Problem Set 1

Due: Nov. 19

Note: Please send the solutions to hsun@mpi-inf.mpg.de before the deadline.

Problem 1 For any constant A > 0, show that any *n*-vertex A-expander has diameter $O(\log n)$.

Problem 2 Let G be a d-regular n-vertex graph with spectral expansion λ . The normalized adjacency matrix of G is expressed by M. Prove that for any probability distribution π ,

$$CP(M\pi) - 1/n \le \lambda^2 \left(CP(\pi) - 1/n \right).$$

Problem 3 Let G be a d-regular graph where the eigenvalues of G's Laplacian matrix are $\rho_1 \leq \cdots \leq \rho_n$. Prove the following results:

1.
$$\rho_n \geq \frac{nd}{n-1}$$
.

2. $\sum_{i=1}^{n} \rho_i^2 = nd(d+1).$

Problem 4 Show that the distance of any linear code equals the minimum Hamming weight of a non-zero codeword.