
Optimization II Winter 2009/10

Lecture 5 — November 9
Lecturer: Khaled Elbassioni

5.1 The multiplicative weights update method

In this lecture we present a procedure which can be thought of as a derandomization of
the randomized fictitious play described in the previous lecture. Freund and Schapire
[FS99] used this method, which was originally developed by Littlestone and Warmuth
[LW94] from the machine learning community, to give a procedure for computing ε-
saddle points for matrix games. A number of similar algorithms have also been de-
veloped for approximately solving special optimization problems, such as general linear
programs [PST91], multicommodity flows problems [GK98], packing and covering linear
programs [PST91, GK98, GK04, KY07, You01], some class of convex programs [Kha04],
and semidefinite programs [AHK05, AK07]. Arora, Hazan and Kale [AHK06] gave a meta
algorithm that puts many of these results under one umbrella. We will partly follow their
presentation in this lecture.

5.1.1 The experts problem

Suppose that we are dealing with stocks. We have access to the advice of n experts:
at the start of the day, each expert informs us of his/her prediction of the increase or
decrease of the type of stock we are interested in. We would like to devise a procedure
which, if we follow it, would guarantee that we do not make many more mistakes than
the best expert. Is there such a procedure at all? Here is one.

Algorithm 1 randomized weighted majority

1. mi(0) := 0 for all i ∈ [n]
2. for t = 1, 2, . . . do
3. At the beginning of day t:

4. Pick an expert i ∈ [n] with probability pi(t)
|p(t)| , where pi(t) = e−

εmi(t−1)

2

and follow her advice
5. At the end of day t:
6. mi(t) := mi(t− 1) + 1 for every expert i who has made a mistake

In the above procedure, mi(t) stands for the number of mistakes made by expert
i upto time (or day) t. The algorithm can be derandomized by thinking of {pi(t)}i as
weights, and replacing the random choice in step 4 by following the advice of the weighted

majority (i.e., if experts of weight at least
∑
i pi(t)

2
say the stock will increase, then follow

them); if an expert makes a mistake, decrease his weight by a factor of e−
ε
2 (or (1− ε));

hence the name ”multiplicative weights update”.
We will show now that this intuitive procedure, if run for enough time, does actually

what we want.

5-1

Opt II Lecture 5 — November 9 Winter 2009/10

Theorem 5.1. Let m(t) be the number of mistakes made by procedure randomized

weighted majority upto time t. Then for t ≥ 3 ln(n)
ε2

, we have

E[
m(t)

t
] ≤ mi(t)

t
+ ε, for all i ∈ [n]. (5.1)

Proof: As in the case of matrix games, we analyze the change in the potential function

Φ(t)
def
= |p(t+ 1)| =

∑n
i=1 pi(t+ 1), from one iteration to the next. Let

I(t) =

{
1 if the procedure makes a mistake at time t
0 otherwise.

Let also S(t) = {i ∈ [n] : expert i makes a mistake at time t}. Then E[I(t)] =∑
i∈S(t)

pi(t)
|p(t)| (since the procedure makes a mistake at time t if it picks an expert who

makes a mistake at time t), and by linearity of expectation, E[m(t)] =
∑t

t′=1 E[I(t′)].
Now we can write

Φ(t) =
∑
i∈[n]

pi(t+ 1) =
∑
i∈[n]

e−
εmi(t)

2 =
∑
i∈S(t)

e−
ε(mi(t−1)+1)

2 +
∑
i 6∈S(t)

e−
εmi(t−1)

2

=
∑
i∈S(t)

pi(t)e
− ε

2 +
∑
i 6∈S(t)

pi(t)

≤ (1− ε

2
+
ε2

6
)
∑
i∈S(t)

pi(t) +
∑
i 6∈S(t)

pi(t) (By Exercise 4 of Lecture 2)

≤ (1 +
ε2

6
)
∑
i∈[n]

pi(t)−
ε

2

∑
i∈S(t)

pi(t) = |p(t)|
(

1 +
ε2

6
− ε

2
E[I(t)]

)
≤ |p(t)|e

ε2

6
− ε

2
E[I(t)] (Using the inequality 1 + x ≤ ex).

Thus Φ(t) ≤ Φ(t−1)e
ε2

6
− ε

2
E[I(t)], and iterating we get that Φ(t) ≤ Φ(0)e

ε2

6
t− ε

2

∑t
t′=1 E[I(t′)] =

Φ(0)e
ε2

6
t− ε

2
E[m(t)].

Now we use Φ(0) = n and Φ(t) ≥ pi(t+ 1) for all i to conclude that

e−
ε
2
mi(t) ≤ ne

ε2

6
t− ε

2
E[m(t)] for all i ∈ [n],

and by taking logs, dividing by εt
2

, and rearranging

E[
m(t)

t
] ≤ 2 lnn

εt
+
ε

3
+
mi(t)

t
for all i ∈ [n].

The theorem follows from the last inequality if we set t ≥ 3 ln(n)
ε2

. �

5.1.2 A generalization

Consider now a more general scenario where we have a payoff matrix M ∈ R[n]×P , where
P is a (possibly infinite) set of outcomes. If we follow the advice of expert i ∈ [n] at
the beginning of the day, and the output at the end of the day turns out to be x ∈ P ,
then we pay M(i, x). Again, our objective is to devise a procedure that makes us pay
not much more that what the best expert would pay.

5-2

Opt II Lecture 5 — November 9 Winter 2009/10

The procedure is almost the same as in the previous section. The difference now is
that mi(t) stands for the payment expert i would pay for her decisions upto time t, that
is, mi(t) =

∑t
t′=1M(i, x(t′)), where x(t′) is the output that materializes at time t′. Since

the entries of the matrix M are arbitrary, we have now to do some scaling by the width

parameter ρ
def
= max{maxi∈[n],x∈P |M(i, x)|, 1}. Precisely, we set pi(t) = e

− εmi(t−1)

2ρ2 , and
change the update step in 6 to mi(t) := mi(t− 1) +M(i, x(t)) for every expert i ∈ [n].

The analysis can be carried out almost word-by-word as before. We leave it as an
exercise.

Exercise 1. Consider the generalized expert problem.

(i) Show how to describe the original (simpler) expert problem as a special case of this
generalized version above.

(ii) Show that for the generalized strategy given above, the expected payoff after t =
3ρ2 lnn
ε2

time steps satisfies

E[
m(t)

t
] ≤ mi(t)

t
+ ε. (5.2)

Remark 1. It will be important for the applications below to note that the above anal-
ysis remains valid, even if the output at time t depends on the weights pi(t).

5.1.3 Application to linear programming

Consider the LP
z∗ = min{cTx : Ax ≥ b, x ≥ 0}, (5.3)

where A ∈ Rm×n, c ∈ Rn
+, and b ∈ Rm are given matrices. In general the non-negativity

constraint x ≥ 0, can be replaced by x ∈ P for some polyhedron P as long as we have
an oracle for answering the following feasibility question:

Oracle(P , w, β) : Given a polyhedron P ⊆ Rn, a vector w ∈ Rn
+, and a scalar β > 0,

return a vector x ∈ P such that wTx ≥ β, if one exists.

An ε-approximate solution for (5.3) is an x ∈ Rn such that cTx = z∗, and Aix ≥ bi − ε,
where Ai is the ith row of A. We will apply the framework in the previous section to
approximately solving (5.3) as follows. We associate an expert i with each constraint
Aix ≥ bi, and let the set of outputs be

P def
= {x ∈ Rn : cTx = z∗, x ≥ 0}. (5.4)

We assume that z∗ is guessed correctly by binary search. The payoff matrix is defined as
M(i, x) = Aix− bi for i ∈ [m] and x ∈ P .

Remark 2. Note that, if P is defined by (5.4), then given w ∈ Rn and β, Oracle(P , w, β)
can be implemented by simply checking if maxi∈[n]:ci>0

wiz
∗

ci
≥ β.

As before let ρ = max{maxi∈[n],x∈P |Aix − bi|, 1} be the width. We will use the
following deterministic version of the procedure. We assume that the LP has a feasible
solution (the procedure can be modified easily to deal with the case when this is not
true). Note that this assumption implies that the oracle will always return a vector in
step 4.

5-3

Opt II Lecture 5 — November 9 Winter 2009/10

Algorithm 2 approximate LP solution

1. mi(0) := 0 for all i ∈ [m]

2. for t = 1, 2, . . . , T
def
= 3ρ2 lnm

ε2
do

3. pi(t) := e−
εmi(t−1)

2 for i = 1, . . . ,m
4. x(t) :=Oracle(P , p(t)TA, p(t)T b)
5. mi(t) := mi(t− 1) +M(i, x(t)) for i = 1, . . . ,m

6. return x̄(t) =
∑t
t′=1 x(t

′)

t

The following lemma states that procedure approximate LP solution outputs an
ε-approximate solution for LP (5.3).

Lemma 5.2. After t = 3ρ2 lnn
ε2

, Aix̄(t) ≥ bi − ε for all i ∈ [m].

Proof: Although an independent analysis can be obtained by following exactly the same
lines used for proving 5.2, it is also possible to derive the lemma directly from (5.2),
by ”simulating a generalized expert problem in the background”, where the output at
each time t is given by step 4 (and recalling Remark 1). Thus 5.2 will hold after 3ρ2 lnn

ε2

iterations. Note that the expected payoff we are guaranteed by the procedure at time t
is (interpreting j as a random variable)

E[M(j, x(t))] =
m∑
i=1

pi(t)

|p(t)|
M(i, x(t)) =

m∑
i=1

pi(t)(Aix(t)− bi)
|p(t)|

=
p(t)TAx(t)− p(t)T b

|p(t)|
≥ 0,

where the inequality follows form the fact that x(t) is the output of the oracle. It follows

that E[m(t)
t

] = 1
t

∑t
t′=1 E[M(j, x(t))] ≥ 0, and hence by (5.2),

−ε ≤ mi(t)

t
=

∑t
t′=1M(i, x(t′))

t
=

∑t
t′=1(Aix(t′)− bi)

t
= Aix̄(t)− bi,

for all i ∈ [m], and the lemma follows. �

5.1.4 Application: approximating maximum multicommodity
flows

As a special case of the application presented in the previous section, and to motivate
the next lecture, let us consider the maximum multicommodity flow problem: Given a
graph G = (V,E), with edge capacities ce > 0 for e ∈ E, and k source-sink pairs
{(s1, t1), . . . , (sk, tk)} of vertices, the objective is to maximize the total flow between
these pairs. The following is an LP formulation for the problem:

z∗ = max{
∑
I∈I

fI :
∑

I∈I, e∈I

fI ≤ ce ∀e ∈ E, fI ≥ 0 ∀I ∈ I},

where I = ∪ki=1Ii is the set of paths between a source-sink pair (that is I = ∪ki=1Ii, where
Ii is the set of paths from si to ti), and fI is a variable representing the flow on path I.
To apply the previous framework, we define P = {f ∈ RI :

∑
I∈I fI = z∗, fI ≥ 0}. Note

5-4

Opt II Lecture 5 — November 9 Winter 2009/10

that the experts (or constraints) now correspond to edges. Given the weights {pe(t)}e∈E
at time t, the oracle in step 4 finds an x ∈ P such that∑

e∈E

pe(t)

|p(t)|
∑

I∈I:e∈I

fI
ce
≤ 1,

which is equivalent to ∑
I∈I

fI
∑
e∈I

`(e) ≤ 1,

where `(e)
def
= pe(t)
|p(t)|ce can be interpreted as the ”length” of edge e. By Remark 2, this

reduces to finding a shortest path I with these edge lengths, and checking if `(I) ≤ 1
z∗

.
Then the update step 5 will essentially mean pushing a flow of z∗ along this path. By
taking the average of these flows, over t = O(ρ

2 logn
ε2

) iterations, we get an optimal flow
(because each one was optimal) and by Lemma 5.2, we also have

∑
I∈I:e∈I fI ≤ ce + ε ≤

ce(1 + ε), assuming that ce is integral. Thus by scaling we get a feasible flow which is
within (1− ε) of the optimal flow.

The problem with this approach (as the usual one with all these techniques in general),
is that the running time of the procedure is quadratic in ρ = maxf,e{|

∑
I:e∈I fI − ce|}

which could be as large as maxe∈E ce. Thus, this is only a pseudo-polynomial time
procedure. Does the special structure of the problem make it possible to fix this problem
by a (slight) change of the procedure? Is this, more generally, possible for the class of LP’s
in which the constraints and the objective function are non-negative. These questions
were answered in the affirmative by Garg and Könemann in 1998 [GK98], and will be the
subject of the next two lectures.

5-5

Bibliography

[AHK05] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate
semide.nite programming using the multiplicative weights update method. In
FOCS, pages 339–348, 2005.

[AHK06] Sanjeev Arora, Elad Hazan, and Satyen Kale. Multiplicative weights method:
a meta-algorithm and its applications. Technical report, Princeton University,
USA, available at: http://www.cs.princeton.edu/ arora/pubs/MWsurvey.pdf,
2006.

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to
semidefinite programs. In STOC, pages 227–236, 2007.

[FS99] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplica-
tive weights. Games and Economic Behavior, 29(1-2):79–103, 1999.

[GK98] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems. In 39th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 300–309, 1998.

[GK04] Naveen Garg and Rohit Khandekar. Fractional covering with upper bounds on
the variables: Solving lps with negative entries. In ESA, pages 371–382, 2004.

[Kha04] Rohit Khandekar. Lagrangian Relaxation based Algorithms for Convex Pro-
gramming Problems. PhD thesis, Indian Institute of Technology, Delhi, 2004.

[KY07] Christos Koufogiannakis and Neal E. Young. Beating simplex for fractional
packing and covering linear programs. In 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 494–504, 2007.

[LW94] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.
Inf. Comput., 108(2):212–261, 1994.

[PST91] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation
algorithms for fractional packing and covering problems. In FOCS, pages 495–
504, 1991.

[You01] Neal E. Young. Sequential and parallel algorithms for mixed packing and cov-
ering. In FOCS, pages 538–546, 2001.

6

	The multiplicative weights update method
	The experts problem
	A generalization
	Application to linear programming
	Application: approximating maximum multicommodity flows

