
Optimization II Winter 2009/10

Lecture 3 — October 26
Lecturer: Julián Mestre

3.1 The push-relabel algorithm

Definition 3.1. Given a directed graph (V, E) and edge capacities c : E → Z+, and two
distinguished vertices s (source) and t (sink), we say f : E → Z+ is an s-t flow if

i) for every edge e ∈ E the flow does not violate the edge capacity,

0 ≤ f(e) ≤ c(e), and

ii) for every vertex u ∈ V − s− t, we have flow conservation at u,

f in(u) ≡
∑

(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v) ≡ f out(u).

The value of the flow is value(f) ≡ f out(s) = f in(t). (For simplicity, we assume that
there are no edges into s or out of t.)

Input: graph (V, E), capacities c : E → Z+, source s, and sink t

Output: flow f : E → Z+

Objective: maximize value(f)

maximum flow

A concept central to most maximum flow algorithms is that of the residual graph Gf

of a graph G with respect to a flow f . The vertex set of Gf is the same as G. There
are two kinds of residual edges in Gf : Forward and backward edges. A forward edge
(u, v) ∈ Gf signals the possibility of increasing the flow along the edge (u, v) ∈ G, while
a backward edge (u, v) ∈ Gf signals the possibility of decreasing the flow along the edge
(v, u) ∈ G. Below is a more formal definition.

Definition 3.2. Given a flow f on G, we define a residual graph Gf as follows:

i) The node set of Gf is the same as G.

ii) For each edge (u, v) ∈ E such that f(u, v) < c(u, v), we add in Gf the forward edge
(u, v) with residual capacity c(u, v)− f(u, v).

iii) For each edge (u, v) ∈ E such that f(u, v) > 0, we add in Gf the backward edge
(v, u) with residual capacity f(u, v).

3-1

Opt II Lecture 3 — October 26 Winter 2009/10

Lemma 3.3. A flow f has maximum value if and only if there is no s-t path in Gf .

Although our ultimate goal is to compute a flow, the basic object in our algorithm
will be an almost-feasible-flow, which we call preflow.

Definition 3.4. Given (V, E), c, s, and t, we say f : E → Z+ is a preflow if

i) for all e ∈ E the flow does not violate the capacities,

f(e) ≤ c(e), and

ii) for all u ∈ V − s the excess at u is non-negative,

ef (u) ≡ f in(u)− f out(u) ≥ 0.

Observation 3.5. A preflow f is a flow if ef (u) = 0 for all u ∈ V − s− t.

Lemma 3.6. Let f be a preflow in G. If a node u has positive excess then there is a
path in Gf from u to s.

The last ingredient of the algorithm is labeling function on the vertices.

Definition 3.7. A labeling h : V → Z+ is compatible with a preflow f if

i) (boundary conditions) h(t) = 0 and h(s) = n, and

ii) (steepness conditions) For every residual edge (u, v) in Gf , we have h(u) ≤ h(v) + 1.

Lemma 3.8. Let f be preflow compatible with a labeling h. Let p be a path in Gf from
some vertex u to some vertex v then h(u) ≤ h(v) + |p|, where |p| = # of edges in p.

Algorithm 1 push-relabel(V, E, c, s, t)

1. h(s)← n and h(u)← 0 for all u 6= s. // initial labeling

2. f(e)← c(e) for e = (s, v) ∈ E and f(e)← 0. // initial preflow

3. while ∃u 6= t with ef (u) > 0 do

4. if ∃ (u, v) residual edge in Gf and h(v) < h(u) then

5. if (u, v) is forward then

6. increase f(u, v) by min {ef (u), c(u, v)− f(u, v)} // push forward

7. if (u, v) is backward then

8. decrease f(v, u) by min {ef (u), f(v, u)} // push backward

9. else

10. h(u)← h(u) + 1 // relabel node

11. return f

3-2

Opt II Lecture 3 — October 26 Winter 2009/10

3.1.1 Analysis of the generic algorithm

We need to derive some properties about the preflow f and the labeling h the algorithm
maintains throughout the execution of push-relabel.

Lemma 3.9. Throughout the execution, f is a preflow and h is compatible with f .

Lemma 3.10. Throughout the execution, all nodes have h(u) < 2n.

Everything is in place to bound the number of relabel and push operations.

Lemma 3.11. The total number of relabeling operations is less than 2n2.

To bound the number of push operations it is convenient consider separately those
that are saturating and those are not. We say a forward push saturates (u, v) ∈ Gf if we
increase the flow along (u, v) ∈ G by c(u, v)− f(u, v). Likewise, we say a backward push
saturates (u, v) ∈ Gf if we decrease the flow along (v, u) ∈ G by f(u, v). The important
thing to notice is that after a saturating push along an edge, the edge disappears from
the residual graph.

Lemma 3.12. The total number of nonsaturating push operations is at most 2nm.

Lemma 3.13. The total number of saturating push operations is at most 2n2m.

Theorem 3.14. The generic push-relabel algorithm terminates after O(n2m) itera-

tions and returns a maximum flow.

Proof: In each iteration we do a push or a relabel operation. It follows from Lem-
mas 2.11, 2.12, and 2.13 that there are at most O(n2m) many iterations.

The preflow f the algorithm returns is in fact a flow, since ef (u) = 0 for all u ∈ V−s−t.
To see that is in fact maximum, suppose that there is a s-t simple path p in Gf . Since
the labeling h is compatible with f , it follows from Lemma 2.8 that h(s) ≤ h(t) + |p|.
However, since the path is simple |p| < n, and since the labeling is compatible h(s) = n
and h(t) = 0. A contradiction and thus f is maximum. �

In the next lecture we will see how to implement push-relabel efficiently and how
to improve the running time by being more careful when choosing which edge to push
flow along.

3-3

