enlarged t€H(SUq). pis outsideCH(SU q) if it sees eitherg or ry, see Figure 2.6. Ip sees neither
ro norry, we stop. Otherwise, we seto a visible edge among andr; and continue in the same fashion.
In this way, the search either stops or finds a hull edge @diioim p. Once we have found such an edge,
we continue as in the basic algorithm.

2.4. EFFICIENCY 19

Figure 2.5: The initial convex hull consists of the poiatd, andc. When pointp; is added the edges
ande, are deleted from the hull and the edggsandes are added, and whepp is added to the hull the
edgese; andey are deleted from the hull and the edggsande; are added. The boundary of the current
hull consists of edges;, es, andes in counter-clockwise order. Every edge ever deleted fraerilil points

to the two edges that replaced it, eg. ande, point toes andey.

What is the running time of the incremental constructionafvex hulls? The worst case running time
is O(n?) since the time to insert a point @(n). The time to insert a point i©(n) since there are at most
2(k+ 1) edges after the insertion &fpoints and since every edge is looked at at most once in teeims
process.

The best case running time@n). An example for the best case is when the poits andc span the
hull.

2.4.3 Randomized Incremental Construction

The average case running timedénlogn) as we will show next. What are we averaging over? We consider
a fixed but arbitrary se$ of n points and average over timt possible insertion orders. The following
theorem is a special case of the by now famprababilistic analysis of incremental constructiostrted

by Clarkson and Shor [13]. The books [48, 5, 47, 16] contaiaitbel presentations of the method. The
reader may skip the proof of Theorem 5. Why do we include afpball given the fact that the method is
already well treated in textbooks? We give a proof becauseithd references prove the theorem only for
points in general position. We want to do without the genpasition assumption in this book.

THEOREMS. The average running time of the incremental constructiothotefor convex hulls is Glogn).

Proof. We assume for simplicity that the points $are pairwise distinct. The theorem is true without this
assumption; however, the notation required in the proofasenglumsy.

The running time of the algorithm is linear iff all points Bare collinear. So let us assume tl&at
contains three points that are not collinear. In this casavildirst construct a triangle and then insert the

20 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Algorithm 2 The search for a visible edge of the current hull.
let e be a visible edge of the initial triangle; stopgitloes not exist.
while (true)do

if eis an edge of the current huhen
stop(“eis a visible hull edge™);

end if

if one of the replacement edgesor r1 is visiblethen
let e be a visible replacement edge;

else
stop(“p lies inside current hull”);

end if

end while

Figure 2.6:eis a (counter-clockwise) edge of the current hull gnlies to the right of it;e is replaced by
ro andr; when the poing is added. Ifp lies neither to the right ofy nor to the right ofr; thenp lies in the
shaded region and hence@H(SU Q).

remaining points. Lep be one of the remaining points. Whernis inserted, we first determine the position
of p with respect to the initial triangle (tim®(1)), then search for a hull edgevisible by p, and finally
update the hull. The time to update the hulQ§l) plus some bounded amount of time for each edge that
is removed from the hull. We conclude that the total time fretisummed over all insertions) spent outside
the search for a visible hull edge@n).

In the search for a visible hull edge we perform tagghtturn(x,y, p) wherex andy are previously
inserted points. We call a testiccessfif it returns true and observe that in each iteration of thdevoop
at most two rightturn tests are performed and that in alhttens except the last at least one rightturn test is
successful. It therefore suffices to bound the number ofesstal rightturn tests.

What characterizes hull edges? An oriented segmeista CCW hull edge if there is no point i S
that weakly seegy, i.e., either lies in the right halfplane éfx,y) or lies on the line/(x,y) but not on the
segmenky. For an ordered paifx,y) of distinct points inSwe useKy to denote the set of pointsin S
such thatrightturn(x,y, z) is true plug the set of points on the line througR,y) but not betweerx andy,
see Figure 2.7. Every poiatc Ky is a witness foxy not being a CCW hull edge. We ukg, to denote the

2The set to be defined next is emptySifs in general position. The probabilistic analysis of imuemtal constructions usually
assumes general position. We do not want to assume it herleesneg have to modify the proof somewhat.

2.4. EFFICIENCY 21

-

Figure 2.7:Kyy consists of all points in the shaded region plus the two sald.

cardinality ofKy,, F to denote the set of paifg,y) with ke, = k, F< to denote the set of paifg,y) with
kv < k, and fy and f< to denote the cardinalities & andFy, respectively. We have

LEMMA 6. The average number A of successful rightturn tests is bcnijbsdgkzlzfgk/kz.

Proof. Consider a paifx,y) with k. = k. If some point inKy is inserted before botk andy are inserted

then(x,y) is never constructed as a hull edge and hence no righttus(eg —) are performed. However,

if x andy are inserted before all points Ky then up tok successful rightturn tests,y, z) are performed.
The probability thak andy are inserted before all points Ky y is

21Kl / (k+ 2)!

since there aré&k+2)! permutations ok+ 2 points out of which 4! havex andy as their first two elements.
Thus the expected number of successful rightturn fesysz) is bounded by

21kl /(k+2)! -k = 2-k/(k+ 1) (k+2) < 2/(K+1).

The argument above applies to any gaily) and hence the average number of successful rightturn tests
is bounded by

Y 2fi/(k+1).

K>1
We next writefy = f<x — f<x_1 and obtain

A < 5 2(fa—faca)/(k+1) = 5 2fk(1/(k+1) —1/(k+2)
k>1 k>1

= 3 2fa/((k+1)(k+2)).
k>1

It remains to bound <. We use random sampling to derive a bound.

LEMMA 7. foc < 2€?n-kforallk,1<k<n.

22 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

Proof. There are only? pairs of points oSand hence we always havey, < n?. Thus, the claim is certainly
true forn <10 ork > n/4.

So assume that > 10 andk < n/4 and letR be a random subset & of sizer. We will fix r later.
Clearly, the convex hull oR consists of at most edges. On the other hand, if for sorhey) € F<, x and
y are inR but none of the points iyy is in R, then(x,y) will be an edge of the convex hull & The
probability of this event is

n—i—2 n—k—2
(r-2) (r-2)

® @

r r

wherei = kyy < k. Observe that the event occursifindy are chosen and the remaining- 2 points inR
are chosen frons\ {x,y} \ Kyy. The expected number of edges of the convex huR if therefore at least

i)

()

>

Since the number of edges is at moste have

n—k—2 n
()
n n-k—-2\ nn-1) [n-2;>
fgkér'<r>/< r—2 >_r'r(r—1)'[n—k—2]r_2’
where[n) =n(n—1)---(n—i+1). Next observe that
n—2]_» my "= on-i = k
n—k—2, 5 = [n—k]r_ﬂn—k—i_D)<1+n—k—i>

= exp(filn(lJrk/(n—k—i))) <exp(rk/(n—k—r)),

or

where the last inequality follows from (fh+ x) < x for x> 0 and the fact that/(n—k—i) <k/(n—k—r)
for 0 <i <r—1. Settingr = n/(2k) and using the fact that—k—r > n/4 for k < n/4 andn > 10, we
obtain

fox < €n?/r = 2e°nk

O
Putting our two lemmas together completes the proof of Téreds
A< 4€ 'y nk/k? = O(nlogn).
K>1
O

There are two important situations when the assumptionseatteorem above are satisfied:
e When the points irBare generated according to a probability distribution faings in the plane.

e When the points are randomly permuted before the increrheotetruction process is started. We
then speak aboutrmndomized incremental construction

2.5. DEGENERACY 23

2.5 Degeneracy

We assumed that the first three points in the input span a ptogegle. How can we remove this assump-
tion?

In an off-line setting, i.e., all points are available atgnam start, we scan over the points once. phet
be the first point. We scan until we find a pointhat is different fromp. If all input points are equal tp,
the convex hull is equal to the set consisting onlypofSo assume we have two distinct poiptandg. We
continue scanning until we find a pointhat is not collinear tg andg. If there is no such point, the convex
hull is contained in the line passing througlandqg and we simply need to find the two extreme points on
the line. If there is such a point, we have found the initigrigle.

In an on-line setting, we have to work slightly harder. Weiatize the hull to{p}. As long as input
points are equal t@, there is nothing to do. As soon, as we encounter a gptifferent fromp, we know
that the hull is at least one-dimensional. The current lsuthe line segmenpg. As long as input points
are collinear tgp andq, the hull stays a segment and we update it accordingly. Omdepait pointr that
is not collinear withp andq comes along, we know that the hull is two-dimensional and witch to the
algorithm discussed in the preceding sections.

If no three points are collinear, the assumption is triyightisfied. Also, there is no need to distinguish
between visible and weakly visible edges as there are noseitige are weakly visible but not visible.
Collinear points make the formulation of convex hull algfoms more complex and therefore we call them
adegenerate configuratiofor the convex hull problem.

Geometric algorithms are frequently formulated undemte-degeneracy assumptiongeneral posi-
tion assumptionThe input contains no degenerate configuration. In Lec?@ree will study perturbation
as a general technique for ensuring general position.

2.6 Arbitrary Dimension

either in the text or as a remark in historial and implemeaianotes.

2.7 The Real-RAM

We have an algorithm for planar convex hul3o we have an implementation, i.e., is it straight-forwawd t
convert the discussion into a running program in a populasgramming language? The answer is No.

In the formulation of the algorithm we have tacitly assumkd Real-RAMmodel of computation.
A Real-RAM is a random access machine with the capability asfdling real numbers. Of course, the
operations on real numbers follow the laws of mathematibe Real-RAM model is the natural computing
model for geometric computing and numerical analysis. rAdtegeometric objects are usually specified by
real parameters: point coordinates are reals, the radiasiotle is a real, plane coefficients are reals, and
SO on.

Unfortunately, one cannot buy a Real-RAM. Real computersatocome with real arithmetic. They
provide only floating point arithmetic and bounded integathenetic. We will study the effect of floating
point arithmetic on geometry in the next lecture. We will sest we are far from an implementation.

In Lectures?? to ?? we will then discuss the efficient realization of a Real-RAd/he extent needed
by the convex hull algorithm and any other geometric alganithat deal only with linear objects.

24 LECTURE 2. A FIRST ALGORITHM: PLANAR CONVEX HULLS

2.8 Historical Notes

The sweep hull algorithm was proposed by Andrew [1]; it refina earlier algorithm of Graham [34].
randomized incremental algorithm [13]. Dimension jumpst fiin

2.9 Implementation Notes

2.10 Exercises

Lecture 3

A First Implementation

We come to the implementation of our convex hull algorithnhene is one choice to be madelow do
we realize real arithmeticAWe make the obvious choice. We use what computers offer ustirfgppoint
arithmetic, i.e.,

Implementation of a Real RAM = RAM + double precision floatjpgjnt arithmetic.

Double precision floating point arithmetic is governed bg tBREE standard 754-1985 [32]). Modern
processors implement this standard and programming lgeguarovide it under names such as “double”

(CH+), “XXX” (Java), TODO.. Floating point arithmetic is the widrorse for numerical computations. TODO
Double precision floating point numbers have the form

+ m2°

wherem= 1L.mym,...msp, my € {0, 1}, is the mantissa in binary areis the exponent satisfying 1023 <

e < 10241 We discuss floating point arithmetic in detail in Lectt®@ At this point it suffices to know
that arithmetic in a floating point system is approximate and naot The result of any floating point
arithmetic operation is the exact result of the operatiamded to the nearest double (with ties broken using
some fixed rule). For example, in a decimal floating pointesystvith a mantissa of two places, we have

0.36-0.11=0.40

since the exact result@96 is rounded to the approximate resuli4.

We will see in this lecture that floating point arithmetic ip@re substitute for real arithmetic and that
the floating point implementation of our algorithm can proglwery strange results. We hope that, after
seeing these examples, our students look forward to thé@ohechniques that we present in later lectures.
The core of a&C++ implementation of our algorithm is given in Section 3.2. Tuk code can be found in
the companion web pageof article [42] on which this lecture is based.

3.1 The Geometry of Float-Orient

Our convex hull algorithms uses the orientation predicatéahree points. In the last lecture we derived the
following formula for the orientation predicate. For thie@ints p = (px, Py), 0 = (0x,0y), andr = (ry,ry)

1we ignore here so calletenormalizedhumbers that play no role in our experiments and arguments.
2http://www.mpi-inf.mpg.de/departments/d1/ClassroomE xamples/

25

26 LECTURE 3. A FIRST IMPLEMENTATION

0.50000000000002531 0.5
(0.5000000000000171) 0.5
17.300000000000001 8.800000000000000
17.300000000000001) (s.soooooooooooooo;)
24,00000000000005 121
(24.000000000000051776; (121)

(b) ()

Figure 3.1: The weird geometry of the float-orientation jmatk: The figure shows the results of
float.orient(px + Xy, py + Yu,q,r) for 0 < X,Y < 255, whereuy, = uy = 2753 is the increment between
adjacent floating-point numbers in the considered range.r&sult is color coded: Yellow (red, blue, resp.)
pixels represent collinear (negative, positive, respgration. The line througl andr is shown in black.

in the plane let
Orientation(p,d,r) = sign((ox — Px)(ry — Py) — (dy — Py) (r'x— Px))- (1)

We haveOrientation(p,q,r) = +1 (resp.,—1, 0) iff the polyline(p,q,r) represents a left turn (resp., right
turn, collinearity). When the orientation predicate is implemented in this way evaluated with floating-
point arithmetic, we call it floabrient(p, g, r) to distinguish it from the ideal predicate.

What is the geometry dfoat orient, i.e., which triples of points are classified as left-tumght-turns, or
collinear? The following type of experiment addresses thestjon: We choose three poingsq, andr and
then computdloat orient(p’,q,r) for pointsp’ in the floating-point neighborhood @ More precisely, let
uy be the increment between adjacent floating-point numbehgirange right opy; for exampleu, =23
if px=3 andux=4-2"%3if p,=2=4-3. Analogously, we defing,. We consider

float orient((px+ Xuy, py+YUW),q,r)

for 0 < X,Y < 255. We visualize the resulting 256256 array of signs as a 256256 grid of colored pixels:
A yellow (red, blue) pixel represents collinear (negatpesitive, respectively) orientation. In the figures in
this section we also indicate an approximation of the exaetthroughg andr in black.

Figure 3.1(a) shows the result of our first experiment: Wethisdine defined by the points= (12,12)
andr = (24,24) and query it neap = (0.5,0.5). We urge the reader to pause for a moment and to sketch
what he/she expects to see. The authors expected to seewa bealhd around the diagonal with nearly
straight boundaries. Even for points with such simple coetgs the geometry dfoatorient is quite
weird: the set of yellow points (= the points classified astmnline) does not resemble a straight line and

3.1. THE GEOMETRY OF FLOAT-ORIENT 27

Figure 3.2: We repeat the example from Figure 3.1(b) and shewesult for all three distinct choices for
the pivot; namelyp on the left,q in the middle, and on the right. All figures exhibit sign reversal.

the sets of red or blue points do not resemble half-spacessvéfe have points that change the side of the
line, i.e., are lying left of the line and being classified igbt of the line and vice versa.

In Figures 3.1(b) and (c) we have given our base points coatel$ with more bits of precision by adding
some digits behind the binary point. This enhances the datioa effects in the evaluation dloat orient
and leads to even more striking pictures. In (b), the recorepoks like a step function at first sight. Note
however, it is not monotone, has yellow rays extending ihtand red lines extruding from it. The yellow
region (= collinear-region) forms blocks along the lineraBgely enough, these blocks are separated by
blue and red lines. Finally, many points change sides. lmr€igc), we have yellow blocks of varying
sizes along the diagonal, thin yellow and partly red lineterding into the blue region (similarly for the
red region), red points (the left upper corners of the yelitmctures extending into the blue region) deep
inside the blue region, and isolated yellow points almo$t ddits away from the diagonal.

All diagrams in Figure 3.1 exhibit block structure. We nowpkin why: We focus on one dimension,
i.e., assume we keep fixed and vary onlyX. We evaluatdloatorient((pyx+ Xuy, py+YW),q,r) for 0 <
X < 255, whereuy = uy is the increment between adjacent floating-point numbetisarconsidered range.
Recall thatOrientation(p,q,r) = sign((ax— px)(ry — Py) — (Gy — Py) (rx— Px)). We incur round-off errors in
the additions/subtractions and also in the multiplicagioBonsider first one of the differences, Spy- px.

In (a), we havey, = 12 andpx ~ 0.5. Since 12 has four binary digits, we lose the last four HitX in the
subtraction, in other words, the result of the subtractipa py is constant for 2 consecutive values of.
Because of rounding to nearest, the intervals of constdnéaae[8,23], [24,39], [40,55 Similarly, the
floating-point result of, — py is constant for 2 consecutive values &f. Because of rounding to nearest, the
intervals of constant value aj£6,47], [48,69, Overlaying the two progressions gives interyag 23],
[24,39], [40,47], 48,55, ... and this explains the structure we see in the rows of{&) see short blocks
of length 8, 16, 24, ...in (a). In (b) and (c), the situatiorségnewhat more complicated. It is again true
that we have intervals foX, where the results of the subtractions are constant. How&neeq andr have
more complex coordinates, the relative shifts of thesevate are different and hence we see narrow and
broad features.

Exercise 0.3: Download the code from the web page of the course and performawn experiments.

28 LECTURE 3. A FIRST IMPLEMENTATION

(b)

Figure 3.3: Examples of the impact of extended double agtionWe repeat the example from Figure 3.1(b)
with different implementations of the orientation tet) We evaluatgagx — py) (ry — py) and(cy — py)(rx—

px) in extended double arithmetic, convert their values to teyibecision, and compare thenfb) We
evaluatesign((ax — px)(ry — Py) — (dy — Py) (rx— Px)) in extended double arithmetic. For both experiments,
we usedly = Uy = 2753, the same as for the regular double precision examples imé&Ry1. Note that there
are no collinearities (yellow points) reported(in).

Choice of a Pivot Point: The orientation predicate is the sign of a three-by-threerdenant and this
determinant may be evaluated in different waysfldat orient as defined above we use the pgmas the
pivot, i.e., we subtract the row representing the paritom the other rows and reduce the problem to the
evaluation of a two-by-two determinant. Similarly, we mdyose one of the other points as the pivot.
Figure 3.2 displays the effect of the different choices efpivot point on the example of Figure 3.1(b). The
choice of the pivot makes a difference, but nonetheless ébengtry remains non-trivial and sign reversals
happen for all three choices. We will see in Lect@fthat the center point w.r.t. thecoordinate (or the
y-coordinate) is the best choice for the pivot. However, naiad of pivot can avoid all sign errors.

Extended Double Precision: Some architectures, for example, Intel Pentium processffies IEEE ex-
tended double precision with a 64 bit mantissa in an 80 bitesgmntation. Does this additional precision
help? Not really, as the examples in Figure 3.3 suggest. Qglet@mrgue that the number of misclassified
points decreases, but the geometnfloét_orient remains fractured and exploitable for failures similar to
those that we develop below for double precision arithmetic

3.2 Implementation of the Convex Hull Algorithm

We describe ouCt+ reference implementation of our simple incremental athori We give the details
necessary to reproduce our results, for example, the exaatmeter order in the predicate calls, but we
omit details of the startup phase when we search for thalrhiree non-collinear points and the circular
list data structure. We offer the full working source codedshon GAL [24], all the point data sets, and
the images from the analysis on our companion web p&ge/www.mpi-inf.mpg.de/ ~kettner/
proj/NonRobust/ for reference.

We use our own plain convention@i+ point type. Worth mentioning are equality comparison and
lexicographic order used to find extreme points among alirpoints in the startup phase.

3.2. IMPLEMENTATION OF THE CONVEX HULL ALGORITHM 29

struct Point { double x, y; };

The orientation test returnsl if the pointsp, g, andr make a left turn, it returns zero if they are collinear,
and it returns—1 if they form a right turn. We implement the orientation tastexplained above witp as
pivot point. Not shown here, but we make sure that all inteliate results are represented as 64 bit doubles
and not as 80 bit extended doubles as it might happen, e.gtelrplatforms.

int orientation(Point p, Point g, Point r) {
return sign((g.x-p.x) * (ry-p.y) - (q.y-p.y) * (r.x-p.x));
}

For the initial three non-collinear points we scan the inpejuence and maintain its convex hull of up to
two extreme points until we run out of input points or we finchad extreme point for the convex hull.
From there on we scan the remaining points in our ncaimvex _hull function as shown below.

The circular list used in our implementation is self expiagnin its use. We assume a Standard Template
Library (STL) compliant interface and extend it with ciratdrs, a concept similar to STL iterators that
allow the circular traversal in the list without any past-#nd position using the increment and decrement
operators. Inaddition, we assume a function that can remeoarge in the list specified by two non-identical
circulator positions.

Our mainconvex _hull function shown below has a conventional iterator-baseetfiate like other
STL algorithms. It computes the extreme points in countetalise order of the 2d convex hull of the
points in the iterator ranggirst,last) . It uses internally the circular ligtull to store the current
extreme points and copies this list to ttesult output iterator at the end of the function. It also returns
the modifiedresult iterator.

tenpl at e <typenane Forwardlter, t ypenane Outputlter>

Outputlter i ncr_convex_hul | (Forwardlter first, Forwardlter last,
Outputlter result)

{

typedef std:iterator_traits<Forwardlter> Iterator_traits;
typedef typenane lIterator_traits::value_type Point;

t ypedef Circular_list<Point> Hull;
typedef typenane Hull::circulator Circulator;

Hull hull; /'l extreme points in counterclockwise (ccw) orientation
/| first the degenerate cases until we have a proper triangle
first = find_first_triangle(first, last, hull);
whil e (first = last) {
Point p = =*first;
/1 find visible edge in circular list of vertices of current hull
Circulator c¢_source = hull.circulator_begin();
Circulator c¢_dest = c_source;
do {
c_source = c_dest++;
i f (orientation(*C_source, =*c_dest, p) < 0) {
/I found visible edge, find ccw tangent
Circulator c_succ = c_dest++;
whi | e (orientation(*C_succ, =c_dest, p) <= 0)
c_succ = c_dest++;

30 LECTURE 3. A FIRST IMPLEMENTATION

o P1

(@) (b) (©)

Figure 3.4: Results of a convex hull algorithm using doytoleeision floating-point arithmetic with the
coordinate axes drawn to give the reader a frame of refereértoe implementation makes gross mistakes:
In (a), the clearly extreme poim is left out. In (b), the convex hull has a large concave coamg a (non-
visible) self intersection. In (c), the convex hull has achg visible concave chain (and no self-intersection).

/1 find cw tangent

Circulator c_pred = c_source--;

whi | e (orientation(*C_source, *c_pred, p) <= 0)
c_pred = c_source--;

/' c'source is the first point visible, ¢’ succ the last

if (++c_pred !'= c_succ)
hull.circular_remove(c_pred, c_succ);

hull.insert(c_succ, p);

break; // we processed all visible edges

}
} while (c_source != hull.circulator_begin());
++first;

}
return std:copy(hull.begin(), hull.end(), result);

3.3 The Impact on the Convex Hull Algorithm

Let us next see the impact of approximate arithmetic on oaveohull algorithm. Figure 3.4 shows point
sets (we give the numerical coordinates of the points betowd) the respective convex hulls computed by
the floating-point implementation of our algorithm. In eamdse the input points are indicated by small
circles, the computed convex hull polygon is shown in greenl the alleged extreme points are shown as
filled red circles. The examples show that the implememati@y make gross mistakes. It may leave out
points that are clearly extreme, it may compute polygonsahaclearly non-convex, and it may even run
forever.

3.4. FURTHER EXAMPLES 31

We discuss in detail the output shown in Figure 3.4(b). Wesitat the points below. For improved
readability, we will write humerical data in decimals. Sutdtimal values, when read into the machine, are
internally represented by the nearest double. We have madéist our data can be safely converted in this
manner, i.e., conversion to binary and back to decimal isdéetity operation. However, thé++ standard
library does not provide sufficient guarantees and we offditeonally the binary data in little-endian format
on the accompanying web page.

pp = (24.00000000000005 24.000000000000053
P, = (240, 6.0)
ps = (5485, 6.0)
ps = (54.85000000000035761.000000000000121
ps = (24.000000000000068 24.000000000000071
pe = (6.0, 6.0).

After the insertion ofp; to ps, we have the convex hullp, p2, ps, p4). This is correct. Poinps lies
inside the convex hull of the first four points; Hidat orient(p4, p1, ps) < 0. Thusps is inserted betweep,
andp; and we obtair{ p1, p2, Ps, P, Ps). However, this error is not visible yet to the eye, see Figuéa).

The point ps sees the edgeu, ps) and (p1, p2), but does not see the edgps, p1). All of this is
correctly determined bfloat.orient. Consider now the insertion process for pgmt Depending on where
we start the search for a visible edge, we will either find tihged p4, ps) or the edgé p;, p2). In the former
case, we insenpg betweenp, and ps and obtain the polygon shown in (b). It is visibly non-conaad has
a self-intersection. In the latter case, we inggrbetweenp; and p, and obtain the polygon shown in (c).
It is visibly non-convex.

Of course, in a deterministic implementation, we will seédyame of the errors, namely (b). This is
because in our sample implementation as given in the appendihavel = (py, ps, P4, P1), and hence the
search for a visible edge starts at edgg, p3). In order to produce (c) with our implementation we replace
the pointp, by the pointp, = (24.0,10.0). Thenps sees(p,, ps) and identifies p1, p,, ps) as the chain of
visible edges and hence constructs (c).

3.4 Further Examples’

We give further examples for large effects of seemingly smrabrs. We give sequencegs, py, Pz, ... of
points such that the first three points form a counter-clas&wriangle (andloat orient correctly discovers
this) and such that the insertion of some later point leadsatgorithm astray (in the computations with
float orient). We also discuss how we arrived at the examples. All our g@kasninvolve nearly or truly
collinear points; we will see in Lectureg? that sufficiently non-collinear points do not cause any [aois.
Does this make the examples unrealistic? We believe notyldaimt sets contain nearly collinear points or
truly collinear points, which become nearly collinear byweersion to floating-point representation.

An extreme point is overlooked: Consider the set of points below. Figure 3.4(a) and 3.6(ayvdihe
computed convex hull; a point that is clearly extreme isdeft of the hull.

32 LECTURE 3. A FIRST IMPLEMENTATION

D4 4| p.

/ o
)

7
<

(@) (b) ()

Figure 3.5:(a) The hull constructed after processing poiptgo ps. Pointsp; andps lie close to each other
and are indistinguishable in the upper figure. The magnifehematic view below shows that we have a
concave corner gis. The pointps sees the edge®s, p2) and(p4, ps), but doesot see the edgéps, p1).
One of the former edges will be chosen by the algorithm as lthinof edges visible fronps. Depending
on the choice, we obtain the hulls showr(l) or (c). In (b), (pa4, ps) is found as the visible edge, and(t),
(p1, p2) is found. We refer the reader to the text for further expliomast The figures show the coordinate
axes to give the reader a frame of reference.

p. = (7.3000000000000194 7.3000000000000167 float.orient(py, pa, ps) >

p. = (24.000000000000068 24.000000000000071) float.orient(py, po, pa) >

ps = (24.00000000000005 24.000000000000053) float.orient(p, ps, pa) >

ps = (0.500000000000016210.50000000000001243 float.orient(ps, p1, pa) > 0 (??)
ps = (8 4 ps=(4 9 pr=(1527)

Pg = (2625) Po = (19,11)

What went wrong?.et us look at the first four points. They lie almost on the §ne x, andfloat_orient
gives the results shown above. Only the last evaluation awrindicated by “(?7?)”. Geometrically, these
four evaluations say thai, sees no edge of the trianglps, p2, ps). Figure 3.6(b) gives a schematic view
of this impossible situation. The points, ..., pg are then correctly identified as extreme points and are
added to the hull. However, the algorithm never recovem filoe error made when consideripg and the
result of the computation differs drastically from the emtrhull.

We next explain how we arrived at the instance above. lotuitold us that an example (if it exists at
all) would be a triangle with two almost parallel sides andhva query point near the wedge defined by

3.4. FURTHER EXAMPLES 33

(b)
Figure 3.6:(a) The case of an overlooked extreme point: The pgintn the lower left corner is left out

of the hull. (b) Schematic view indicating the impossible situation of anpaiutside the current hull and
seeing no edge of the hulklies to the left of all sides of the triang(g, q,r).

the two nearly parallel edges. In view of Figure 3.1 such atpwiight be mis-classified with respect to
one of the edges and hence would be unable to see any edgetoatigge. So we started with the points
used in Figure 3.1(b), i.ep1 =~ (17,17), p2 = (24,24) ~ p3, where we movea, slightly to the right so

as to guarantee that we obtain a counter-clockwise triangykethen probed the edges incidentpowith
points p4 in and near the wedge formed by these edges. Figure 3.7(&liziss the outcomes of the two
relevant orientation tests. Each red pixel correspondspra that sees no edge. The example obtained in
this way was not completely satisfactory, since some aatént tests on the initial trianglg, p2, ps) were
evaluating to zero.

We perturbed the example further, aided by visualiiogt orient(p1, p2, p3), until we found the ex-
ample shown in (b). The final example has the nice propertyath@ossiblefloat.orient tests on the first
three points are correct. So this example is independent &ay conceivable initialization an algorithm
could use to create the first valid triangle. Figure 3.7 (loyahthe outcomes of the two orientations tests for
our final example.

A point outside the current hull sees all edges of the convexutl: Intuition told us that an example (if

it exists) would consist of a triangle with one angle closertand hence three almost parallel sides. Where
should one place the query point? We first placed it in thensiom of the three parallel sides and quite a
distance away from the triangle. This did not work. The chditat worked is to place the point near one of
the sides so that it could see two of the sides and “float-geethird. Figure 3.8 illustrates this choice. A
concrete example follows:

pr = (2000, 49.200000000000003 float orient(py, p2, p3) > 0
p. = (1000, 49.600000000000001 float orient(py, p2, pa) < 0
ps = (—2333333333333333450.93333333333333 float orient(py, p3, p4) < 0
ps = (16666666666666669 49.333333333333336 float orient(ps, p1, pa) < 0 (??)

The first three points form a counter-clockwise orientednigie and according tfloat orient, the al-
gorithm believes thap, can see all edges of the triangle. What will our algorithm dio@epends on the

34 LECTURE 3. A FIRST IMPLEMENTATION

p1: (17.3000000000000017.300000000000001 (7.300000000000019%.3000000000000167
p2: (24.0000000000000624.000000000000071 (24.0000000000000624.000000000000071
p3: (24.000000000000024.000000000000053 (24.000000000000024.000000000000053
ps: (0.50000000000000710.5) (0.50000000000000358.5)

(a) (b)

Figure 3.7: The point$ps, p2, p3) form a counter-clockwise triangle and we are interestedéndassifi-
cation of points(X(pa) + Xu, Y(pa) + Yu,) with respect to the edge®s, p2) and (ps, p1) incident to p;.
The extensions of these edges are indistinguishable inich&gs and are drawn as a single black line. The
red points do not “float-see” either one of the edges. Thes¢harpoints we were looking for. The points
collinear with one of the edges are ocher, those collinedin both edges are yellow, those classified as
seeing one but not the other edge are blue, and those se¢ingdyes are greefa) Example starting from
points in Figure 3.1.(b) Example that achieves “invariance” with respect to pertmutaof the first three
points.

implementation details. If the algorithm first searchesafoinvisible edge, it will search forever and never
terminate. If it deletes points on-line fromit will crash or compute nonsense depending on the details of
the implementation of..

3.5 Non-Continuous Functions

Why can our convex hull algorithm produce outputs that amsgly incorrect? The reason is the use of
approximate arithmetic for computing non-continuous fiorcs.

Three points are collinear or form a left or a right turn. THiscontinuity is clearly visible in the
analytical formula for the orientation function:

Orientation(p,q,r) = sign((ax — Px)(y — By) — (ay — Py) (rx— Px))-

It is the sign of a real numbers; the sign function is a steption and hence non-continuous.
Geometric algorithms are based on the laws of geometry;; & gpint lies outside a convex polygon if
and only if it can see one of its edges. Float-see is an incoimglementation of “see” and hence points

3.6. GEOMETRIC COMPUTING VS. NUMERICAL ANALYSIS 35

Do Pa

b3 p1

Figure 3.8: Schematic view of a point seeing all hull edgeke Ppointp, sees all edges of the triangle
(P1, P2, P3).

are misclassified. Of course, only nearly collinear poimesraisclassified. So why doesn’t our algorithm
compute polygons that are close to the true hull? There deasit two reasons, why we should not expect
this to be the case. First, a point far away from a convex miygnay be classified as lying inside the
polygon (see Figure 3.6(a)). Second, a misclassified poayt ereate a slightly non-convex polygon. This
small error is amplified by later insertions (see Figurel®)(

Not only our primitive is non-continuous, the higher levelognetric tasks are also tantamount to non-
continuous functions. In the convex hull problem, we asktf@ set of extreme points. This set is a
non-continuous function of the input. For example, if a pdiat lies of an edge of the convex hull moves to
the outside of the hull, the set increases in size. Figur@rbwides another example. Observe that the blue
cylinder does not contribute to the output. However, as altre$ shrinking it ever so slightly, a blue spot
will appear in the center of the front side of the result. Sitiee result of the computation is a data structure
that records the origin of each surface patch of the outhatptitput is again a non-continuous function of
the input. Figure 1.2 was produced with the CAD-softwaren@BD. We asked the system to compute

(((s1 N's2) Ne2) N c).

If, the task is specified as
(e N) Nsy) N s,

the software returns an error.

3.6 Geometric Computing vs. Numerical Analysis

We contrast geometric computing and numerical analysigiodthms in numerical analysis are also de-
veloped for the Real-RAM model of computation. The standamplementation of real numbers is float-
ing point arithmetic. Numerical analysts are well awareha pitfalls of floating point computatior?].
Forsythe’s paper and many numerical analysis textboolesfaeexample [17, page 9], contain instructive
examples of how popular algorithms, e.g., Gaussian elitimnacan fail when used with floating point
arithmetic. These examples have played a guiding role inl¢irelopment of robust numerical methods.
Many numerical algorithms are self-correcting, i.e., amemade at some time of the computation is
remedied at a later time. In contrast, the algorithm of caiajimnal geometry are non-self-correcting as
we have seen in our convex hull algorithms. Consider, fomgpte, the Jacobi algorithm for solving a
symmetric linear systerAx=b. We write A asL + D + R, whereD is a diagonal matrix consisting of the
diagonal entries oA, L is a lower triangular matrix consisting of the below-diagbelements oA, andRis
an upper triangular matrix consisting of the above-diagjermnents ofA. ThenR= LT, sinceA is assumed
to be symmetric.

36 LECTURE 3. A FIRST IMPLEMENTATION

LEMMA 8. The Jacobi-iteration
X1 =—-D"HL+R)x+D"1b

converges for every initial valugyagainst the solution of Ax b, if A is strictly diagonally dominant, i.e.,

|aji | > §_|a;j\ for all i.
IEA]

Proof. We argue in two steps. We first assume that the iteration cgeseand show that the fixpoint of the
iteration is the solution oAx= b. In the second step, we show that the iteration converges.
Let x* be a fixpoint of the iteration, i.ex = —D~1(L+ R)x* +D~!b. Then
X =-DYL+RXx +D b < Dx' = —(L+R)Xx =b
<= (D+L+R)X =b
— x*=A"1h
LetG= -D 1(L+R) andc=D"h. Thenx* = Gx +c. We next estimate the distance fromto the
fixpoint x*. We have

Xk — X =GX%-1+Cc—(GX +c¢)
= G(X-1—X")
=G (x—x)
and hencéx, — x*|| < ||G||¥||xo — x*|| for any matrix norm. The infinity norm o is less than one. Observe
that the sum of the absolute values of the entries of-theow of G is § j; Jau] which is less than one since

. . . [ai
Ais assumed to be diagonally dominant. O

Assume next, that we make an error in every iteration, i.ecaraputexy,1 = GX + c+ & for some
vectore, with ||lex|| < €. Then

Xk = GX1+C+61
=G(G(X-2+C+&-—2)+Ct+e1
= G2+ (G+1)c+Ge 2+ lex 1

=G+ G lc+ > G lg_;.
1

<i<k 1<i<k

The first two terms converge against= A~'b; observe that we know already that the exact iteration
converges against. The norm of the last term is bounded by

IS Gacill< Y G el <

1<i<k 1<i<k

&
-Gl

We conclude that the total error stays bounded. Moreovgreaior made in a particular step is dampened
by |G| in any later step.

Many problems of numerical analysis are continuous funstiftom input to output. For example, the
eigenvalues of a matrix are continuous functions of theientf the matrix. In contrast, most problems in
geometric computing are non-continuous functions.

3.7. RELIABLE (GEOMETRIC) COMPUTING 37

However, numerical analysis also treats non-continuoablpms. Linear system solving is a non-
continuous function. The systeAx = b has a solution if and only i is in the span of the columns &f
Thus solving a linear system implicitly answers a yes-nostjae, namely whethdp is in the span of the
columns ofA. This is, however, not the view of numerical analysis.

e Numerical analysis calls such problems ill-posed or attl#fasonditioned.

e We use arithmetic to make yes/no decisions, e.g., gdeson ¢ or not?

3.7 Reliable (Geometric) Computing

What can we do? Before discussing solution, we clearly steggyoal. We want reliable implementations.
We call a progranteliable if it does what it claims to do, if it comes with a guarantee.a@untees come in
different flavors.

(1) The strongest guarantee is to solve the problem forpilitsn For the example of the convex hull, this
amounts to computing the extreme vertices of the hull foseltS of input points. (2) A weaker, but still
very strong, guarantee is to solve the problem approximébelall inputs. For example, we might compute
a convex polygorP such thaP C U, (convS) and con\s C U, (P), wheree is a small positive constant, say
€ =0.01 andU, denotes-neighborhood. (3) Or we might give one of the guaranteesebmut only if the
coordinates of all input points are integers bounded/hpayM = 220, (4) Or we might guarantee that the
program never crashes and always produces a polygon. Ydihél polygon is close (with an unspecified
meaning of close) to the convex hull. (5) Or we guaranteeingth

We find guarantees 4 and 5 too weak. We will teach you techsifpreachieving guarantees 1 to 3. The
techniques come in three kinds. The first approach is to ertbat the implementations of geometric pred-
icates always return the correct result. It is known as tlaetegeometric computation (EGC) paradigm and
has been adopted for the software libratieDA CGALand GORELIBRARY [?, 24, 45, 40]. It implements
a Real-RAM to the extent needed by a particular algorithm iartde approach mainly advocated in this
book. The second approach is to perturb the input so thatah&ry-point implementation is guaranteed
to produce the correct result on the perturbed input [35, 8@ discuss this approach in Lecti#2 The
third approach is to change the algorithm so that it can cae tive floating-point implementation of its
geometric predicates and still computes something mefaninghe definition of “meaningful” is crucial
and difficult. This approach is problem-specific. We disaussLecture??.

Reliability is our main concern, but efficiency is also of wishimportance. Efficiency comes in two
flavors. On the theoretical side, we aim for algorithms wity esymptotic running time. On the practical
side, we aim for programs that can compete with non-relialiérnatives.

3.8 Non-Solutions

Maybe, the reader finds that the problem should have an easyNexdiscuss two approaches that are
frequently suggested, but definitely do not solve the proble

The first approach is specific to the planar convex hull pmobleA frequently heard reaction to the
examples presented in this lecture is that all examplesoixple fact that the first few points are nearly
collinear. If one starts with a "roundish” hull, or at leatdrss with a hull formed from the points of minimal
and maximalx- andy- coordinates, the problem will go away. We have two answetthis suggestion:
Firstly, neither way can cope with the situation that allitpoints are nearly collinear, and secondly, the

38 LECTURE 3. A FIRST IMPLEMENTATION

p: (05 2) p: (0.50000000000833222)

0.5000000000083322 0.5
_ 12 _ 12
@ () (1)
. (24) . (24)
: 24 : 24
(@ (b)

Figure 3.9: The effect of epsilon-tweaking: The figures stibe result of repeating the experiment of
Figure 3.1(a), but using an absolute epsilon toleranceevafie = 1010, i.e., three points are declared
collinear if float.orient returns a value less than or equal to 30in absolute value. The yellow region of
collinearity widens, but its boundary is as fractured asteefFigure (a) shows the boundary in the direction
of the positivey-axis, and Figure (b) shows the boundary in the directiomefositivex-axis. The figures
are color coded: Yellow (red, blue, resp.) pixels represeliinear (negative, positive, resp.) orientation.
The black lines correspond to the lin@sientation(p,q,r) = +¢.

example in Figure 3.5 falsifies this suggestion. Observievtkahave a "roundish” hull after the insertion of
the pointsp; to p4 and then the next two insertions lead the algorithm astrhg. éxample can be modified

to start with points of minimal and maximat coordinates first, which we suggest as a possible course
exercise.

Epsilon-tweaking is another frequently suggested and temedy, i.e., instead of comparing exactly
with zero, one compares with a small (absolute or relatoieyance value epsilon. Epsilon-tweaking simply
activates rounding to zero. In the planar hull example, wilsmake it more likely for points outside the
current hull not to see any edges because of enforced afiipeand hence the failure that a point outside
the hull will see no edge of the hull will still occur. In the axples of Section 3.1, the yellow band in
the visualizations of collinear pixels becomes wider, bsithioundary remains as fractured as it is in the
comparison with zero, see Figure 3.9.

Another objection argues that the examples are unreadistoe they contain near collinear point triples
or points very close together (actually the usual motivatmr Epsilon-tweaking). Of course, the examples
have to look like this, otherwise there would not be room farnding errors. But they are realistic; firstly,
practical experience shows it. Secondly, degeneracieh,agicollinear point triples, are on purpose in many
data sets, since they reflect the design intent of a CAD aact&in or in architecture. Representing such
collinear point triples in double precision arithmetic dadher transformations lead to rounding errors that
turn these triples into close to collinear point triples.dahirdly, increasingly larger data sets increase the

3.9. WHERE DO WE STAND? 39

chance to have a bad triple of points just by bad luck, andglesfiailure suffices to ruin the computation.

3.9 Where Do We Stand?

Where do we stand?

1. We haveO(nlogn) algorithms for computing convex hulls in the plane. Thegmiaihms use only
simple operations on points, namely lexicographic ordera@ientation.

2. If floating point arithemetic is used for implementing tréentation test, disaster can happen.

What can we do? We are in good shape as long as we can guarhatdexicographic order and
orientation is determined correctly. So it seems naturagstrict the coordinates to subsetdigfwhere we
can guarantee this. We will see in the next lecture that wedcaso for(QQ and also for the set of floating
point numbers. Later in the course, we will see how to do salgebraic expressions and then algebraic
numbers.

3.10 Historical Notes

Numerical analysts are well aware of the pitfalls of floatpmnt computation7]. Forsythe’s paper and
many numerical analysis textbooks, see for example [17¢ @jgcontain instructive examples of how
popular algorithms, e.g., Gaussian elimination, can fdiemw used with floating point arithmetic. These
examples have played a guiding role in the development afstaumerical methods.

The first implementations of geometric algorithms wereegitiestricted the input so that integer arith-
metic was sufficient or used floating point arithmetic as thplementation of real arithmetic. Many im-
plementers reported that they found it very cumbersometithge implementations to work. KM had the
following experiences. He asked a student to implement gori#thm for Voronoi diagrams of line seg-
ments; see Figur@?. The implementation worked only for a small number of exaaplMore seriously,
the first implementations of geometric algorithms in LEDAuAnot work on all inputs; all of them would
break for some inputs.

The literature contains a small number of documented fslulue to numerical imprecision, e.g., For-
rest's seminal paper on implementing the point-in-polygest [25], Fortune’s example for a variant of
Graham'’s scan?], Shewchuk’s example for divide-and-conquer Delaunangulation [52], Ramshaw’s
braided lines [45, Section 9.6.2], Schirra’s example fonvex hulls [45, Section 9.6.1], and Mehlhorn
and Naher's examples for the sweep line algorithm for liegnsent intersection and boolean operations on
polygons [45, Sections 10.7.4 and 10.8.4]. This lectureaged on an article by Kettner et al. [42].

Software and hardware reliability goes much beyond gedmedmputing. A version of the Pentium
chip contained an error in the division hardware [4]. The@ecosted Intel millions of dollars. The Ariane
V rocket was lost because of a bug in the control software. RUIER EXAMPLES IN Chee’s write-up

3.11 Implementation Notes

3.12 Exercises

Exercise 0.4: Formulate more guarantees. &

40

LECTURE 3. A FIRST IMPLEMENTATION

Lecture 4

Number Types |

We will study arbitrary precision integers, rationals, €ixarecision floating point numbers, and arbitrary
precision floating point numbers. In later lectures, we Veilrn about algebraic expressions and general
algebraic numbers. We start out with a short discussion lwfrary precision integers and rationals. The
bulk of the lecture will be about floating point numbers.
Floating point numbers are of the form
s-m-2°

wheres is asign bit (—1 or +1), mis a non-negative number calledantissaand e is an integer called
exponent The number of digits available for the mantissa is eithaditall hardware floating point systems)
or arbitrary (most software floating point systems). Theoment either comes from a fixed range (hardware
floating point numbers and some software floating point sys}eor is arbitrary (some software floating
point systems). Already the first programmable computesretf floating point numbers. In 1938, Konrad
Zuse completed the "Z1”, the first programmable computewditked with 22-bit floating-point numbers
having a 7-bit exponent, 15-bit significant (including on®plicit bit), and a sign bit. The Z3, completed
in 1941, implemented floating point arithmetic exceptiongwepresentations for plus and minus infinity
and undefined. The first commercial computers offering fhggtioint arithmetic in hardware are Zuse's Z4
in 1950, followed by the IBM 704 in 1954. The IEEE standard-1985 [36] defines single and double
precision floating point arithmetic which is implementedhiardware on all modern processors. Floating
point arithmetic (hardware and software) is the workhooseafl scientific and geometric computations and
therefore we need to study it carefully. The preceding staté concerning the importance of floating point
computations seems to contradict the findings of Lectured®ds not. In the preceding lecture, we showed
that a naive substitution of floating point arithmetic foalrarithmetic does not work. In the course we will
learn that the wise use of floating point arithmetic is onearherstones of reliable and efficient geometric
computing.We will teach you how to draw reliable conclusions from appraate arithmetic.

4.1 Built-In Integers and Arbitrary Precision Integers

Hardware and programming languages provide fixed precisitager arithmetic, usually in signed and
unsigned form. Letvbe the word size of the machine andret 2V. Most current workstations have= 32
orw = 64. The unsigned integers consist of the integers betwead @& 1 (both inclusive) and arithmetic
is modulom. The signed integers form an intervlNINT ,MAXINT]. On most machines signed integers
are represented in two’'s complement. TRININT = —2%-1 andMAXINT = 2%-1 — 1. An arithmetic

41

nces??

42 LECTURE 4. NUMBER TYPES |

operation on signed integers may produce a result outsgleatige of representable numbers; one says
that the operation underflows or overflows. The treatmentefftow and underflow is not standardized, in
particular, it is not guaranteed that they lead to a runtimergin fact they usually do not. For example,
the additionMAXINT+ MAXINThas result-2 on the KM’s machine, since adding 0111 to itself yields
11...10, which is the representation e® in two’s complement.

Arbitrary integers are readily implemented in software, dgample, in packages [31] and [37, Class
Biglinteger]. The running time of addition and subtractisrlimear in the number of digits. All packages
implement some form of fast integer multiplication. Depiagdon the method used, the running time of
multiplication isO(L'°9%) or O(LlogL loglogL), whereL is the number of digits in the operands.

Exercise 0.5: The greatest common divisor of two integerandy with x >y > 0 can be computed by the
recursionGCDx,y) = x if y =0 andGCDx,y) = GCDy,x mody) if y > 0. Prove that the number
of recursive calls is at most proportional to the lengtlyoHint: Assumex >y and letx, = x and
xp =Y. Fori >1andx_1#0letx =x_» modx_i1. Letxx = 0 be the last element in the sequence
just defined. Relate this sequence to the gcd-algorithmwShatx,_; > 0 andx;_» > X_1 + X; for
I < k. Conclude thak_; is at least as large as theh Fibonacci number. &

Exercise 0.6: The standard algorithm for multiplying twio-bit integers has running tim@(L?). Karat-
suba’s method ([41]) runs in tim@®(L'°9%). In order to multiply two numbers andy it writes
X=x1-2"2 4 x; andy = y; - 252 +y», wherexy, X2, y1, andy, havel /2 bits. Then it computes
z= (X1 +X2)- (y1+Y2) and observes thaty = x; - y1 - 2 + (z2— X1y1 — XoY2) - 2/2 4 Xay». In this way
only three multiplications ok /2-bit integers are needed to multiply twebit integers. The standard
algorithm requires four. &

4.2 Rational Numbers

A rational number is the quotient of two integers. Additiordanultiplication of rational numbers are exact.
A rational is normalized, if numerator and denominator atatively prime. Normalization requires to find
the greatest common divisor of numerator and denominatwaa divisions to remove it. Normalization
is fairly costly. However, one should be aware that somerdlguos lead to non-normalized numbers and re-
quire normalization for efficiency. A prime example is Gaasslimination. Consider Gaussian elimination

of a 3x 3 matrix.
e
f —
i

a
c
g

b b e
d d—b(c/a) f—e(c/a))
h h—b(g/a) i-e(g/a)

b e
(ad—bc)/a (af —ec)/a)
(ah—bg)/a (ai—eg/a

b e
(ad—bc)/a (af —ec)/a)

0 (ai—eg)/a— Eiﬂiﬂ?ﬁfi(af —eg/a

O 0O OO0OY OOV

4.3. FLOATING POINT NUMBERS 43

We now have a close look at the element in positi8s/8). We have:

, (ah—bg)/a _ (ai—eg)(ad—bc) — (ah—Dbg)(af —eq)
(ai—eg)/a- (ad—bc)/a(af_ec)/a_ a(ad—bc)
_ all terms containing+ (egbc— bgeq
B a(ad — be) '

i.e., numerator and denominator contain the common faxtdf common factors are not cleared out in
Gaussian elimination, the length of the numbers grows expiadly in the dimension of the matrix. If
entries are kept in normalized form, Gaussian eliminatipalynomial [?].

The use of rational arithmetic is inefficient and should beided.

4.3 Floating Point Numbers

We start out with a definition of binary floating point systenWe explain the representation of numbers
and the key properties of floating point arithmetic. We mowndamderive error bounds for the evaluation of
expressions. We will use them extensively in the courseoftimized evaluations of geometric predicates in
this lecture, as the basis for an efficient linear kernel {lwex??), for the analysis of perturbation techniques
(Lecture??), as the computational basis for the exact evaluation @labgc expressions (Lectu?®) and,
more generally, arithmetic with algebraic numbers (Lex®#).

Hardware floating point arithmetic is standardized in thEEHloating point standard [32, 33, 36]. A
floating point number is specified by a sigra mantissan, and an exponerd. The sign is+1 or—1. The
mantissa consists afbits my, ..., m, ande is an integer in the rang@min, emay. The range of possible
exponents contains zero agg, = —oo and/oreyax = + is allowed.

TODO: doeseyin, = — really make sense? Thénis dense inR at 0. Check that all arguments stay
valid. TODO

The number represented by the tripgem, e) is as follows:

o If &min < €< €may the number is: (1+ 51 mi2‘i) - 28, This is called anormalizednumber.

e If e= eyin then the number is- zlgigth*‘Zemi"“. This is called ssubnormalnumber. Observe
that the exponent ismin+ 1. This is to guarantee that the distance of the largest saotalcmumber
(1—2742%in+1 and the smallest normalized numbef12?! is small.

e In addition, there are the special number® and 4+« and a symbol NaN which stands for not-a-
number. It is used as an error indicator, e.g., for the redwtdivision by zero.

Double precision floating point numbers are represented hit§. One bit is used for the sign, 52 bits for the
mantissat(= 52) and 11 bits for the exponent. These 11 bits are integpiatean integef < [0..2'1 - 1] =
[0..2047. The exponene= f —1023; f = 2047 is used for the special values and hesge= —1023 and
€max= 1023. The rules fof = 2047 are:

e If all m are zero and = 2047 then the number ise or —co depending ors.

e In f = 2047 and somay is non-zero, the triple represents NaN (= not a number).

?7?7?

?7?

44 LECTURE 4. NUMBER TYPES |

Let F = F(t, emin, €max) be the set of real numbers (includinge and—oo) that can be represented as above.
A number inF is calledrepresentablea number inR \ F is callednon-representable Observe that for
normalized numbers, the leading 1 is not stored. It is someticalled the hidden bit. The largest positive
representable number (except §oyis MAXF = (2—271) - 2%max, the smallest positive representable number is
MINg =27t 28mintl — p~t+emnt1 gnd the smallest positive normalized representable nUISMENNORME =

1. 28nint1 — 2emint1 \We define th@normal rangeof F as

[—MAXg, —MINNORMg | U [MINNORMg , MAX]

and thesubnormal ranges the open interval-MINNORMg, +MINNORMg). Observe that O lies in the sub-
normal range. Theangeof F is the closed interval-MAXg, +MAXg]. We requireMINNORMg < 2—t. This

guarantee®INY? > MINNORM .

Exercise 0.7: Specialize the definitions above to double precision flgghioint numbers. &

4.3.1 Rounding

F is a discrete subset &. For any reak, let! flu(x) be the smallest floating point number greater then or
equal tox and letfld(x) be the largest floating point number smaller than or equal ite.,

flux) =min{ze F | x<z} and fld(x) =max{zeF |z<x}.

If xis representabldlu(x) = fld(x) = x. If x > MAXg, flu(x) = 4+ andfld(d) = MAXg, and if 0< x < MINf,
flu(x) = MINg andfld(x) = 0.

Rounding a real numbexyields flu(x) or fld(x). There are several rounding modéounding away
from zeroyieldsflu(x) for a nonnegativex andfld(x) for a negativex. Rounding towards zergields fld(x)
for a nonnegativex andflu(x) for a negativex. Rounding to nearesyields flu(x) or fld(x) depending on
which number is closer tr. If both numbers are equally close, i.e= (flu(x) 4 fld(x))/2, the result of the
rounding has an even last bit in the mantissa. The lattermalkes the rounding deterministic; also there
is empirical evidence?] that “rounding to even” in the case of ties has superior cataonal properties.
Rounding to nearest is the default rounding mode in the IBB&dsird and we follow this convention. We
use f{x) to denote the result of roundingto the nearest floating point number. Xt MAXg, we define
fl(X) = o, and ifx < —MAXg, we define f{x) = —oo. The following theorem states that rounding of numbers
in the normal range incurs a small relative error.

THEOREM9. If x € R lies in the normal range,
max(|x — flu(x)| , |x — fld(d)|) < 27 min(|x], [fld(x)|, [flu(x)|) 1)
and
x—fl(x)| <27 Tmin(|x|, [fl(x)]).)

If x| > MAXg, [x—fI(x)] <271 fl(x)].

Lflu stands for “float-up” andld stands for “float-down”.

4.3. FLOATING POINT NUMBERS 45

Proof. We may assume thatis positive. ThetMINNORMg < X < MAXg and hencex = m2® for somem and
ewith 1 < m< 2 andemin < € < emax If €= emax We have in additiom < 2— 2. The distance between
adjacent floating point numbers with exponeiig 2-1€. Also, min(|x|, |fld(x)], |flu(x)|) > 28. Thus

max(|x — flu(x)|, |x— fid(d)|) < 27" < 27 min(|x|, |fid(x)|, |flu(x)]).

The second claim follows frorx — fl(x)| < 27t=1*€, Finally, if [x| > MAXg, |fl(X)| = o and this implies the
third claim. O

For subnormal numbers, the relative error of rounding magrbérarily large. For example fox =
MINg /2 we have flx) = 0 and henceéfl (x) — x| = x. Relative tox, the error is 1, and relative to(X), the
error in+o. However, the absolute error is bounded.

LEMMA 10. Let xe R be in the subnormal range. Then
Ix—fl(x)| < 27t Lremntl — 2~ t=IMTNNORME .
Proof. The distance between subnormal floating point numberstigign1, O

The quantities 2' and 2t~ are so important that they deserve a name. Weecall2~! the precision
of the floating point system and= 2-'~1 the unit of roundoff

THEOREM 11 (Quality of Rounding Function)For any real X,

[x—fl(x)| < umax(|fl(x)| ,MINNORME) (3)

4.3.2 Arithmetic on Floating Point Numbers

Arithmetic on floating point numbers is only approximateniturs roundoff error. Although floating point
arithmetic is inherently inexact, the IEEE standard gues that the result of any arithmetic operation is
close to the exact result, frequently as close as possititeinhportant to distinguish between mathematical
operations and their floating point implementations. Wedse), ®, and® for the floating point imple-
mentations of addition, subtraction, multiplication aridiglon, respectively. Only in this lecture, we use
1/2 for the square-root operation aryzt for its floating point implementation. Generally, we uséof the
floating point implementation of. The floating point implementations of the operatigns—, -, /, and/2
yield the best possible resulthis is an axiom of floating point arithmetic.

DEFINITION 1. If x,y € F ando € {+,—,-,/} then
x3y=fl(Xxoy)

and

VX = fl(x/?).

As an immediate consequence of this definition and Theoremweldbtain:

46 LECTURE 4. NUMBER TYPES |

THEOREM 12 (Error Bound for Single Operationslf. x,y € F ando € {+,—,-,/} then

X3y —xoy| < umax|x3y|,MINNORMg) 4)
[xoy| < (1+u)max(|x3y|,MINNORMg) (5)
‘\/i—xl/z‘ <umin(x/?,v/x). (6)
X2 < (14 u)yx @

VX< (1+u)xt2)

Proof. Inequality (4) follows immediately from Theorem 11 and inatfity (5) is a short calculation.
IXoy| < |Xoy—x3y|+ [x3y| < umax(|x3y|,MINNORMEg) + [X3Y| < (14 u)max(|x3y|,MINNORME).

Inequality (6) certainly holds ik = 0 and hence/? = \/x = 0 or if x= +c and hence/? = /X = .
If x> 0, and hence& > MINF, we havex/2 > MINNORM¢ and hence/x > MINNORMg. Inequality (6) then
follows from (2). Inequalities (7) and (8) are immediate sequences of (6). O

Observe that the floating point operations ©, ®, @ and ,/ must return the exact result if this is
representable. This is too much to ask for more complex tipardor example logarithms or exponentials.
There one requires that the implementation either retimmgxact result (if representable) or one of the two
adjacent floating point numbers.

We will also need the following properties.

(a) Floating point arithmetic is monotone, i.e.,aif < a) andb; < b, thena; G a, < b; & h, and if
0<a <ayand 0< by <b,thenay ®ax, < by ® by.

(b) Multiplication by a power of two incurs no roundoff errae., ifa € F is a power of twob € F and
2aandabare in the range df, thena®a=2-aandacb=a-h.

(c) If a+bis representable, themd b =a+ b and ifabis representabla® b = ab.
(d) If xe N, x < 21 andt < e < emay thenx2® is representable.
The IEEE standard also defines the results for “strange” amatibns of arguments. Of course, division

by zero yields NaN. Also, if one of the arguments of an additioNaN or the addition has no defined result,
e.g.,—% + oo, then the result is NaN.

Exercise 0.8: Leta,b € F with % < 8 < 2. Showthahob=a—b. This was first observed by Sterbenz [53].
¢

Exercise 0.9: Assume for this exercise that point coordinates are doublgs2, 1]. Show

Orientation(p,q,r) = O impliesfloat orient(p,q,r) = 0.

float orient(p,q,r) # 0 impliesOrientation(p,q,r) = float orient(p,q,r).

What does this mean for a figure such as Figtire

Can you find examples as in Section 3.3 when point coordiretesestricted to doubles in
[1/2,1]?

o

4.4. AN OPTIMIZED EVALUATION ORDER FOR THE ORIENTATION PREITATE a7

4.3.3 Floating Point Integers

We briefly discuss the use of double precision hardware figatbint arithmetic for 53-bit integer arith-
metic. Let us call an integerfioating point integeiif it belongs to the interval := [— (253 —1)..25% — 1].
The numbers in can be represented as double precision floating point nieni@ansider a non-negative
integerx = zo§i§53x52‘ €l. If x=0, xis a double. Ifx> 0, let] be maximal such that; # 0. Then
x= (14 ¥1<i<jXj-i2"")2) and henceis a double. Double precision floating point arithmetic omiers
in | is exact.

LEMMA 13. Assume x |,y €l and xoy € | whereo € {+,—,-}. Then»y = Xoy.
Lemma 13 is useful if points have integer Cartesian or homeges coordinates of bounded size.
LEMMA 14. Assume that points have integral Cartesian coordinategnTh
(bx—ax) - (cy—ay) — (by—ay) - (cx—a)

is computed without roundoff error if the absolute value bfcaordinates is bounded b§- — 1, where
2(L+1)+1<583

Proof. The absolute value of the expression is strictly bounded by
(2L +2L) . (2L +2L) + (2L +2L) . (2L +2L) — 22L+3.
Thus if L + 3 < 53, the value is in and hence computed correctly. O

Exercise 0.10: Prove an analogous lemma for the orientation predicate amdspwith integer homoge-
neous coordinates and for the side-of-circle predicateparuts with integer Cartesian or homoge-
neous coordinates. &

Built-in 32-bit integer arithmetic can only handle integevhose absolute value is bounded By-21.
So it supports the orientation predicate for integer cawtdis with at most 14 bits. In contrast, doubles sup-
port the orientation predicate for integer coordinate$wit to 25 bits. One may paraphrase this observation
asdoubles are the better ints

4.4 An Optimized Evaluation Order for the Orientation Predi cate

TODO, Chee’s note are a good source.

4.5 An Error Analysis for Arithmetic Expressions

We study the evaluation of simple arithmetic operationsaatfhg point arithmetic. Any real is an arithmetic
expression and i andB are arithmetic expression, then #e B, A—B, A-B, andAl/2, The latter assumes
that the value ofA is non-negative. For an arithmetic expressipnlet E the result of evaluatinge with
floating point arithmetic. We want to bound

|E—E]|.

48 LECTURE 4. NUMBER TYPES |

E condition E Mg de

a | ais non-representable fl(a) max(MINNORMg, |fl(a)]) 1

a ais representable a max(MINNORMg, |a|) 0
A+B A®B ma® Mg 1+ maxda,dg)
A-B AcB ma & Mg 1+ max(da, dg)
A-B A®B | maxMINNORMg,ma®mg) | 1+da+dg
Al/2 A <umy 0 24D/2, /i 2+da
AL/ A > umy VA max(VA my @ VA) 24da

Table 4.1: The recursive definition of= andindg. The first column contains the case distinction according
to the syntactic structure &, the second column contains the rule for compuftnand the third and fourth
columns contain the rules for computing andindg; ¢, ©, ®, and® denote the floating point implemen-
tations of addition, subtraction, and multiplication, qyrddenotes the floating point implementation of the
square-root operation. Observe th@t = o if either my = co or mg = oo,

Such a bound can be used to draw a reliable conclusion abmsigh of an expression, because
[E-E|<B and |E|>B implies sigr(E) = sign(E).

This observation is very important. It shows that we may be &b determine the sign of an expression
with floating point arithmetic although it might be impodsitio determine its value with floating point
arithmetic.

We will derive a bound of the form

|[E—E|<B where B=((1+u)%* —1)-me < (dg +2) UG mg,

anddz andme are defined in Table 4.1. The intuitive interpretation isa@®ivs: mg upper bound& and
de measures the levels of rounding. The operaters-, and- introduce one additional level of rounding,
the square-root-operator accounts for two levels. In aitiaddthe arguments contribute the maximum of
their levels, and in a multiplication, the arguments cdmii® their sum. Each level of rounding increases
the range of uncertainty by a multiplicative factor of k. The subtraction of a1 reflects the fact that we
are interested in the error.

Before we establish the error bound, we will show tf@t+ u)? — 1) is approximately equal tdu and
we will also give an example.

LEMMA 15. Ifd < \/1/u—1then((1+u)?—1) < (d+1)u. Foralld, ((1+u)?—1) > du.

Proof. We have

(1+u)d z <) Zld u)' = du/(1—du).

1<i<d
Next observe thadu/(1—du) < (1+d)uiff d/(1—du) < (1+d)iff d<d+1—d?u—duiff d(d+1) <
1/u. This is certainly the case wheéd 4 1)?> < uord < /1/u— 1. The lower bound follows immediately
from the expansion ofl + u)q. O

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 49

The conditiond < \/1/u — 1 is hardly constraining. Fan = 2753, it amounts tod < 226°, As an
example, we use the orientation predicate for padnts andc given by their Cartesian coordinates. Then

Orientation(a,b,c) = (by—ay) - (cy—ay) — (by —ay) - (cx — ax).

We compute thel-value of this expression. The degree of any argument istbaelegree ofby — ay) is 2,
the degree ofby — ax) - (¢, — &) is 5 and the degree of the entire expression is 6. We conchadétte error
of evaluatingOrientation(a, b, c) with floating point arithmetic is at most

7-U-Moyrientation(ab.c)-
This bound is worth to be formulated as a Lemma.

LEMMA 16. If points are given by their Cartesian coordinates and thiemtation predicate is computed by
the formula above, the roundoff error in a floating point exatlon is bounded by - u - Morientation(

(8© U® Myyientation(ab.c))-

Lemma 16 leads to the following code for evaluation of themtation predicate. We assume that the
Cartesian coordinates belong to some number /péor which we have exact arithmetic available. We first
convert all coordinates to a floating point number and thexuate the orientation precision with floating
point arithmetic. If the absolute value of the floating padgult is sufficiently big, we return its result. If it
is too small we resort to exact computation.

ab,c)

int orientation(point_2d p, point_2d g, point_2d r){

NT px = p.xcoord(), py = p.ycoord(), gx = g.xcoord(), ;

/[evaluation in floating point arithmetic

float pxd = fl(px), pyd = fl(py), gxd = fl(gx), ;

float Etilde = (gxd - pxd) *(ryd - pyd) - (qyd - pyd) *(rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), agxd = abs(gxd), ;
float mes = (agxd + apxd) *(aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 8 * Uu * mes) return (sign Etilde);

/I exact evaluation

NT E = (gx - px) *(ry - py) - (ay - py) *(rx - px);

return sign E;

}

Exercise 0.11: Assume that a poinp is given by its homogeneous coordinaigs, py, pw). Assuming
sign(aw- bw- cw) = 1, we have

Orientation(a,b,c) = aw- (bx- cy— by- cx) — bw- (ax-cy— ay- cx) + cw- (ax- by— ay- bx).
Compute thel-value of this expression. &

Exercise 0.12: Assume that for, 1 <i < 8, x; is an integer withx| < 220 Evaluate the expressidiix; +
X2) - (X3 +X4)) - X5 + (X6 + X7) - Xg With double precision floating point arithmetic. Derive aubd for
the maximal difference between the exact result and the atedpesult. &

THEOREM 17 (Error Bound for Arithmetic Expressionslf.mg and d= are computed according to Table 4.1
then
me > MINNORMg and ng > |E| and |[E—E|<((1+u)%®-1)-me

50 LECTURE 4. NUMBER TYPES |

Proof. We use induction on the structure of the expres&ornThe claimsmg > MINNORMg andmg > \E|
follow immediately from the table and the monotonicity ofdtmg point arithmetic. For the third claim we
have to work harder. We use induction on the structuré ahd start by observing that the claim is obvious
if me = 0. The base case is obvious.Hf= a anda is representabléc = E. If ais non-representable we
invoke Theorem 11.

For the induction step we make a case distinction accordittgetoperation combining andB. Assume
first thatE = A+ B. Then

[E-E|=|A0B- (A+B)| < |A@B— (A+B)|+|A-A|+|B-B|.
Inequality (4) bounds the first term lymax(|A@ B| ,MINNORMg). Next observe that
max(|A@ |§| ,MINNORMg) < max(ma @ Mg, MINNORMg) = max(mg, MINNORMg) = Mg

by monotonicity of floating point arithmetic and sincg > MINNORMg. For the other two terms we use the
induction hypothesis to conclude

A—Al+[B—B| < ((1+u)* 1) -ma+ ((1+u)%®—1)-mg
< (14 u)made) _1). (mp+ mg)
< ((1+u)"@%%) _1). (14 u)-me by inequality (5)
Putting the two bounds together we obtain:
|E—E| < [u+((1+u)™d) _1). (14 u)]-me
= [(14 u)Trmaddads) _ 1) mg,

Subtractions are treated completely analogously.
We turn to multiplicationsg = A- B. We have

E-E|=|A0B-A-B|<|A0B-A-B|+|A-B-A-B|+|A-B-A-B|.
Inequality (4) and monotonicity of floating point arithmmeebiound the first term by
umax|A® B
For the second term we use the induction hypothesis to coaclu
A-B—A-B) = |A—A| |8
< (4w —1)-may-mg
< ((1+u)% —1)- (14 u) - maxma ® mg,MINNORM) by inequality (5)
= ((L+wh—1)- (1+u)-me,
and for the third term we conclude similarly
|A-B—A-B|=|A|-|B—B|
< (|A[+|A-A|)-|B-B|
(1+u)% - ma- ((1+u)%—1)-mg
(1+u)%. ((1+u)% — 1) - max(ma ® mg, MINNORM) by inequality (5)
= (A+u)H (1+u)®—1)-me

,MINNORMg) < umaxma ® mg,MINNORMg) = UMg.

VAR VAN

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 51

Putting the three bounds together, we obtain
[E—E|[<(u+(1+u) (1+u)* 1)+ (1+u) % (1+u)® —1))me
= (U+ (14 u)R 1 —u (1 Uyt (14Ut me
— ((l—l— u)l+dA+dB o 1)mE
and the induction step is completed for the case of mulaghos.

We finally come to square rootl, = A2 We distinguish cases according to the relative sizA afd
ma. Assume first thad is tiny compared tana, formally, A< u-ma. We sete = 0. Then

- -
< (|A]+|A-A]Y2
< (u-ma+ ((1+u)% —1).-ma)Y?
<(U+(A+uwR—1)Y2(14u)- /M by inequality (7)
< ((L+u)W2—1). /mauY?,
where the last inequality uses

(U+((L+ W% =121 u) = [(u+ (L +u)™ - 1) (L+u)?H?
(l+u)dA+2)1/2
u(da+3))*2
u(da+2))u/?

(1+ u)dA+2 o 1)U_1/2.

VAN VAN

[
(
(
<(
(

IN

Assume next thah > u-ma. Then

(\//_S—Al/z(< ‘\/K—Al/z‘ n (Al/z—Al/z(

A—A o
< —— 1
u- \/K+ K12 A2 by inequality (6)
(L+u)% —1)-mq
<u-VAs GFU
<u- VA4 ((1+u)— 1)(1+u)-% by inequality (8)

<u-VA+ ((1+u)®* —1)(1+u)? - maxma @ VANMINNORME) by inequality (5)
< (Ut (1+u)% — 1)(1+u)?) - maxma @ VA, v/A MINNORM)
= (1+u*2- 1) maxmo VA VA),

where the last inequality follows froM > 0 and hence/A > MINNORMg. This completes the induction step
for the case of square roots. O

THEOREM18. If dg < y/1/u— 1then
‘E—E‘ S(dE+l)-U-mE§(dE+2)®mE@U.

52 LECTURE 4. NUMBER TYPES |

X X Cx kx dy
a fl(a) 1 1 1
A+B | ADB | catcs | maxka,kg) | 14+ maxda,ds)
A—B | AcB | catcs | maxka,kg) | 14+ maxda,ds)
A-B | AGB| cacs K+ kg 1+ da+dg

Table 4.2: The recursive definition of, kx anddy. The first column contains the case distinction according
to the syntactic structure of, the second column contains the rule for compufthgnd the third to fifth
columns contain the rules for computing, kx, anddy.

Proof. Follows immediately from Theorem 17 and Lemma 15. O

Exercise 0.13: Consider the computation afg according to Table 4.1. Show that the rule for square roots
cannot lead to overflow (fnax >t +1). Give examples, where the rules for addition, subtractmd
multiplication overflow.

Answer: We haven, < (2— 1/2)2%, There are two rules for computirg= mu2. If A< uma,
we definemg = 2t+1/2© /ma. The square-root operation cannot overflow; if the multgtion
overflows we certainly have/ma > 28nax(t+1/2 or my > 228max(t+1) 5 28nax g contradiction. If

A > umy, we defineme = max(VA, ma@ VA). SinceA < ma, the computation of/A cannot overflow.
Also, sinceA > uma, VA > u/2. /ma and hence

ma® VA) < mao uY2, /M < 2:9/2(1 4 u)3, /ia

and we already shown that the latter quantity does not overflo &

4.6 A Simplified Error Analysis for Polynomial Expressions

The error bounds of the preceding section are for machinsuroption and not for human consumption.
They should be used to filter the evaluation of geometricipagels. For the analysis of perturbation methods
in Lecture??a weaker and simpler bound suffices. We next derive such addoupolynomial expressions,
i.e., expressions using only additions, subtractions,raunliiplications. We show that

|E—E| < ((1+u)% - 1)ceM*,
wheredg, ce andkg are defined as in Table 4.2 ahtis the smallest power of two such that
M > max(1,max{lf(|a|) | ais an operand iiE}).
Exercise 0.14: ProveM > flu(|a|) for all operandsin E. &
THEOREM19. Let M be defined as above. Then for every subexpression X of E,

cx>1 and k>0 and [X—X|<((1+u)®—1)cxM*,

4.6. A SIMPLIFIED ERROR ANALYSIS FOR POLYNOMIAL EXPRESSIOS! 53

where &, kx and & are defined as in Table 4.2. This assumes tha ' is representabfefor all X. The
latter assumption also guarantees that the computatioroafin overflows.

Proof. We use structural induction. Observe that the ruleslfoaire the same as in Theorem 17. It therefore
suffices to prove

my < cxM

for all X. This is clear for operands. X = a € R, my = maxMINNORMg,fl(a)) <M. Consider an addition
or subtraction next. Then

My =Ma@ Mg < CAMKA@CBMKB < Caka @CBMKX = (CA—I-CB)MKX = C)(ka,

where the next to last equality follows from the assumpttuat ¢xM** is representable. Finally, we come
to a multiplication. Ifmy = MINNORVMg, the claim is obvious sinc®l > 1, ky > 0 andcx > 1. So assume
My = Ma ® Mg. Then

My = Ma © Mg < cAM* © cgM*® = (cacg)MM* = cym*,

where again the next to last equality follows from our assiimnpthatcy M** is representable.
Finally, since 0< my < cxM¥ and the latter quantity is assumed to be representablepthputation
of my does not overflow. O

We continue our discussion of the orientation predicateptontsa, b, andc given by their Cartesian
coordinates. Then

Orientation(a, b, c) = sign((bx — ax) - (cy — ay) — (by —ay) - (cx — ay)).

We already determined the degree of this expression as 6.c-Taed k-values are as follows. For any
argument, both values are one, ¥ b, — ay, we havecy =2 andkx = 1, for X = (b —ay) - (cy — ay), we
havecyx = 4 andky = 2, and finally for the entire expression we haye= 8 andkx = 2. We conclude that
the roundoff error in evaluatin@rientation(a, b, c) with floating point arithmetic is at most

7-u-8-M?=56.-u-M>2.

whereM is the smallest non-negative power of two bounding all Gaattecoordinates. In particular,M =
210 and double precision arithmetic is used, the error is at B2 >3- 220 < 2-27_ Next recall that the ex-
pression underlyin@rientation is twice the signed area of the triandiéa, b, c). Thus, if coordinates are at
most 29 and the (unsigned) areafa, b, c) is at least 225, thenfloat_orient(a, b, c) = Orientation(a, b, c).
Sofloat.orient errs only for very skinny triangles. Figure 3.1 suggestésl thut now we know for sure. We
will exploit the correctness dfoat orient for non-skinny triangles in Lecture?.

Exercise 0.15: Redo the analysis above for points given by their homogeneoardinates. We continue
our discussion of the orientation predicate for points igitag their homogeneous coordinates. As-
suming sigraw, bw;cw) = 1, we have

Orientation(a,b,c) = aw- (bx- cy— by- cx) — bw- (ax-cy— ay- cx) + cw- (ax- by— ay- bx).

2This is certainly the case @ < 2!*1 andMKx < 28max,

54 LECTURE 4. NUMBER TYPES |

We already determined the degree of this expression as 8&-Emelk-values are as follows. For any
argument, both values are one, ¥ bx: cy, we havecx = 1 andkx = 2, for X = (bx- cy— by- cx),
we havecy = 2 andkx = 2, for X = aw- (bx- cy— by-cx) we havecy = 2 andkx = 3, for X = aw- (bx-
cy— by-cx) — bw- (ax-cy—ay- cx) we havecx = 4 andky = 3, and finally for the entire expression
we havecx = 6 andkx = 3. We conclude that the roundoff error in evaluat@gentation(p,q,r)
with floating point arithmetic is at most

9.u-6-M3=54.u-M3.

whereM is the smallest non-negative power of two bounding the albsalalue of all arguments. In
particular, ifM = 210 and double precision arithmetic is used, the error is at Bbg53. 230 < 2-17,
If, we increase mantissa length to 99, the error bound bes@rfé. &

Exercise 0.16: Assume that for, 1 <i < 8, x is an integer withx;| < 220, Evaluate the expressidix; +-
X2) - (X3+X4)) - Xs + (X6 + X7) - Xg With double precision floating point arithmetic. Derive aubd for
the maximal difference between the exact result and the atedpesult. &

Exercise 0.17: Extend Theoren?? to include square-roots. This requires to extend TaBland the proof
of the theorem. We do not have a satisfactory answer for Recese. &

4.7 A More Precise Error Analysis
[[I' will probably move this section to the chapter on decglihe sign of algebraic expressions.]]

Consider the expression
E=(a+b)—a

whena > b. The error analysis of Section 4.5 assumes that the errbeisubtraction may be as large as
ume ~ u(2a+b).
However, the actual error is approximately
u-E~u-b,

which is much smaller. Can we improve our error analysis?alRear formulae for estimating the error in
additions (subtractions) and multiplications. We asg- to denoteE — E. ForE = A+ B, we have

errg = |A@B— (A+B)| < |A@B— (A+B)|+ |A- A+ |B—B]
<ulA®B|+|A-A|+|B-B| <uo|E|+erma+errg).
and forE = A- B, we have
lerre| = |A©B-A-B|=|A0B-A.-B+A-B-A-B+A-B-A-B|
<ulAoB|+|A-A|-|B|+|A|B-B|
< ulE|+|erra|-|B|+|Al- |errg|

These error bounds are more costly to evaluate than the boar&ection 4.5. We will use them in Chap-
ter ??2.

4.8. ARBITRARY PRECISION FLOATING POINT NUMBERS 55

4.8 Arbitrary Precision Floating Point Numbers

In Section 4.3, we introduced the floating point syste(h emin, émax). Software floating point systems are
usually more flexible. They allow the user to changkiring the computation, either by setting it to a fixed
value at the beginning of the computation or by changingeilfy during a computation. For some value,
one wants a mantissa length of 1000 bits, and for anotheeyahe wants 2000 bits, and for another value,
one wants no rounding Exponents are arbitrary integer, i.€min = — andemax= +%. The systems also
support the different rounding modes of the IEEE standaite ode can either be chosen for the entire
computation or for a single operation.

As an example, consider the following LEDA program snipg@nputing an approximation of Euler's
numbere~ 2.71. Letmbe an integer. Our goal is to compute a bigfloatich thatz—e| < 2~™. Euler’s
number is defined as the value of the infinite sefigsp1/n!. The simplest strategy to approximagés to
sum a sufficiently large initial fragment of this sum with dfsuently long mantissa, so as to keep the total
effect of the rounding errors under control. Assume that ar@pmute the sum of the firsiy terms with a
mantissa length dfbits for still to be determined values of andt, i.e., we execute the following program.

bigfloat::set_rounding_mode(TOZERO);
bigfloat::set_precision(t);
bigfloat z = 2; integer fac = 2; int n = 2;
while (n < n0)
{ /l fac = n! and z approximates 1/0! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * N,

}

Let z9 be the final value of. Thenz, is the value ofy,,_, 1/n! computed with bigfloat arithmetic with
a mantissa length d@fbinary places. We have incurred two kinds of errors in thimgotation: a truncation
error since we summed only an initial segment of an infinitéeseand a rounding error since we used
floating point arithmetic to sum the initial segment. Thus,

le—2z| < |e— 1/nl| + 1/n —2z
ﬂ;]o n;lo
= > In+| > 1/nl -2
n>ng n<ng
The first term is certainly bounded by ! since, for alln > ng, n! =ng! - (Ng+1)-...-n>np! - 2"~ and

hencey n>n, 1/nf <1/ng! - (1+1/2+1/4+...) < 2/ng!. What can we say about the total rounding error?
We observe that we use one floating point division and ondrilgabint addition per iteration and that there
areng — 2 iterations. Also, since we set the rounding mode to rowgittirzero, the value of always stays
below e and hence stays bounded by 3. Thus, the results of all bigilmeriations are bounded by 3 and
hence each bigfloat operation incurs a rounding error of &t ®@. Thus

le— 20| <2/ng! +2ny-3-27%,

3Additions, subtractions, and multiplications are exactdfrounding is performed and mantissas are allowed to hbieay
length.

56 LECTURE 4. NUMBER TYPES |

We want the right-hand side to be less thar®2!; it will become clear in a short while why we want
the error to be bounded by 2~ and not just 2™. This can be achieved by making both terms less than
2-™=2_ For the first term this amounts tg/®! < 22, We chooseay minimal with this property and
observe that if we use the expressi@a.length()| < m+ 3 as the condition of our while loop then this
no will be the final value ofn; fac.length() returns the number of bits in the binary representatiofaaf
Fromng! > 2" and the fact thanhg is minimal with 2/ng! < 2-™-2 we concludeny < m+ 3 and hence
Bnp2~t < 6(m+3)-27t <27M2if t > 2m; actually,t > m-+log(m+-3) +5 suffices. The following program
implements this strategy and computgsvith e — zp| < 2-™1,

We could outputz, but zy is a number with h binary places and hence suggests a quality of approxi-
mation which we are not guaranteeing. Therefore, we ragmal the nearest number with a mantissa length
of m+ 3 hits. Sincez < 3 this will introduce an additional error of at most3 ™3 < 2-™1 \We conclude
that the program below computes the desired approximafi&@uler's number.

bigfloat::set_precision(2 *m);
bigfloat::set_rounding_mode(TOZERO);
bigfloat z = 2; integer fac = 2; int n = 2;
while (fac.length() < m + 3)
{ [/l fac = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * N,
}
Il 1z - e|] <= 2°{m-1} at this point

Zz = round(z,m+3,TONEAREST);
}

Exercise 0.18: Show how to computer with an error less than 2%, o

4.9 Notes

In notes we do historical notes, implementation notes, anmotgrs to additional material.

Error analysis for floating point computations was pionddrg Wilkinson [?]. Most books on numerical
analysis contain a section on error analysis. Detailedud&ons can be found if]. The analysis presented
here is based on [27, 44, 45, 29].

The optimal choice of pivot in the orientation test is disadin [28].

Error bounds similar to the ones derived in this lecture aeduas floating point filters in the linear
kernels of LEDA and CGAL. We discuss linear kernels in thetiecture.

Arbitrary precision integer and floating point arithmesqarovided by several software packages. Pop-
ular packages are the GNU Multiple Precision Arithmeticrhily [31] and and the Java [37] classes BigIn-
teger and BigDecimal. The former package is the most conapisate.

The orientation test and the side-of-circle test amounbtapmuting the sign of a determinant. In low
dimensions, it is easy and efficient to expand the deterrhinéman arithmetic formula. In higher dimen-
sions, this becomes infeasible. An obvious method for camguhe sign of a determinant is to compute
the value of the determinant and then take its sign. Bettgrihms are discussed in [14, 2, 6].

4.10. MATERIAL FOR THE LECTURE 57

The following sentence is from the LEDA book. We need a sinskntence in the introduction. Based
on the bad experiences made by us and many others, we and tdliethe theoretical foundations for
correct and efficient implementations of geometric al¢pons [38, 27, 26, 12, 55, 14, 44,11, 9, 8, 7, 46, 18,
3, 56, 49, 6].

4.10 Material for the Lecture

It is not clear yet, where the following remarks should go.

Dynamic filters are more costly but also more precise than-gdgmamic filters. Observe that the com-
putation oferrg in the case of an addition requires two additions and twoipiigétions. The computation
of mg requires only one addition. We concluded from our experisian[44] that the additional cost is not
warranted for the rational kernel.

We do use dynamic filters in the number type —real—, see Se@fipsince the cost of exact computa-
tion is very high for —reals— and hence a higher computatiow for the filter is justified.

However, the necessary conditional branching could impaiformance significantly. If one is willing
to invest that time, one could also think of using an exactl@mgntation scheme based on floating-point
filter techniques, e.g. [27, 52], see [54] for results of apesimental comparison. Further details are beyond
the scope of this paper.

58

LECTURE 4. NUMBER TYPES |

Lecture 5

A First Geometric Kernel

This lecture will be quite different from the preceding ofighere will be no definitions and theorem; this
lecture will be about software design. We will address tvgniés: how to package basic geometric objects
into a geometric kernel and how to make use of approximatienaeitic in an exact kernel. We will also study
the efficiency of such a kernel. We will see that generic pogning techniques support a clean separation
between algorithms and basic objects through the intrémtucif kernel without sacrificing efficiency.

5.1 AKernel

A kernelcomprises basic geometric objects and operations on thmgset® It reveals nothing about the
representation of the objects. Modelof the kernel is a concrete implementation of the objectshan t
kernel. Algorithms are formulated in terms of the kernel @ad be instantiated with any model of the
kernel.

The most basic kernel offers only one kind of object, namelyis in the plane, and a small collection
of operations on them, e.g., the orientation function ofé¢hpoints, lexicographic comparison of points, and
access to the Cartesian coordinates of a point. Dependinigegorogramming language, it may also have
to provide additional functions. For examplét+ requires constructors and an assignment operator. In
pseudo-code (we will see tl@&+ formulation in the next section) we might write:

concept basic_kernel {
object: point_2d;
operations: NT x_coordinate();
NT y_coordinate();
ops required by the language

int orientation(point_2d,point_2d,point_2d);
}

In programming language parlor (TODO: is this correct, dt anly C++ parlor), a kernel is @oncept A
concept is a collection of objects, operation on these thjand a set of requirements. In our example, the
requirements are that the orientation-function actualyputes the orientation of its arguments and that the
access function return the Cartesian coordinates. We ralgbtrequire that these functions run in constant
time.

59

2t the inputs

60 LECTURE 5. A FIRST GEOMETRIC KERNEL

You have seen the notion of a concept in your math-coursesexample, a vector space is a concept.
It comprises a ring= (another concept), a s#t, a special element @ V, and two operations- and -.
Addition realizes a commutative group with neutral elem@&nfnd multiplication by a scalar takes a field
elementk and a vector € V and yields a vectok-vsuch that Ov=0, 1-v=v, (k1 + kz) - v=Kki - V+ka -V,
(kiko) -v=Kki - (kz2-V)), k- (v+w) = k-v+k-w. A model of this concept is any concrete vector space, e.g.,
F =R andV = RY. Addition of vectors and multiplication by a scalar is compat-wise. The notions of
linear-independence and basis are defined for vector-spddee theorem that all bases of a vector space
have the same cardinality is proved generally for vectocepaOf course, the theorem then holds for any
concrete vector space.

The role of a concept in programming is exactly the same, mxtat we do not prove theorems but
write algorithms. We write algorithms in terms of conceptsl éhe algorithm will then run for any model
of the concept. For example, we could formulate our convebahgorithm from Lecture?? as follows:

algorithm convex_hull based on concept linear_kernel {
/I the algorithm as in Lecture XXX using the names in the kerne l;
point_2d p; /I declaration of a point p

} .
5.2 Concrete Kernels

We discuss models of the basic kernel. We have many choicesn&y present points by their Cartesian
coordinates or by their homogeneous coordinates or as t&esaction of two lines or We discuss the
first choice and ask the reader to work out the second choiteiaxercises.

In the Cartesian model, a point has two data memReasdy, the access functions _coord and
y_coord returnx andy, respectively, and orientation is implemented by formub@Xxfrom Lecture ??.
The Cartesian coordinates come from a number type NT whippats exact computations of signs. We
have seen three such types in Lecture 4: arbitrary precistegers, rational numbers, and arbitrary preci-
sion floating point numbers without rounding.

model Cartesian_Points of concept basic_kernel {
struct point_2d { NT x,y;

real x_coord() { return x; }

real y _coord() { return y;}

}

int orientation(point_2d p, point_2d q, point_2d r){ retur n sign v}

}

Exercise 0.19: Formulate a model of the basic kernel, in which points areasgnted by their homogeneous

coordinates. &

An Unusual Kernel: To see the flexibility of the approach, we give another examphe example may
seem weird, but is actually inspired by reduction of Delautteangulations to lower convex hulls in one
higher dimension. We will see this reduction in Lect@e

We are interested only in points on the parabpta x°. So a point has a single data member xits
coordinate. The-coordinate is computed as the square offmmordinate. Orientation can be computed

5.3. C++ FORMULATION* 61

simpler than in the general case. Assume phiags left ofg. Thenp, g, r form a right turn, ifr lies between
p andg.

model parabola_points of concept basic_kernel {
struct point_2d{ NT x;

int x_coord(){ return x; }

int y_coord(){ return x°2; }

}
int orientation(point_2d p, point_2d q, point_2d r)
{ if (p.x_coord() < g.x_coord() < r.x_coord) return -1,

}
}

5.3 Ct+ Formulation*®

We use pseudocode to introduce the notions concept and mod#i+ , the formulation is as follows.
/I' a simple cartesian kernel for points (and operations on t hem)
template < class NT >
class Cartesian_kernel {
public:

// GEOMETRIC TYPES (ref-counted ones would be better)

/' Type of Point (with cartesian x- and y-coordinates)
class Point {

public:
/' default constructor constructs origin
Point() :
m_x(0), m_y(0) // assumes that NT is constructible from Smal [IntConstant
{

/I constructor from two given coordinates
Point(NT x, NT vy) :
m_x(x), m_y(y) // assumes that NT is copy-constructible

{}

/I returns x-coordinate of point
NT x() const { return m_x; }

/' returns y-coordinate of point

62 LECTURE 5. A FIRST GEOMETRIC KERNEL

NT y() const { return m_y; }
private:

/' x-coordinate of point
NT m_x;

/' y-coordinate of point
NT m_y;

h
/I GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& g, const Point & 1) const {

NT det = (q.x() - p.x()) * (ryQ - py0) -
(Q.y0 - p.y0) * (rxQ - p-xQ);

if (det < 0) { // assumes that NT has operator<(int)
return -1;

} else if (det > 0) { // assumes that NT has operator>(int)
return 1,

}

return O;

Ct+purists would probably criticize the code above on two aot®uldentifiers for template param-
eters should not be used as types. It is advised toNiseas parameter and to declare a public type
typedef NT_ NT subsequently. Itis also recommended to implement presfiGaid constructions 'func-
tors and to use an enumeration type instead of ‘int’ as thdtrgge of the orientation function.

/' a simple kernel for points on a parabola (and operations o n them)
template < class NT >
class Parabolic_kernel {
public:
/I GEOMETRIC TYPES (ref-counted ones would are encouraged)

class Point {

5.3. C++ FORMULATION*

public:

/I default constructor constructs origin
Point() :
m_x(0) // assumes that NT is constructible from SmallintCon

{}

/[!' constructor from one given coordinate
Point(NT x) :
m_x(x) // assumes that NT is copy-constructible

{}

/' returns x-coordinate of point
NT x() const { return m_x; }

/' returns y-coordinate of point
NT y() const { return m_x * m_X; }

private:

/' x-coordinate of point
NT m_x;

/I GEOMETRIC OPERATIONS (as functions)

int orientation(const Point& p, const Point& g, const Point

std::cerr << "Parabolic Orientation not complete!" << std:

if (p.x() < g.x()) { // assumes that NT has operator<(int)
if (@.x() < rx() {

return -1;
}

}

I/l else
return O;

Next comes the convex hull algorithm. We give only a stub.

/' class stub for convex hull
template < class Kernel >
class Convex_hull {

63

stant

& 1) const {
:endl;

64 LECTURE 5. A FIRST GEOMETRIC KERNEL

public:

/I the kernel's point type
typedef typename Kernel::Point Point;

template < class Inputlterator, class Outputlterator >
Outputlterator operator()(Inputlterator begin, Inputlt erator end,
Outputlterator result) {
[+ CONVEX HULL algorithm for points in [begin,end) */
Inputlterator it = begin;
while (it != end) {
Point p = =it;
/[do process p
Il next

it++;

}

return result;

h

and finally the main program.

#include <iostream>
#include <list>

#include "KMCartesian_kernel.h"

#include "KMParabolic_kernel.h"
#include "KMConvex_hull.h"

template < class NT >
void cartesian() {
typedef Cartesian_kernel< NT > Kernel,

typedef typename Kernel::Point Point;

5.3. C++ FORMULATION*

}

/I construct some points

Point o;

Point p1(-1,1); // requires NT to be ConstructibleFromSmal
Point p2(-5,5);

Point pl(-2,3);

Point pr(-4,1);

/[orientation of points

Kernel kernel;

std::cout << "Orientation(o,p1,p2) = " << kernel.orientat
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat
std::cout << "Orientation(o,p1,pr) = " << kernel.orientat

std::list< Point > input;
input.push_back(o);
input.push_back(pl);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

/[Convex hull
typedef Convex_hull< Kernel > CH;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul

template < class NT >
void parabolic() {

typedef Parabolic_kernel< NT > Kernel;

typedef typename Kernel::Point Point;

/I construct some points

Point o;

Point pl(1); /I requires NT to be ConstructibleFromSmallin
Point p2(5);

Point pl(2);

Point pr(4);

/[orientation of points

65

[Int

ion(o,p1,p2) << std::endl;
ion(o,pl1,pl) << std::endl;
ion(o,pl,pr) << std::endl;

);

66 LECTURE 5. A FIRST GEOMETRIC KERNEL

Kernel kernel;

std::cout << "Orientation(o,p1,p2) = " << kernel.orientat ion(o,p1,p2) << std::endl;
std::cout << "Orientation(o,p1,pl) = " << kernel.orientat ion(o,pl1,pl) << std::endl;
std::cout << "Orientation(o,pl,pr) = " << kernel.orientat ion(o,pl,pr) << std::endl;

std::list< Point > input;
input.push_back(o);
input.push_back(pl);
input.push_back(p2);
input.push_back(pl);
input.push_back(pr);

/[Convex hull
typedef Convex_hull< Kernel > CH,;

std::list< Point > hull;
CH ch;
ch(input.begin(), input.end(), std::back_inserter(hul N);

int main() {

std::cout << "CARTESIAN with 'int™ << std::endl;
cartesian< int >();
std::cout << std::endl;

std::cout << "CARTESIAN with 'unsigned int’ - evil, because of 1" in input"
cartesian< unsigned int >();
std::cout << std::endl;

std::cout << "CARTESIAN with 'double™ << std::endl;
cartesian< double >();
std::cout << std::endl;

std::cout << "PARABOLIC with ’'int™ << std::endl;
parabolic< int >();
std::cout << std::endl;

std::cout << "PARABOLIC with 'double™ << std::endl;
parabolic< double >();
std::cout << std::endl;

5.4. A FLOATING POINT FILTER 67

Exercise 0.20: Redo the above in the programming language of your choice. &

5.4 A Floating Point Filter

Exact arithmetic is much slower than hardware floating paiithmetic. However, floating point arithmetic
is only approximate and we have seen in LectPghat a naive use of floating point arithmetic can lead
to disaster. In Lecture 4 we learned how to estimate the emnrars in floating point computations. We
will now put this knowledge to use. We will obtain an exactradrthat is also efficient. We will give
experimental evidence in the next section and theoretitalyais in Lecture??.

The idea is to preface the evaluation of any expression (tiereexpression defining the orientation
predicate) by an evaluation with floating point arithmeti¢e also compute a bound on the roundoff error.
If the absolute value of the float value is larger than the doom the roundoff error, we return the sign of
the float value. Otherwise, we evaluate the expression wihterithmetic. This scheme is callefl@ating
point filter. The following code realizes this strategy for the orieintapredicate.

int orientation(point_2d p, point_2d g, point_2d r){

NT px = p.xcoord(), py = p.ycoord(), gx = g.xcoord(), ;

/I evaluation in floating point arithmetic

float pxd = fl(px), pyd = fl(py), gxd = fl(gx), ;

float Etilde = (gxd - pxd) *(ryd - pyd) - (qyd - pyd) *(rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), agxd = abs(gxd), ;
float mes = (agxd + apxd) *(aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 7 * uu * mes) return (sign Etilde);

/I exact evaluation

NT E = (gx - px) *(ry - py) - (Qy - py) *(rx - px);

return sign E;

}

According to Lemma 16, this implementation is correct.

Exercise 0.21: Formulate a floating point filter for points represented bgirtthomogeneous coordinates.

¢

5.5 Performance of the Floating Point Filter

We study the performance of the floating point filter under &spects. How often is it necessary to resort to

exact computation and how much do we save in running time® Sdution is based on [45, Section 9.7.4].
[[TODO: repeat the experiments and make them available ®admpanion page of the book.]]
Table 5.1 sheds light on the first question. The followingegkpent was performed. First, a s2bf n

random points with 52 bit Cartesian coordinates either enuttit circle or in the unit square was generated.

A random point in the unit square is generated by choosingoitsdinates as follows: Generate a random

integeri € [0,2%2 —1..] and then set the coordinate it2°2. The generation of points on the unit circle

is the topic of Section 5.6. Then the Cartesian coordinat® wuncated tal bits for different values of

d, i.e., a pointp with Cartesian coordinatey, py) was turned into a poinp’ with Cartesian coordinates

(|29, [29py|). LetS be the resulting set of points. The Delaunay triangulatib8 @as constructed . Explain.

68 LECTURE 5. A FIRST GEOMETRIC KERNEL

Compare Orientation Side of circle
d N | number| exact| % [number| exact| % [number| exact] %
8 1883 | 157814 0| 0.00| 19909 0| 0.00 7242 0 0.00

10| 5298| 187379
12| 8383| 216679
22| 9999 | 230556

0.00| 58263 0| 0.00| 20736| 5743| 27.70
0.00| 89307 0| 0.00| 35931| 24693| 68.72
0.00| 98899 0| 0.00| 46410| 42454 | 91.48
32| 9999 | 231656 0.00| 90664| 137| 0.15| 40003| 39797 | 99.49
42| 9999 | 231665 0.00| 91205| 152 0.17| 40083| 40083| 100.00
o | 9999 | 231665| 125| 0.05| 44279 871 0.20| 13082| 13082 | 100.00

8| 9267 | 230060 0.00| 130431 0| 0.00| 64176 0 0.00
10| 9953 | 236690 0.00 | 147814 0| 0.00| 77409 136 0.18
12| 9996 | 236661 0.00 | 149233 0| 0.00| 78693 105 0.13
22| 10000| 235727 0.00 | 149057 0| 0.00| 78695 113 0.14

0
0
0

[eoliellolele]

32 | 10000| 235729 0.00 | 149059 0.00| 78695 115 0.15
42 | 10000| 235729 0.00 | 149059 0.00| 78695 115 0.15
o | 10000 | 235729| 574 | 0.24| 149059 0.00| 78695 115 0.15

OO0 o0|o|lo|o

Table 5.1: Efficacy of floating point filter: The top part cantgthe results for random points on the unit
circle and the lower part contains the results for randomtsan the unit square. In each case we generated
10000 points. The first column shows the precision (= numbbmary places) used for the homogeneous
coordinates of the points, the second column contains thebau of distinct points in the input. The other
columns contain the number of tests, the number of exad, teistl the percentage of exact tests performed
for the compare, the orientation, and the side of circle e

Table 5.1 confirms the theoretical considerations from #giriming of the section. For each test there
is a value ofd below which the floating point computation is able to deciliéests. For the orientation test
this value ofd is somewhere between 22 and 32 (we argued above that theisdlg?) and for the side of
circle test the value is somewhere between 8 and 10 (we askdder in the exercises to compute the exact
value). Also, the percentage of the tests, where the filtls; fa essentially an increasing functionaf

The compare, orientation, and side of circle functions se®be tests of increasing difficulty. This is
easily explained. The compare function decides the signiogar function of the Cartesian coordinates of
two points, the orientation function decides the sign of adyatic function of the Cartesian coordinates of
three points, and the side of circle function decides the sfga polynomial of degree four in the Cartesian
coordinates of four points. The larger the degree of thermmwtyal of the test, the larger the arithmetic
demand of the test.

Among the two sets of inputs, the random points on the unileciare much more difficult than the
random points in the unit square, in particular, for the sifleircle test. Again this is easily explained.

For the side of circle test, four almost co-circular pointsaur exactly co-circular points are the most
difficult input, and for sufficiently largel the situation thaﬂﬂ < B andB > 1 arises frequently. Points on
(or near) the unit circle cause no particular difficulty foetcompare and the orientation function. Points on
(or near) a segment would prove to be difficult for the origatatest.

For random points in the unit square the filter is highly effecfor all three tests; the filter fails only
for a very small percentage of the tests.

We turn to the question of how much a filter saves with respgeatinning time. The following exper-

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 69

\ d \ Float kernel\ Rational kernel\ RK without filter\

8 0.73 1.12 4.35
10 13 2.43 7.8
12 1.85 5.09 11.18
22 2.17 7.93 14.4
32 2.02 7.79 13.29
42 2.01 8.32 15.46

2° 5.09 9.19

8 2.58 3.59 16.33
10 2.8 3.98 18.36
12 2.83 4.04 18.63
22 2.82 4.02 20.51
32 2.86 3.96 20.77
42 2.83 4.01 26.02
00 2.83 3.99 33.2

Table 5.2: Efficiency of the floating point filter: The top padntains the results for random points on the
unit circle and the lower part contains the results for randmints in the unit square. The first column
shows the precision (= number of binary places) used for #reGian coordinates of the points. The other
columns show the running time with the floating point filteithathe rational kernel with the floating point
filter, and with the rational kernel without its floating pofiiter. A star in the second column indicates that
the computation with the floating point kernel produced awirect result.

iment continues the preceding experiment. The computatfidhe Delaunay diagram was performed in
three different ways:

e naive use of floating point arithmetic: the truncated Catesoordinates were stored as double
precision floating point numbers and Delaunay diagram #lgarwas run with double precision
arithmetic.

e exact integer arithmetic with a floating point filter.
e exact integer arithmetic without the floating point filterrted off.

. Table 5.2 summarizes the outcome. Let us first look at idd&ii columns.

The running time with the floating point kernel does not imsee with the precision of the input. Ob-
serve, that fod < 22 and points on the unit circle, the input contains a sigaifidraction of multiple points
(see the second column of Table 5.1) and hence the first theserkally refer to simpler problem instances.
Ford > 22 and points on the unit circle and fdr> 10 and points in the unit square the input contains
almost no multiple points and the running times are indepetdf the precision. The computation with the
floating point kernel is not guaranteed to give the correstilte In fact, it produced an incorrect result in
one of the experiments (indicated by)a

The running time with the rational kernel and no filter inges sharply as a function of the precision.
This is due to the fact that larger precision means largagens and hence larger computation time for
the integer arithmetic. We see one exception in the table pbimts on the unit circle the computation on

70 LECTURE 5. A FIRST GEOMETRIC KERNEL

[d[43]44]45]46]47]48]49[50]51]52]
dff [C[C|[C]| F| F| F]| F| F| F| F
easyf c[c[c|c[c|[c|c[c|c|c

Table 5.3: Correctness of floating point computation: A detaview for d ranging from 43 to 52. The
second row corresponds to points on the unit circle and gtedav corresponds to points in the unit square.
A “C” indicates that the computation produced the correstiteand a “F” indicates that a incorrect result
was produced.

the exact points is faster than the computation with the dedrpoints. The explanation can be found in
Table 5.1. The number of tests performed is much smallendactenputs than for rounded inputs. Observe,
that for points that lie exactly on a circle any triangulatis Delaunay.

The running time for the rational kernel (with the filter) irases only slightly for the second set of
inputs and increases more pronouncedly for the points oarheircle. This is to be expected because the
filter fails more often for the points on the unit circle. skip

Let us next compare columns.

The comparison between the last two columns shows the efficigained by the floating point filter.
The gains are impressive, in particular, for the easier Setputs. For random points in the unit square,
the computation without the filter is between five and almesttimes slower. For random points on a unit
circle the gain is less impressive, but still substantidde Tunning time without the filter is between two and
five times higher than with the filter.

The comparison between the second and the third column shibatsve might gain by further improv-
ing our filter technology. For our easier set of inputs the potation with the rational kernel is about 50%
slower than the computation with the floating point kernehisTincrease in running time stems from the
computation of the error bourlin the filter. For our harder set of inputs the difference lestmthe ratio-
nal kernel and the floating point kernel is more pronounceds 16 to be expected since the rational kernel
resorts to exact computation more frequently for the hairtjaurts. The floating point kernel produced the
incorrect result in one of the experiments.

[[The remainder of this section is obsolete. The discuss@uperseded by the the work on controlled
perturbation. We should add an experiment where the poiatalbon a small segment of the circle.]]

We were very surprised when we first saw Table 5.2. We expeabggdthe floating point computa-
tion would fail more often, not only when the full 52 bits arsed to represent Cartesian coordinates of
points. After all, the rational kernel resorts to integdthemetic most of the time already for much smaller
coordinate length and the difficult set of inputs.

Exercise 0.22: Repeat the experiments of this section for points that lia eegment. Predict the outcome
of the experiment before making it. &

We generated Table 5.3 to gain more inslght gives more detailed information fat ranging from
43 to 52. For our difficult inputs the floating point compubatifails whend is 46 or larger and for our

Iwhile writing this section, our work was very much guided Ixperiments. We had a theory of what floating point filters can
do. Based on this theory we had certain expectations abeutehavior of filters. We made experiments to confirm our fitai
In some cases the experiments contradicted our intuitidnmanhad to revise the theory.

5.5. PERFORMANCE OF THE FLOATING POINT FILTER 71

easy inputs it never fails. Far < 45 and both sets of inputs it produces the correct result.tiaaretical
considerations give a guarantee only dor 10.

In the remainder of this section we try to explain this diparecy. We find the explanation interesting
but do not know at present whether it has any consequencésefdesign of floating point filters.

Let D = 24 and consider four points, b, ¢, andd on the unit circlé. We use points(, Y, ¢, andd’ with

integer Cartesian coordinatéa,D |, |ayD]|, The side of circle function is the sign of the determina
1 1 1 1
ax by Cx dy

&y by & dy
at+al bi+bf g+ di+df
as will be shown in Sectio?. The value of this determinant is a homogeneous fourth éggoé/nomial
p(ax,ay, - ..). We need to determine the signpofa;, &,...). Let us relatep(ax, ay, . ..) andp(a,, &, . ..).
We have
a;(= LaxDJ = a.xD + 6ax,
where—1 < 4,, <0, and analogous equalities hold for the other coordindtiess

p(&,ay,...) = p(axD+0,ayD+0,...)
= p(@D,aD,...) + 0z(axD,%,,aD,d,,...)
+ (D, %, &D, 8a,,...) + Gu(&xD, 0, ayD,%,,.-.)
+ Qo(&D, 0a,,8yD, G - -),

whereq; has degreein theakD, a,D, ... and degree 4 i in the d,,, d,,, - .. . Since the four points, b, c,
andd are co-circular, we have

p(axD,aD,...) = D*p(ax,ay,...) = 0.

Up to this point our argumentation was rigorous. From now @ngive only plausibility arguments.
Since the values,D may be as large a® and since the valued, are smaller than one, the sign of
p(a,&,...) is likely to be determined by the sign g. Sincegs is a third degree polynomial in the
a,D we might expect its value to be abolutD? for some constant. The constanf is smaller than one but
not much smaller. Expansion of the side of circle deterntisanws that the coefficient @, in dz is equal

to
1 1 1

by,D D dyD =D(cy—ay—hy),
(bf +b§)-D? (G+¢)-D* (df+df)-D?
where we used the fact thag + pZ = 1 for a pointp on the unit circle. We conclude théthas the same
order as the-coordinate of a random point on the unit circle and heheel/2.

We evaluatep(a,, &,...) with floating point arithmetic. By Theorem 17, the maximaioerin the
computation ofp is g- D*- 2753 for some constarg; the actual error will be less. The argument in the proof
of Lemma?? shows thagg < 28. Thus we might expect that the floating point evaluatiorpta”x,a;,, ces)
gives the correct sign as longgsD*- 2753 < f-D3 ord < 53—logg+log f ~ 53— 8—1=44. This agrees
quite well with Table 5.3.

2We all know from our physics classes that the important érpents are the ones that require a new explanation.
3In the final round of proof-reading we noticed that we dagith two meanings. In the sequelis a point, except in the final
sentence of the section.

72 LECTURE 5. A FIRST GEOMETRIC KERNEL

Figure 5.1: Poinp = (px, py) lies on the unit circle, poinp’ = (a,0) lies on thex-axes, and pointg, 1), p,
andp’ lies on a common line. .

5.6 Points on a Circle

A point on the unit circle has Cartesian coordinatessa, sina), where 0< a < 2. In general, sines and
cosines are non-rational numbers, e.g.,7co5= v/2/2. In this section, we will show how to find a dense
set of points with rational Cartesian coordinates on theéairgle. For anya and anys > 0, we will show
how to find a triple(a, b,w) of integral homogeneous coordinates such that

a+b*=w? and |a—a’|<e where cos’=a/wand sim’=b/w.
A triple (a,b,w) of integers witha? + b? = w? is called a Pythagorean triple.
LEMMA 20. For any rational point p= (px, py) on the unit circle there is a rational a and integers n and m
such that
(- 2a a?-1\ ([2mn n?—n?
PP =@irar1) \rm e rm
Proof. Stereographic projection is a one-to-one correspondeatveeln the points on the unit circle and

the points orx-axes, see Figure 5.1. if= (py, py) lies on the unit circlep’ = (a,0) lies on thex-axis, and
(1,0), pandp' lie on a common line, then

Px 2a a?—1
a=—— and = =
Py P L |

as a simple computation shows. Thusp tfias rational coordinateg, has rational coordinates, andafhas
rational coordinatesp has rational coordinates. We conclude that every rationiak pn the unit circle has
coordinategy = 2a./(a?+ 1) andpy = (a2 — 1)/(a? + 1) for some rationah. Leta=n/m. Then

2(n/m) 2nm _a?-1 (n/m?—-1 n*—n?
(n/m2+1 24 a2+l (n/m241 n24m?

Exercise 0.23: Why can there be no Pythagorean tripdeb, c) with a andb odd? O

5.6. POINTS ON A CIRCLE 73

If we would not insist ora being rational, we could simply chooaesuch that

cosa = 2a or a— ! + ! 1
a2+l ~cosa” Vco2a

The two choices foa correspond to the two possible values forginHowever, we wané to be rational.
An obvious way to obtain a rational approximation with eradbrmost 2% is as follows. We compute a
floating point approximatiom 6f a with error at most 2° as shown in Section 4.8;i$ the desired rational
approximation. The fraction obtained in this way has a nateerand denominator afbits.

One can obtain usually obtain better approximations witvefebits as we discuss next. The less mathe-
matically inclined reader may proceed directly to the enthefsection. We first show that there is always a
good rational approximation with small denominator anchtbigow how to compute such an approximation.

THEOREM 21 (Dirichlet, 1842).For any real x and any positive there is a rational number f such that

qgl and x—E‘<£.
€ q q

Proof. If € > 1, we simply takep = [x| andgq= 1. So assume < 1. LetM = |1/¢| and consider the
numbers. For each 0 << M, let f; be the fractional part ak, i.e., fi = ix — |ix|. The fractional parts lie
between 0 and 1 and hence there are distiaat j such thaf f; — ;| < 1/M. Assumej >i. Then

|G = i)x—=(Lix) = [ix))] = | f; =] g%

and hence

=i T (-DM 7 j—i
Setq=j—iandp=|jx]| — |ix]. O

'x— Lix]| — [ix] 1 €

The standard technique for approximating a real by a ratisn@a compute its continued fraction ex-
pansion. For al € R, define a sequence, X1, X2, ... of reals and a sequenag a;, ay, .. . of integers as
follows.

X0 =X a0 = [%o
1

R 1= X

Xp = ! a = | X

2= i —a > = (X2

If somex; is integral, the sequence ends wah Otherwise, the sequence is infinite. Cleary;-a < 1
for all i. If & = x;, the sequence ends,af < X, Xi+1 > 1 and hencey,1 > 1. We call[ag;as,ay,...| the
continued fraction expansioof x. We will next derive some properties of this expansion. @lesérst that
Xi = & + 1/% 1 whenevelx; 1 is defined and hence

1 1 1
X=Xp=ag+ —=ag+ =g+ ———=....
X1 1

a+ — a +
X2

74 LECTURE 5. A FIRST GEOMETRIC KERNEL

A finite continued fraction defines a rational number. Theveose is also true as we will see below. The
continued fractiorjag; &, ..., ay) is a rational number. We call it theth convergent ok. The convergents
of a continued fraction have many nice properties.

LEMMA 22. Let x€ R>g and let[ag; a1, ay, ...] be the continued fraction expansion of x. Define g 0,
g2=1p-1=101=0and

Ph=2anPn-1+Pn-2 and o =2an0h-1+0n-2 forn>0.

Then

1. Pn_ [ap;as,...,an| is the n-th convergent of x.

n
2. POn-1— Pn_1Gn = (—1)™1forn> —1.

Pnti _ Pn
On+1 On

. th>(3/2)"1forn>0.

_ 1
"~ OnOn+1 forn > 0.

4
P2 P - P2 P PP

> g-2 < o < a2 <"'§X§"'Q3 < a1 < Q-1°

6. The nt 2-th convergent is closer to thednl-th convergent than to the n-th convergent.

7. X— pn/qn is strictly decreasing in n.

Proof. Let zbe variable. Define
Mn(z) = [ag;a1,...,an+ 2.

We will show that

_1Z
Mn(Z) — pn+ pn 1
On+0n-12
by induction om. Forn = 0, we have
Po+ P-12
Mo(z2) =ap+2= ————.
o2 =2 Jo+0-1Z
Forn+1>1, we have
1
1 . Pt Prig7z @niaPntPnitPnZ Prrit PeZ

Mni1(z2) =M = = = .
nald) =Mnlg Ot 1525 @410+ 01+ 2 Onei+ Oz

Mn(0) is then-th convergent ok. Thus[ag;as, ..., ah] = pn/an. This proves (1).
We turn to (2). Observe first that 102 — p_2g-1 = 1= (—1)°. Forn > 0, we have

PnOn—1— Pn=10h = (8 Pn—1+ Pn—2)0h-1 — Pn—1(@80n—1 — On—2)
= Pn—20n-1— Pn—10n—2 = (—1)- (_l)n = (_1)n+l'
(3) follows from a simple calculation.

_ | Pn+10n — PO+ _ 1 .
OnOn+1 OnOn+1

Pnt1 Pn
On+1 On

5.6. POINTS ON A CIRCLE 75

(4) is a simple inductiongp = 1> (3/2)~! andqg; = a; > (3/2)° and forn > 2,
O = 8nlhn-1+0n-2 > (3/2)" 2 +(3/2)"° = (3/2)"%(3/2+ 1) = (3/2)"°5/2 > (3/2)" .

We turn to (5). Assume inductively thak, /g, < X < pn_1/0n—1 for evenn. This is certainly true for
n= —2. My(2) is an increasing function o My(0) = pn/gn, Mn(®©) = pr-1/0n-1, aNdMn(1/Xy+1) = X.
Now an.1 = |Xn+1] and hence fan, 1 > 1/%q11. Thus thatx < pry1/0ne1 = Mn(1/ani1) < pro1/0n-1- A
similar argument showp,/dn < Pn+2/0n2 < X

For (6), we consider the case of euer\We have

Pn+2 Pn_ Ptz Pn (pn+l B pn+2> 1 1 1 _ Pnt1 Pny2

—— - f— — > — s
Oh+2 On Ontr On On+1 On+2 OnOn+1 Yn+10n+2 On+1On+r2 Ontr Ont2

where the inequality follows frorgn.2 > gni1+ 0n > 20,. The proof for odch is similar.
(7) is an easy consequence of (6). Consider an ava@imenp, /gy < pPni2/0n+2 < X< Pne1/0ne1 and

Pn+1 _x< Pnt1 Pni2 < Pni2 Pn <x— &
On+1 On+1 Ont2 On+2 On On

O

The convergent$n /g, are in lowest terms, because otherwise we could not Pagie 1 — pn—10n =
(—1)"1. The even convergents convergetoom below and the odd convergents convergeftom above.
We have

B 1 i+1
Pn_ Po I Pn Pn-1_ a0+ (-1) .
On Jo 1<7<n On On-1 1<G<n Gidi—1

Thusx=ag+ i-1(—1)"/(gigi-1).

LEMMA 23. Let xe R>g and let[ag; a1, ay, . ..] be the continued fraction expansion of x. The convergents
are optimal approximation of x in the following sense: Assu® ¢,. Then

x——p'> x— Pn

On

for all p. The continued fraction expansion is finite if andyoifix is rational.

Proof. Letnbe minimal such that, > q. The convergentp,_1/d,-1 andp,/q, bracketx and have distance
1/(gn-10n) from each other. This is smaller thayidh_10. If p/qis closer tax thanp,/q, then the distance
of p/qto eitherp,_1/dn-1 Or pn/dn Must be smaller than the distance between these points. ud¢gwe

.1 1 1
> min(—,)=
dth dth-1~ (Gh-1

P_Pn
qa On

P Pn1

min(
4 01

)

and hencep/q cannot lie closer ta than p,/dpn.
If the fraction is finite,x is rational. So assumeis rational, say = p/q. If the expansion is infinite,
there is a converger,/qn with g, > g. Thenp,/q, is closer tax thanp/q. This is a contradiction. [

76 LECTURE 5. A FIRST GEOMETRIC KERNEL

It is now clear how to proceed. We compute an approximation of

1
a= +4/ = -1
cosa coga

using floating point arithmetic (of sufficient precision)datihen compute a rational approximationaobf
sufficient precision.

Exercise 0.24: Give more details on how to compute a rational approximaticawith error at mose. <

Exercise 0.25: Extend the previous exercise and show how to guarantee anxamation of cosr with
error at mosk (an approximation ofr with error at mosk. &

5.7 Notes

Generic programming,

Determinants: Many geometric predicates, e.g., the orientation and thighiare predicates, are naturally
formulated as the sign of a determinant. The efficient coatpr of the signs of determinants has therefore
received special attention [14, 2, 6]. None of the methodsadlable in LEDA.

Specialized Arithmetics: The orientation predicate for points with integral homogmus coordinates.

sign(pw- qw- rw) - Sign pw- (gX-ry — qy- rx) — qw- (px-ry — py-rx) +rw- (px- qy— py- gx)).

If the coordinates are less thah, 2he value of the orientation expression is at mose®8+1. With this
knowledge, one could try to optimize the arithmetic, i.astéad of using a general purpose package for
the computation with arbitrary precision integers (suclihasclass —integer—) one could design integer
arithmetic optimized for a particular bit length. This aueris taken in [27, 52].

Section 5.6 is based on [12].

[[The following should go to the lectures on perturbatipfhat happens it is larger? The floating
point computation is able to deduce the sigiicof \E| > B. SinceE is twice the signed area (see Lemma 3)
of the triangle with verticega, b, c), the floating point computation is able to deduce the cosiggt for any
triple of points which span a triangle whose area is at leagt & - 22-+3/2. Devillers and Preparata [19]
have shown that for a random triple of points andlfggoing to infinity, the probability that the area of the
spanned triangle is at least8-°3.22-73/2 goes to one. Thus for lardeand for triples of random points,
the floating point computation will almost always be able ¢aldce the sign o and exact computation
will be rarely needed.

Observe that the result cited in the previous paragraphndisperucially on the fact that the points are
chosen randomly. In an actual computation orientatiorstesit not be performed for random triples of
points even if the input consists of random points. It iséf@re not clear what the result says about actual
computations.

Lecture 6

Delaunay Triangulations and Voronoi
Diagrams

discuss an algorithm for Delaunay Triangulations, e.gudoaized incremental. Discuss Voronoi diagrams
as the dual.

also do conceptual perturbation: walk through a triangutatto get the code right. This is discussed in
the LEDAbook and also in my 2000 course notes.

6.1 Notes

1

78

LECTURE 6. DELAUNAY TRIANGULATIONS AND VORONOI DIAGRAMS

Lecture 7

Perturbation

Computational geometers tend to formulate their algordtion inputs in general position. What is an input
in general position? General position is always defined vaipect to a set of predicates. A set of points is
in general position with respect to the orientation pre@icano three points are collinear. It is in general
position with respect to the side-of-circle predicate iffoar points are co-circular. It is general position
with respect to the orientation predicate and the siderofecpredicate if no three points are collinear and
no four points are co-circular. Generallyfif, ..., fx are functions of geometric objects, then a set of objects
is in general position with respect to these functions, lifaiction evaluations for objects in the set yield
nonzero.

Geometric algorithms branch on the outcome geometric pagel. In general, the branches are three-
way branches: positive sign, negative sign, and zero. Ifrthet is in general position, the zero branch is
never taken. This simplifies the algorithm. We have alreagbnsseveral examples to this effect. In the
convex hull algorithm, we had to distinguish between vlgipand weak visibility and we had to cope with
inputs that are contained in a lower dimensional subspaciael Delaunay triangulation algorithm, we had
to cope with co-circular points and with inputs that are eored in a lower dimensional subspace.

So the general position assumption simplifies the life oflgorghm designer. However, at the cost of
the programmer. A program has to cope with all inputs and sddeeal with degenerate inputs. What can
a programmer do? There are essentially two approaches:

e Redesign the algorithm so that it handles degenerate inputs
e Use perturbation to bring the input into general position.

Whenever we discuss an algorithm in this book, we follow tinst fapproach. We make sure that the
algorithms works for all inputs. In this lecture and the newe study perturbation techniquekhe idea is to
solve the problem not on the given input, but on a nearby inpaé nearby input is obtained by perturbing
the given input. The perturbed input will then be in gener@ipon and, since it is near the original input,
the result for the perturbed input will hopefully still beefisl. This hope has to be substantiated in any
application of the perturbation technique. We cannot makeeral claims with respect to this hope. We
give a positive and a negative example. If the input objemsdarived from some physical measurement,
then a perturbation within the precision of the measuringadeshould be acceptable. On the other hand,
for an algorithm whose task is to decide whether the inpuhigeneral position, perturbation makes no
sense.

79

80 LECTURE 7. PERTURBATION

Exercise 0.26: Go through the examples in the first lecture. For which of tieeperturbation a reasonable
technique? Discuss two additional examples of your ownaghoi &

Perturbation comes in two flavors: symbolic and numeriaalyimbolic perturbation, one perturbs in-
puts by infinitesimal amounts, and in numerical perturlmatome actually changes the coordinates. (REWRITE).

7.1 Symbolic Perturbation

It is convenient to summarize the input into a single vestarRN. For example, if the input is points

in the plane, we would séi = 2n and pack all & coordinates into a single vector. A test function is then
simply a functionf : RN — R. Let F be a collection of test functions. For example, if an aldgonituses
the geometric predicates lex-compare, orientation, ametaf-circle forn points in the planelF contains
(5) test functions corresponding to lex-compare (one for eathqf distinct points),(3) test functions
corresponding to orientation, ar@) test functions corresponding to side-of-circle.

DEFINITION 2. Let f: RN — R be a test function and = f~1(0) be its zero set. We call ell-behaved
if every straight line/ is either contained iro or every bounded segmentintersectso in finitely many
points.

Many functions are well-behaved, e.g., all polynomials alhdational functions. In particular, for any
geometric test used in this book, the underlying functioweédi-behaved.

THEOREM 24. Let F be a collection of well-behaved continuous functions ket ac RN be a vector that
is in general position with respect to F, i.e.(a # O for all f € F. Then for any fc F and any gc RN

(o) := lim signf(q+e(a—a))

exists and is non-zero. Moreover, ifgh # 0, f(q) = signf(q).

Proof. The functione — g+ £(a— q) defines a line passing througly anda. Sincef(a) # 0, ¢ is not
contained ino and hence the segmet intersectso only finitely often. Thus there is agy > 0 such that
f(g+e(a—q)) #0for 0< € < &. Sincef is continuous, sigh(q+ &(a—q)) is constant for G< € < &.
Thus f(q) exists and is non-zero.

Assume next thaf (q) # 0. Sincef is continuous, there is agy > 0 such thatf (q+ e(a—q)) # O for
0 < € < &. Again by continuity, sigf(q) = f(q). O

COROLLARY 25. Consider any algorithm that branches only on the sign of afion f from a class F
of well-behaved continuous functions applied to the inpatRN. Also assume that @ RN that is non-
degenerate for all £ F. Branching onf(q) instead of orsignf (q) has the following effect:

e The zero branch is never taken, and
e If g isin general position, the computation does not change.

Proof. This follows immediately from Theorem 24. Sin€éq) # 0 for all g, the zero branch is never taken,
and sincef(q) = signf(q) wheneverf(q) # 0, the computation does not change for an input in general
position. O

7.1. SYMBOLIC PERTURBATION 81

The corollary may be paraphrasedifigou know just one input in general position, any input can b
perturbed into general positioriWe still need to address two questions. How do we find inputgeneral
position and how can we compuféq)? We address both questions first for the orientation preslictn
points in the plane.

LEMMA 26. The points a= (i,i%), 1 <i < n, are in general position with respect to the orientatioeqti
cate.

Proof. Lines intersect the paraboja= x? in at most two points. Thus no thregare collinear. O

We next discuss how to evaluate the orientation predicatsude our inputs are the poigfgs 1 <i <n.
We replaceg; by g + £(a — q;). For three distinct pointg;, q;, ando, we then have:

1 (1—e)x(qg)+e (1—e)y(qg)+ei?
1 (1-e)x@j)+ej (1-e)y(g))+ej?
1

Orientation(q;,gj,0k) = lim sign
o (1-e)X(ak) +ek (1 e)y(d) +ek?

Expansion and collecting terms according to powers wields

e
X — =

= Orientation (¢}, d;, 0k) + Iirg+sign (sP(qi,qj,Qk) + €2
E—

whereP(q;,q;, 1, j,K) is a polynomial. Thus

i2

j2

K2 7
Orientation(q;,Qj,qx) if Orientation(q;,qj,0k) # O

Orientation(q;, dj,dk) = 4 sign(P(q;,q;j,dk)) if Orientation(q;,q;,qx) = 0 andP(q,q;j,ax) # 0
Orientation(a;,a;,ac) if Orientation(q;,q;,0) = 0= P(q;,q;,0k)

We next address the equations more generally. We exhihiitsnim general position for the set of
test functions introduced in the introductory paragrapte & so for arbitrary dimensioth and not only
for the plane. We considar points chosen from the positive branch (i.e 0) of the moment curve
t— (t,t%,...,t9). No two points on this curve agree in any coordinate. dNp1 points lie in a common
hyperplane. Consider the equatiag+ ¥ 1-j<qaX of any hyperplane. Plugging= (t,t2,...,t9) into this
equation gives a polynomial of degrden t. We conclude that the hyperplane intersects the momenécurv
in at mostd points. Finally, the positive branch of the moment curverisécts no sphere oh+ 2 or more
points. Lety 1<i<q(X —Ci)?>—r? =0 be the equation of a sphere. Plugging (t,t2,...,t%) into this equation
gives the following polynomial i:

(t'—c)2—r2
1<i<d

Descartes rule of signs (Theoreétf) states that the number of positive roots of a polynomiabisiaed by
the number of sign changes in its coefficient sequence. Tlya@uial above can have at mast- 1 sign
changes since the coefficients of the poviérsith j > d are nonnegative (any such coefficient is either zero
or one).

We first show how to computg&(q) for polynomialsf. We useq; to gy to denote the coordinates BN
and assume thdt(qs, ...,) is a polynomial of total degreg. Then.

fla+e@-q) = f(am+e@—a).....an+el@a—a))= Y Pi(aL..-.n)e',

o<i<d

82 LECTURE 7. PERTURBATION

where thep; are polynomials of total degree at makstWe claim

() = signpi(q) wherei =min{j | pj(q) # 0}.
We know from Theoren?? that the sign off (q+ £(a— q)) is constant and nonzero for sufficiently small
Therefore at least ong;j(q) must be non-zero. Létbe minimal withp;(q) # 0. Then

= n(ae Pi(@) i
f(q+e(a—q)) = pi(g)e <1+J;pi(q)gl >

LetM = max|p;(q)/pi(d)|. Then|s i pj(a)/pi(a)e’~'| < M/(1—¢) < 1/2 for sufficiently small.

7.2 Numerical Perturbation

[[the following is copied from Funke/Klein/Mehlhorn/Sclittn It needs to rewritten so that it fits better.]]

7.3 Some Words of Caution

Perturbation is not a cure-all. It removes burden from tigedthm designer and implementer. However, it
has two drawbacks.

The running time of an algorithm may increase as a result digmtion. We give two examples.
Assume we are given line segments passing through the origin. We will see iniSe&? that we can
compute their arrangement in tin@nlogn). However, perturbing the line segments into general [usiti
(no three intersect in a point) will generate an arrangemétit ©(n?) intersection points. The second
example is even more extreme. Assume we are givielentical points inRY%. Any sensible convex hull
algorithm should be able to handle this input in linear titdewever, the perturbation scheme of Section 7.1
moves then points onto thel-dimensional moment curve. The resulting hull will havel%/2 facets and
hence any algorithm will need tin@nl%/2) for computing the hull of the perturbed points.

Exercise 0.27: Prove bound for points on the moment curve. &

The second drawback is that we solve the problem on a pedunipeit and not on the original input.
The output for the perturbed input may tell us little abow tlutput for the original input.

The symbolic scheme has another drawback. It requires egagbutation.

Neither approach to perturbation will apply if some testdtion is identically zero. For example, if one
tests whether a pointlies on a line involvingp as one of the defining points, the outcome will be “on line”
no matter who one perturbs the input. The reader may thirtkésafunctions that are identically zero can
only arise as a consequence of stupid programming. Howtheyr,can also arise because the algorithm
designer misses a theorem, see Figure 7.1.

7.4 Notes

[20] introduced symbolic perturbation and applied it to tmentation predicate. [22, 51, 21, 57] extended
and simplified the technique. Our presentation follows [F4) implementation of the scheme is available
in CGAL [15]. CITATION IS INCOMPLETE.

Section??is based on [30].

Section 7.3 is based on [10].

7.5. PROPOSED CONTENTS 83

Figure 7.1:p1, p2, ps are three arbitrary points on a life andqi, 02, gz are three arbitrary points on a
line /5. For 1<i <3let{j,k} ={1,2,3}\i and letr; be the intersection df(pj,ax) and¢(px,d;). Pappus
(ca. 300 AD) proved that;, ro andrs are collinear. So perturbing the input will not help.

7.5 Proposed Contents

discuss SoS by Edelsbrunner and Muecke, Seidel
discuss controlled perturbation. This can be based on tiEAS@ticle by Funke/Klein/Mehlhorn/Schmitt.
Reference to Devillers/Preparata.
also do conceptual perturbation: walk through a triangutatto get the code right. This is discussed in
the LEDAbook and also in my 2000 course notes.

84

LECTURE 7. PERTURBATION

Bibliography

[1] A. Andrew. Another efficient algorithm for convex hulls two dimensions.nformation Processing

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Letters 9:216—219, 1979.

F. Avnaim, J.-D. Boissonnat, O. Devillers, and F. Prepar Evaluating signs of determinants with
floating point arithmeticAlgorithmica 17(2):111-132, 1997.

R. Banerjee and J. Rossignac. Topologically exact eiadn of polyhedra defined in CSG with loose
primitives. Computer Graphics Foruni5(4):205-217, 1996. ISSN 0167-7055.

M. Blum and H. Wasserman. Reflections on the pentium @iwi®ug. IEEE Transaction on Comput-
ing, 45(4):385-393, 1996.

J.-D. Boissonnat and M. YvinecAlgorithmic Geometry Cambridge University Press, Cambridge,
1998.

H. Bronnimann, |. Emiris, V. Pan, and S. Pion. Compute@ct geometric predicates using modular
arithmetic with single precision. IRroceedings of 13th Annual ACM Symposium on Computational
Geometry (SCG’'97pages 174-182, 1997.

C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra.s#ong and easily computable separation
bound for arithmetic expressions involving square roai$rbceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA'9@ages 702—709, 1997www.mpi-sb.mpg.de/

~ mehlhorn/ftp/sepbound.ps

C. Burnikel, S. Funke, and M. Seel. Exact arithmetic gstascaded computation. Rroceedings of
the 14th Annual Symposium on Computational Geometry (S8)G8ges 175-183, 1998.

C. Burnikel, K. Mehlhorn, and S. Schirra. How to compulte tVoronoi diagram of line segments:
Theoretical and experimenta | results. Pnoceedings of the 2nd Annual European Symposium on
Algorithms - ESA’94volume 855 of Lecture Notes in Computer Science, pagesZZo/-Springer,
1994.

C. Burnikel, K. Mehlhorn, and S. Schirra. On Degeneriac$eometric Computations. Proceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorit(@3DA’'94) pages 16-23, 1994.

C. Burnikel, K. Mehlhorn, and S. Schirra. On degenerimcgeometric computations. Rroceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorit(B@DA’'94) pages 16—23, 1994.

85

86 BIBLIOGRAPHY

[12] J. Canny, B. Donald, and G. Ressler. A rational rotatiwethod for robust geometric algorithms. In
A.-S. ACM-SIGGRAPH, editorProceedings of the 8th Annual ACM Symposium on Computationa
Geometry (SCG '92)pages 251-260, 1992.

[13] K. Clarkson and P. Shor. Applications of random sanlimcomputational geometry, 10ournal of
Discrete and Computational Geomet#y387—421, 1989.

[14] K. L. Clarkson. Safe and effective determinant evatrat IEEE Foundations of Computer Sci.
33:387-395, 1992.

[15] J. Comes and M. Ziegelmann. An easy to use implememntatidinear perturbations within CGAL.
In Algorithm Engineeringpages 169-182, 1999.

[16] M. de Berg, M. Kreveld, M. Overmars, and O. Schwarzko@bmputational Geometry: Algorithms
and Applications Springer, 1997.

[17] P. Deuflhard and A. Hohmanrmumerische Mathematik: Eine algorithmisch orientiertefithrung
Walter de Gruyter, 1991.

[18] O. Devillers, G. Liotta, F. Preparata, and R. Tamas§iaecking the convexity of polytopes and the
planarity of subdivisions. Technical report, Center foo@etric Computing, Department of Computer
Science, Brown Universi ty, 1997.

[19] O. Devillers and F. Preparata. A probabilistic anaysi the power of arithmetic filtersDiscrete &
Computational Geometrp0:523-547, 1998.

[20] H. Edelsbrunner and E. Micke. Simulation of simpliciA technique to cope with degenerate cases
in geometric algorithmsACM Transactions on Graphic8(1):66—104, Jan. 1990.

[21] 1. Emiris, J. Canny, and R. Seidel. Efficient perturbas for handling geometric degeneraciédgo-
rithmica, 19:219-242, 1997.

[22] I. Z. Emiris and J. F. Canny. A general approach to remgwiegeneraciesSIAM Journal on Com-
puting 24(3):650-664, June 1995.

[23] A. Fabri, E. Fogel, B. Gartner, M. Hoffmann, L. Kettnes. Pion, M. Teillaud, R. Veltkamp, and
M. Yvinec. The CGAL manual. 2003. Release 3.0.

[24] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, an&&onherr. On the design of CGAL a compu-
tational geometry algorithms librargoftw. — Pract. Exp.30(11):1167-1202, 2000.

[25] A.R. Forrest. Computational geometry in practice. IlAREarnshaw, editoFFundamental Algorithms
for Computer Graphicsvolume F17 oNATO AS] pages 707—724. Springer-Verlag, 1985.

[26] S. Fortune. Robustness issues in geometric algoritnm#&roceedings of the 1st Workshop on Ap-
plied Computational Geometry: Towards Geometric EngimepfWACG’96) volume 1148 of Lecture
Notes in Computer Science, pages 9-13, 1996.

[27] S. Fortune and C. van Wyk. Static analysis yields efficexact integer arithmetic for computational
geometry. ACM Transactions on Graphicd5:223-248, 1996. preliminary version in ACM Confer-
ence on Computational Geometry 1993.

BIBLIOGRAPHY 87

[28] S. J. Fortune. Numerical stability of algorithms for Betlaunay triangulations.Int’l. J. Comput.
Geometry and Appl5(1):193—-213, 1995.

[29] S. Funke. Exact arithmetic using cascaded computatidiaster’'s thesis, Fachbereich Informatik,
Universitat des Saarlandes, Saarbriicken, 1997.

[30] S. Funke, C.Klein, K. Mehlhorn, and S. Schmitt. CorigdIPerturbation for Delaunay Triangulations.
SODA, pages 1047-1056, 2005.

[31] GMP (GNU Multiple Precision Arithmetic Library)http://gmplib.org/

[32] D. Goldberg. What every computer scientist should katwwut floating-point arithmeticACM Com-
puting Surveys23(1):5-48, 1990.

[33] D. Goldberg. Corrigendum: “What every computer sdsrghould know about floating-point arith-
metic”. ACM Computing Survey23(3):413—-413, 1991.

[34] R.L.Graham. An efficient algorithm for determining tb@nvex hulls of a finite point selnformation
Processing Lettersl:132-133, 1972.

[35] Halperin and Shelton. A perturbation scheme for sla¢arrangements with application to molecular
modeling. CGTA: Computational Geometry: Theory and Applicatiah®, 1998.

[36] IEEE standard 754-1985 for binary floating-point amttic, 1987.
[37] Java.http://www.java.com/en/

[38] M. Junger, G. Reinelt, and D. Zepf. Computing correetddinay triangulationsComputing 47:43-49,
1991.

[39] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A ctibeary for robust numeric and geometric
computation. IrProceedings of the 15th Annual ACM Symposium on Compughiid@ometry pages
351-359, Miami, Florida, 1999.

[40] V. Karamcheti, C. Li, . Pechtchanski, and C. Yap. A Clibeary for robust numerical and geometric
computation. In5th ACM Symp. Computational Geomefrgges 351-359, 1999.

[41] A. Karatsuba and Y. Ofman. Multiplication of multidighumbers on automaté&soviet Physics Dok-
lady, 7(7):595-596, 1963.

[42] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Y&tassroom Examples of Robustness Problems
in Geometric Computations. BSA volume 3221 o NCS pages 702—713, 2004. full paper to appear
in CGTA.

[43] LEDA (Library of Efficient Data Types and Algorithmsjvww.algorithmic-solutions.com

[44] K. Mehlhorn and S. Naher. The implementation of geaioedlgorithms. InProceedings of the
13th IFIP World Computer Congresgolume 1, pages 223-231. Elsevier Science B.V. Northatal]
Amsterdam, 1994www.mpi-sb.mpg.de/ ~mehlhorn/ftp/ifip94.ps

[45] K. Mehlhorn and S. NaheThe LEDA Platform for Combinatorial and Geometric Compgti@am-
bridge University Press, 1999.

88 BIBLIOGRAPHY
[46] K. Mehlhorn, S. Naher, M. Seel, R. Seidel, T. SchilzS8hirra, and C. Uhrig. Checking geometric
programs or verification of geometric structur€omputational Geometyy2(1-2):85-103, 1999.

[47] R. Motwani and P. RaghavaRandomized AlgorithmsCambridge University Press, 1995.
[48] K. Mulmuley. Computational GeometryPrentice Hall, 1994.

[49] S. Schirra. Robustness and precision issues in geimnoeimputation. to appear, preliminary version
available as MPI report.

[50] M. Seel. Eine Implementierung abstrakter Voronoidisgme. Master's thesis, Fachbereich Infor-
matik, Universitat des Saarlandes, Saarbriicken, 1994.

[51] R. Seidel. The nature and meaning of perturbations émgdric computingDiscrete & Computational
Geometry19(1):1-17, 1998.

[52] J. Shewchuk. Adaptive precision floating-point arigtra and fast robust geometric predicat&ss-
crete & Computational Geometr{8:305-363, 1997.

[53] P. SterbenzFloating Point ComputationPrentice Hall, 1974.

[54] J. Tusch and S. Schirra. Experimental comparison otts of approximate and exact convex hull
computation in the plane. IBCCG, 2006.

[55] C. Yap. Towards exact geometric computation. Pioceedings of the 5th Canadian Conference on
Computational Geometry (CCCG'93)ages 405-419, 1993.

[56] C.Yap and T. Dube. The exact computation paradign€dmputing in Euclidean Geometry World
Scientific Press, 1995.

[57] C.-K. Yap. Geometric consistency theorem for a syntpérturbation schemd. Comput. Syst. Sgi.
40(1):2-18, 1990.

