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Lecture 12 — January 25
Lecturer: Julián Mestre

In this final lecture we will cover how to solve the linear program for the mdst
problem. In fact, we will see two different ways of accomplishing this!

minimize
∑
e∈E

wexe (LP1)

subject to

x(E(V )) = |V | − 1 (12.1)

x(E(S)) ≤ |S| − 1 ∀S ⊆ V (12.2)

x(δ(u)) ≤ d(u) ∀u ∈ V (12.3)

xe ≥ 0 ∀ e ∈ E

12.1 Via separation oracle

Our first approach to solving (LP1) will be to design a separation oracle. That is, given a
solution x we need to either establish the feasibility of x or produce a violated constraint.
If we can do that in polynomial time, then the Ellipsoid algorithm can be used to solve
the program. We note that testing the feasible of Constraints (12.1) and (12.3) is trivial.
The issue is how to test for Constraints (12.2), which are exponentially many.

The abstract problem we are to solve is as follows. We are given a solution x and we
want to find a set S ⊆ with maximum density x(E(S))

|S|−1 . Let S∗ be a maximizer of this

function (among the maximizes we break ties by choosing one with minimum size) and
λ∗ be the value attained by this set. If λ∗ > 1, then S∗ defines our violating constraint,
otherwise we know x satisfies all Constraints (12.2).

|S| − 1

x(E(S))

Imagine plotting for each set S ⊆ V with
|S| ≥ 2, the point (|S| − 1, x(E(S))). It is con-
venient to include a dummy point at the origin
(0, 0) in our point set. Notice that the density
of a given set S is the slope of the line going
trough the corresponding point and the dummy
point. Thus, finding the point with maximum
density is equivalent to finding the line with the
smallest slope going through the dummy point
origin that leaves all points under the line.

It is convenient to view the problem from a
slightly different perspective. Consider the same
plot for the points (|S| − 1, x(E \ E(S))). This transformation only flips the previous
graph. The dummy point is mapped accordingly to (0, x(E)). Now we are interested in
finding the line going through the dummy having smallest negative slope (closest to 0)
that leaves all points above the line.
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|S| − 1

x(E \ E(S))

Let P be the set of point in our scatter plot.
Suppose we had an oracle for finding the point
(a, b) ∈ P minimizing α · a + b for some fix but
arbitrary α > 0. If α > λ∗ then the oracle would
return the dummy point. If α > λ∗ the oracle
will return some S 6= ∅. At α = λ∗ our oracle
can return the dummy point or some set with
maximum density. Let us assume that if there
is a choice the oracle never returns the dummy
point. Suppose we run our oracle with α = 1.
If the oracle returns the dummy point, then we
know there is some violating constraint and we can find it using binary search on α.
Otherwise, we know that all constraints are satisfied.

The oracle can be implemented using the following reduction to minimum weight
vertex cover in bipartite graphs. First we guess some vertex v in the set S. Our bipartite
graph has two parts corresponding to V − v and E in the original graph. For each
vertex u we assign its node a weight of α. For each edge e, we assign its corresponding
node a weight of xe. We connect the node corresponding to an edge with the nodes
corresponding to its endpoints; nodes incident on v are only connected to the other
endpoint. Any minimal vertex cover in the graph picks a subset S ⊆ V − v. If S = ∅
the edges chosen are E(V ); otherwise, when S 6= ∅ the edges chosen are E \ E(S + v).
Finding a minimum weight vertex cover is precisely the kind of oracle we need.

12.2 Via alternative formulation

Another avenue for solving (LP1) is to come up with an alternative formulation that has
polynomial size. To simplify the treatment, we focus on the spanning tree polytope.

First consider the follow formulation for an out-branching in a directed graph (V,D).
Let r be the be the root of our out-branching.

minimize
∑
e∈D

wexe (LP2)

subject to

x(δout(S)) ≥ 1 ∀S ⊂ V : r ∈ S (12.4)

xe ≥ 0 ∀ e ∈ D

Theorem 12.1. The extreme points of (LP2) correspond to 0-1 incident vectors of out-
branchings.

The basic idea is to bi-direct every edge in our undirected graph. That is, we replace
each undirected edge {u, v} ∈ E with two edges (u, v) and (v, u) and we choose arbitrarily
a root. Asking for an out-branching in this graph is equivalent to asking for spanning
tree in the original graph.

To deal with exponential number of cut constraints we turn to a flow-based formula-
tion. Let Fu be the polytope corresponding to flow vectors that ship at least unit of flow
from u to r. The flow, of course, is fractional. Also, in this flow we have for each edge
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(u, v) ∈ E two variables fu
uv, f

u
vu ≥ 0 that encode how much flow goes along the edge in

each direction. The basic idea is to let each vertex send one unit of flow to the root and
then pick the edge capacities that will allow us to ship each of these flows separately.

minimize
∑
e∈E

wexe (LP3)

subject to

fu ∈ Fu ∀u ∈ V − r (12.5)

fu
ab + f v

ba ≤ x{a,b} ∀ {a, b} ∈ E and u, v ∈ V − r

Theorem 12.2. Let (x, f) be an extreme point of (LP3) then the vector x corresponds
to the incidence vector of a spanning tree in G. Also, for every incidence vector x a
spanning tree there exists a flow vector f such that (x, f) is feasible for (LP3)
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