Lecture 3 — October 26

Lecturer: Julián Mestre

3.1 The push-relabel algorithm

Definition 3.1. Given a directed graph (V, E) and edge capacities $c : E \to \mathbb{Z}^+$, and two distinguished vertices s (source) and t (sink), we say $f : E \to \mathbb{Z}^+$ is an s-t flow if

i) for every edge $e \in E$ the flow does not violate the edge capacity,

$$0 \le f(e) \le c(e)$$
, and

ii) for every vertex $u \in V - s - t$, we have flow conservation at u,

$$f^{in}(u) \equiv \sum_{(v,u)\in E} f(v,u) = \sum_{(u,v)\in E} f(u,v) \equiv f^{out}(u).$$

The value of the flow is $value(f) \equiv f^{out}(s) = f^{in}(t)$. (For simplicity, we assume that there are no edges into s or out of t.)

MAXIMUM FLOW Input: graph (V, E), capacities $c : E \to \mathbb{Z}^+$, source s, and sink tOutput: flow $f : E \to \mathbb{Z}^+$ Objective: maximize value(f)

A concept central to most maximum flow algorithms is that of the residual graph G_f of a graph G with respect to a flow f. The vertex set of G_f is the same as G. There are two kinds of residual edges in G_f : Forward and backward edges. A forward edge $(u, v) \in G_f$ signals the possibility of increasing the flow along the edge $(u, v) \in G$, while a backward edge $(u, v) \in G_f$ signals the possibility of decreasing the flow along the edge $(v, u) \in G$. Below is a more formal definition.

Definition 3.2. Given a flow f on G, we define a residual graph G_f as follows:

- i) The node set of G_f is the same as G.
- ii) For each edge $(u, v) \in E$ such that f(u, v) < c(u, v), we add in G_f the forward edge (u, v) with residual capacity c(u, v) f(u, v).
- iii) For each edge $(u, v) \in E$ such that f(u, v) > 0, we add in G_f the backward edge (v, u) with residual capacity f(u, v).

Lemma 3.3. A flow f has maximum value if and only if there is no s-t path in G_f .

Although our ultimate goal is to compute a flow, the basic object in our algorithm will be an almost-feasible-flow, which we call preflow.

Definition 3.4. Given (V, E), c, s, and t, we say $f : E \to \mathcal{Z}^+$ is a preflow if

i) for all $e \in E$ the flow does not violate the capacities,

$$f(e) \le c(e)$$
, and

ii) for all $u \in V - s$ the excess at u is non-negative,

$$e_f(u) \equiv f^{in}(u) - f^{out}(u) \ge 0.$$

Observation 3.5. A preflow f is a flow if $e_f(u) = 0$ for all $u \in V - s - t$.

Lemma 3.6. Let f be a preflow in G. If a node u has positive excess then there is a path in G_f from u to s.

The last ingredient of the algorithm is labeling function on the vertices.

Definition 3.7. A labeling $h: V \to \mathcal{Z}^+$ is compatible with a preflow f if

- i) (boundary conditions) h(t) = 0 and h(s) = n, and
- ii) (steepness conditions) For every residual edge (u, v) in G_f , we have $h(u) \le h(v) + 1$.

Lemma 3.8. Let f be preflow compatible with a labeling h. Let p be a path in G_f from some vertex u to some vertex v then $h(u) \leq h(v) + |p|$, where |p| = # of edges in p.

Algorithm 1 PUSH-RELABEL(V, E, c, s, t)1. $h(s) \leftarrow n$ and $h(u) \leftarrow 0$ for all $u \neq s$. // initial labeling 2. $f(e) \leftarrow c(e)$ for $e = (s, v) \in E$ and $f(e) \leftarrow 0$. // initial preflow 3. while $\exists u \neq t$ with $e_f(u) > 0$ do if $\exists (u, v)$ residual edge in G_f and h(v) < h(u) then 4. if (u, v) is forward then 5.increase f(u, v) by min $\{e_f(u), c(u, v) - f(u, v)\}$ 6. // push forward 7. if (u, v) is backward then 8. decrease f(v, u) by min $\{e_f(u), f(v, u)\}$ // push backward 9. else $h(u) \leftarrow h(u) + 1$ // relabel node 10. 11. return f

3.1.1 Analysis of the generic algorithm

We need to derive some properties about the preflow f and the labeling h the algorithm maintains throughout the execution of PUSH-RELABEL.

Lemma 3.9. Throughout the execution, f is a preflow and h is compatible with f.

Lemma 3.10. Throughout the execution, all nodes have h(u) < 2n.

Everything is in place to bound the number of relabel and push operations.

Lemma 3.11. The total number of relabeling operations is less than $2n^2$.

To bound the number of push operations it is convenient consider separately those that are saturating and those are not. We say a forward push saturates $(u, v) \in G_f$ if we increase the flow along $(u, v) \in G$ by c(u, v) - f(u, v). Likewise, we say a backward push saturates $(u, v) \in G_f$ if we decrease the flow along $(v, u) \in G$ by f(u, v). The important thing to notice is that after a saturating push along an edge, the edge disappears from the residual graph.

Lemma 3.12. The total number of nonsaturating push operations is at most 2nm.

Lemma 3.13. The total number of saturating push operations is at most $2n^2m$.

Theorem 3.14. The generic PUSH-RELABEL algorithm terminates after $O(n^2m)$ iterations and returns a maximum flow.

Proof: In each iteration we do a push or a relabel operation. It follows from Lemmas 2.11, 2.12, and 2.13 that there are at most $O(n^2m)$ many iterations.

The preflow f the algorithm returns is in fact a flow, since $e_f(u) = 0$ for all $u \in V-s-t$. To see that is in fact maximum, suppose that there is a s-t simple path p in G_f . Since the labeling h is compatible with f, it follows from Lemma 2.8 that $h(s) \leq h(t) + |p|$. However, since the path is simple |p| < n, and since the labeling is compatible h(s) = nand h(t) = 0. A contradiction and thus f is maximum.

In the next lecture we will see how to implement PUSH-RELABEL efficiently and how to improve the running time by being more careful when choosing which edge to push flow along.