This assignment is **due on Jan 18** in class. You are allowed (even encouraged) to discuss these problems with your fellow classmates. All submitted work, however, must be *written individually* without consulting someone else's solutions or any other source like the web.

Problem 1: Let a_1, \ldots, a_n be vectors in R^m . Let $U = \{1, \ldots, n\}$ and \mathcal{I} be those subsets S of U such that the vectors indexed by S (that is, $\{a_i \mid i \in S\}$) are linearly independent. Prove that (U, \mathcal{I}) is matroid.

Problem 2: Let G = (V, E) be a bipartite graph with partitions L and R. Consider the following two matroids defined on E:

$$\mathcal{I}_1 = \{ I \subset E \mid \deg_I(u) \le 1 \text{ for all } u \in L \} . \tag{1}$$

$$\mathcal{I}_2 = \{ I \subset E \mid \deg_I(u) \le 1 \text{ for all } u \in L \} . \tag{2}$$

Show that (E, \mathcal{I}_1) and (E, \mathcal{I}_2) are indeed matroids. Prove that if a set of edges is independent in both matroids then it is matching.

Problem 3: Let (U, \mathcal{I}) be a matroid, and x be an **integral** solution of its polytope, $x \in R_+^{|U|} \mid x(S) \leq r(S) \; \forall S$. Show that $\{u \in U \mid x_u = 1\}$ belongs to \mathcal{I} .