
Optimization II Winter 2009/10

Lecture 6 — November 16
Lecturer: Khaled Elbassioni

6.1 Fast approximation schemes for packing and cov-

ering LP’s

In this lecture we show how to remove the dependence on the width in the multiplicative
weights update/randomized fictitious play method, in the case when the entries of the
matrix are non-negative. Our presentation follows mostly the framework of Koufogian-
nakis and Young [KY07]. In the next lecture will show how to derive the result of Garg
and Könemann [GK98] for multicommodity flows from this framework.

6.1.1 Packing and covering LP’s

A packing-covering pair of LP’s looks like the following

max{cTx : ATx ≤ b, x ≥ 0} = min{bTy : Ay ≥ c, y ≥ 0}, (6.1)

where A is a non-negative m× n matrix, b and c are non-negative vectors.
It will simplify matters to assume that c = e and b = e are the vectors of all ones. This

assumption, which we will make in the rest of this lecture, entails no loss of generality if
we look for relative approximation errors, made precise in the following definition.

Definition 6.1. Let ε > 0 be a constant. An ε-approximation for (6.1) is a primal-dual
feasible pair (x, y) such that bTy ≤ (1 + ε)cTx.

In this lecture we consider the following problem.

Input: A matrix A ∈ Rm×n
+ , vectors b ∈ Rm

+ , c ∈ Rn
+, and a desired

accuracy ε ∈ (0, 1)

Output: A primal-dual feasible pair (x, y)

Objective: (x, y) is an ε-approximation

ε-approximation of packing-covering LP’s

Exercise 1. Show that for the purpose of obtaining ε-approximations for a packing-
covering pair of LP’s, one can assume, without loss of generality, that the objective
functions and the right-hand sides are the vectors of all ones.
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A fully polynomial-time approximation scheme for (6.1) is one that finds an ε-approximation
in time polynomial in n, m and 1

ε
. We proceed to present such a scheme. To get an in-

tuition first, it is instructive to recall the Lagrangian relaxation of the two LP’s:

max
AT x≤e, x≥0

eTx = max
x≥0

min
y≥0

(eTx+
n∑
j=1

yj(1− xTAj)) (6.2)

min
Ay≥e, y≥0

eTy = min
y≥0

max
x≥0

(eTy +
m∑
i=1

xi(1− Aiy)) (6.3)

where, as usual, Ai an Aj denote the ith row and the jth column of A, respectively. Thus,
we can think of xi and yj as penalties that we pay for violating constrains i in the dual
and j in the primal, respectively. To put this into a procedure that gradually constructs
a primal-dual feasible pair, we start by initializing X(0) = 0 and Y (0) = 0; we think
of Xi(T ) (respectively, Yj(t)) as the total penalty we pay for violating primal constraint
i (respectively, dual constraint j) upto time t. At time t, the values of X(t) and Y (t)
will be updated to reflect the current violation of the constraints. The intuition we get
from (6.2) is that, if X(t− 1)TAj is ”large”, then Yj(t) should be ”large”. Similarly, we
intuitively get from (6.3) that if AiY (t − 1) is large then Xi(t) should be ”small”. This
seems, in a sense, similar to fictitious play, which is not surprising, if we recall the fact
that a matrix game is equivalent to a pair of packing-covering LP’s (c.f Exercise 2 of
Lecture 1).

Thus, we may try to apply randomized fictitious play in the same way we did for
matrix games. More precisely, at each time t, we increase the penalties Xi(t) and Yj(t)

with probabilities proportional to pi(t) = e−
εAiY (t−1)

2 and qj(t) = e
εX(t−1)TAj

2 , respectively.
If we update Xi(t) and Yj(t) by the same value δ(t) (at time time t), we guarantee at the
end of the procedure that the primal and dual objectives are the same (since we assume
that both b and c are the vectors of all ones). However, we have to scale X(t) and Y (t)
to guarantee feasibility. It is clear that the scaling factors for X(t) and Y (t), should be
respectively,

M(t) = max
j∈[n]
{X(t)TAj} and m(t) = min

i∈[m]
{AiY (t)}. (6.4)

As the case for matrix games, we can show that after enough time, namely t ≥ 6ρ2 ln(2nm)
ε2

where ρ = maxi,j aij, we have (with high probability)

X(t)TAj

t
≤ AiY (t)

t
+ ε for all i, j,

or in other words, M(t) ≤ m(t) + εt. Furthermore, if we assume that the update values
are uniform, δ(t′) = 1 for all t′, we get at the end that eTX(t) = eTY (t) = t, and thus

the scaled objective values satisfy eT y(t)
eT x(t)

= M(t)
m(t)

≤ 1 + εeTy(t), where x(t) = X(t)
M(t)

and

y(t) = Y (t)
m(t)

are the final solutions.
There are two problems with this approach. First, the approximation guarantee is

1 + ε only if eTy(t) ≤ 1. Second, and more critical, the running time depends on ρ which
is unavoidable unless we try somehow to utilize the non-negativity of the matrix A.

The following procedure, due to Koufogiannakis and Young [KY07], which builds on
ideas from [GK95] and [GK98] fixes both problems. The basic new ingredients to the
standard approach are:
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• The use of a nonuniform update value δ(t), which essentially replaces the ex-
plicit scaling step by ρ; this would guarantee that the change vectors A∆Y (t)
and ∆X(t)TA are bounded by 1 in each component, and as we shall see below, this
is the only requirement needed to apply the necessary inequalities to bound the
potential increase.

• Since the updates are no longer uniform, the distributions from which we sample,
are changed to maintain the (technical) property that the expected changes A∆Y (t)
and ∆X(t)TA are still proportional to q

|q| and p
|p| , where q and p are given by

pi(t) = (1− ε)AiY (t−1) and qj(t) = (1 + ε)X(t−1)TAj , (6.5)

(for purely technical reasons, we use (1 − ε)(·) and (1 + ε)(·) instead of e−
ε
2

(·) and
e
ε
2

(·), respectively). Again, this is needed for an essential cancellation step in the
analysis of the potential increase. In particular, the procedure below samples row i
and column j, respectively, with probabilities p̃i and q̃j, which are driven from the
vectors p and q, and the matrix A in a way that will be specified later (see Exercise
3).

This will be enough to fix the second problem (that is, the dependence of the running
time on ρ). To fix the first problem, the algorithm runs until the value of M(t) becomes
large enough. To guarantee that the procedure terminates, we only apply the sampling
and update steps to the current active list L(t) = {i ∈ [m] : AiY (t − 1) < T} of dual
constraints. As we shall see below, if no constraint is active then we have already reached
the termination condition.

Algorithm 1 FPTAS for packing-covering LPs

1. X(0) := 0; Y (0) := 0; t := 1; and T := ln(2nm)
ε2

2. while M(t) < T do
3. t := t+ 1
4. Pick i ∈ L(t) and j ∈ [n] with probabilities p̃i(t) and q̃j(t)
5. Xi(t) := Xi(t− 1) + δ(t); Yj(t) := Yj(t− 1) + δ(t)

6. return (x(t), y(t)) = (X(t)
M(t)

, Y (t)
m(t)

)

As usual, we denote by ∆X(t) = δ(t)ei and ∆Y (t) = δ(t)ej, respectively, the changes in
the vectors X and Y in step 5. We can state, in an abstract way, the requirements we
need to impose on the distributions p̃ and q̃ and the change δ(t) as follows

(i) Ai∆Y (t) ≤ 1 for all i ∈ L(t), and ∆X(t)TAj ≤ 1 for all j ∈ [n];

(ii) E[A∆Y (t)] = α q(t)
|q(t)| and E[∆X(t)TA] = α p(t)

|p(t)| , for some constant α > 0;

(iii) max{maxi∈L(t) Ai∆Y (t),maxj∈[n] ∆X(t)TAj} ≥ 1
2
.

In the above and in what follows, we assume that pi(t) = 0 if i 6∈ L(t).

The facts stated in the following exercise will be useful in the analysis.

Exercise 2. Show that
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(I) for all ε ∈ (0, 1), x ∈ [0, 1], (1 + ε)x ≤ 1 + εx and (1− ε)x ≤ 1− εx;

(II) for all ε ∈ [0, 1), ln(1+ε)

ln 1
1−ε
≥ 1− ε;

(III) for all ε, ε ≤ ln 1
1−ε ;

(IV) for all ε ∈ [0, 1], ln(1+ε)
ε
≥ 1− ε.

Theorem 6.2. Assume that p̃(t), q̃(t) and δ(t) satisfy (i), (ii), and (iii) for all t. Then the
above procedure terminates in at most 2(n + m)T iterations with a primal-dual feasible
pair. At termination, it holds with probability at least 1

2
that

eTx(t) ≥ (1− 2ε)eTy(t). (6.6)

Proof: Note that, at any iteration t, we maintain the invariant, eTX(t) = eTY (t). Thus,
if at a certain time t we have m(t) ≥ T then M(t) ≥ T also holds, for otherwise,

m(t) ≥ T > M(t), and hence, eT x(t)
eT y(t)

= m(t)
M(t)

> 1, in contradiction with weak duality.

Now, the termination time follows from (iii) since, for each column j ∈ [n], X(t)TAj

can be updated, as the maximizer in (iii), at most 2T times before M(t) becomes at least
T ; similarly, for each row i ∈ L(t), AiY (t) can be updated (as the maximizer in (iii)) at
most 2T times before i to goes out of the active list.

To show (6.6), we analyze, as usual, the increase in the potential function Φ(t) =
|p(t+ 1)||q(t+ 1)|, conditioned on X(t− 1) and Y (t− 1) :

|p(t+ 1)| =
m∑
i=1

pi(t+ 1) =
∑

i∈L(t+1)

(1− ε)AiY (t) =
∑

i∈L(t+1)

(1− ε)Ai(Y (t−1)+∆Y )

=
∑

i∈L(t+1)

pi(t)(1− ε)Ai∆Y . (6.7)

By (i), 0 ≤ Ai∆Y ≤ 1, and hence Fact (I) of Exercise 2 implies that (1 − ε)Ai∆Y ≤
1− εAi∆Y . Plugging this into (6.7), we get

|p(t+1)| ≤
∑

i∈L(t+1)

pi(t)(1−εAi∆Y ) ≤
∑
i∈L(t)

pi(t)(1−εAi∆Y ) = |p(t)|
(

1− εp(t)TA∆Y

|p(t)|

)
.

Similarly, we can derive that

|q(t+ 1)| ≤ |q(t)|
(

1 +
ε∆XTAq(t)

|q(t)|

)
.

Thus,

Φ(t) = |p(t+ 1)||q(t+ 1)| ≤ |p(t)||q(t)|
[
1 + ε

(
∆XTAq(t)

|q(t)|
− p(t)TA∆Y

|p(t)|

)
− ε2 ∆XTAq(t)

|q(t)|
· p(t)

TA∆Y

|p(t)|

]
≤ Φ(t− 1)

[
1 + ε

(
∆XTAq(t)

|q(t)|
− p(t)TA∆Y

|p(t)|

)]
,
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where the last inequality follows from the non-negativity of A, ∆X and ∆Y . Now taking
the expectation with respect to ∆X and ∆Y , and using (ii), we get

E[Φ(t)] ≤ Φ(t− 1)

[
1 + ε

(
αp(t)TAq(t)

|p(t)||q(t)|
− αp(t)TAq(t)

|p(t)||q(t)|

)]
= Φ(t− 1),

and taking the expectations with respect to X(t− 1) and Y (t− 1) we get that E[Φ(t)] ≤
E[Φ(t − 1)]. Iterating, we get E[Φ(t)] ≤ Φ(0) = nm, and thus with probability at least
1
2
, Φ(t) ≤ 2nm. This gives

(1− ε)AiY (t) · (1 + ε)X(t)tAj ≤ 2nm for all i ∈ L(t+ 1) and j ∈ [n],

and after some algebraic manipulation we get

X(t)tAj
ln(1 + ε)

ln 1
1−ε

≤ AiY (t) +
ln(2nm)

ln 1
1−ε

for all i ∈ L(t+ 1) and j ∈ [n]. (6.8)

Using Facts (II) and (III) of Exercise 2, (6.8) reduces to

(1− ε)X(t)tAj ≤ AiY (t) +
ln(2nm)

ε
for all i ∈ L(t+ 1) and j ∈ [n],

or, in other words,

(1− ε)M(t) ≤ AiY (t) + εT for all i ∈ L(t+ 1). (6.9)

By the stopping criterion, we have M(t) ≥ T , where t is the stopping time. Thus,

(1− 2ε)M(t) ≤ AiY (t) for i ∈ L(t+ 1) (by (6.9)) (6.10)

T ≤ AiY (t) for i 6∈ L(t+ 1) (by definition of L(t+ 1)). (6.11)

Since M(t) ≤ T + 1 by assumption (i) (since M(t − 1) < T ), we get by (6.11), for
i 6∈ L(t+ 1),

AiY (t) ≥M(t)− 1 ≥ (1− 2ε)M(t) (since M(t) ≥ T = ln(2nm)
ε2
≥ 1

2ε
). (6.12)

(6.10) and (6.12) imply that m(t) ≥ (1− 2ε)M(t) and this implies (6.6) since eTX(t) =
eTY (t). �

The following exercise establishes the existence of distributions p̃(t) and q̃(t) and
change δ(t), satisfying the condition (i), (ii) and (iii) above.

Exercise 3. Let A ∈ Rm×n
+ be a matrix with rows A1, . . . , Am and columns A1, . . . , An.

Assume none of the rows or columns is identically 0. For i ∈ [m] and j ∈ [n], de-
fine vi = maxj{aij}, uj = maxi{aij}, and δij = 1

vi+uj
. Let p = (p1, . . . , pm) and

q = (q1, . . . , qn) be two strictly positive vectors. Denote respectively by pv and qu the
vectors (p1v1, . . . , pmvm) and (q1u1, . . . , qnun). For a vector u denote by |u| the sum of
the components of u. Let s = |pv||q|+ |p||qu|. Suppose that we pick an i and j, respec-

tively, with probabilities p̃i and q̃j, defined as follows: With probability |pv||q|
s

let p̃i = pivi
|pv| ,

q̃j =
qj
|q| , and with probability |p||qu|

s
let p̃i = pi

|p| , q̃j =
qjuj
|qu| . Let ∆x ∈ Rm be the vector

with all components equal to zero except at position i in which (∆x)i = δij, and ∆y ∈ Rn

be the vector with all components equal to zero except at position j in which (∆y)j = δij.
Show the following

(i) for all i, Ai∆y ≤ 1, and for all j, (∆x)TAj ≤ 1;

(ii) E[A∆y] = α q
|q| and E[AT∆x] = α p

|p| , where α = |p||q|
s

;

(iii) max{maxi{Ai∆y},maxj{(∆x)TAj}} ≥ 1
2
.
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