
COMBINATORICA
Akad~miai Kind5 - Springer-Verlag

COMBINATORICA 12 (4) (1992) 449-461

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED
COMPUTATION

NOAM NISAN*

Received December 3, 1989
Revised June 16, 1992

Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R
bits that appear random to any algorithm that runs in SPACE(S). In particular, any randomized
polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits.
An application of these generators is an explicit construction of universal traversal sequences (for
arbitrary graphs) of length n O(l~

The generators constructed are technically stronger than just appearing random to space-
bounded machines, and have several other applications. In particular, applications are given for
"deterministic amplification" (i.e. reducing the probability of error of randomized algorithms), as
well as generalizations of it.

1. I n t r o d u c t i o n

Randomness is an impor tan t computa t ional resource. There are many problems
for which the known randomized algori thms are more efficient than the deterministic
ones. The randomized algori thms may use less time, less space, less communicat ion,
less of other computa t ional resources, or just be simpler than their deterministic
counterparts . Viewing randomness as a resource, it is natural to t ry to reduce the
amount of randomness, the number of r andom bits, used by randomized algorithms.
The most general mechanism for doing such a thing is by using pseudorandom
generators ([4,20]).

A pseudorandom generator converts a short t ruly random seed into a long string
which can be used instead of truly random bits in any polynomial t ime algorithm.
It can thus be used to reduce the number of r andom bits used in any polynomial
t ime algori thm (down to the length of the short r andom seed). Unfortunately, pseu-
dorandom generators are only known to exist under the unproven assumpt ion tha t
one-way functions exist ([9]). Moreover, the existence of one-way functions, an as-
sumpt ion which is seemingly even stronger than P ~ N P , is a necessary requirement
for the existence of polynomial t ime computable pseudorandom generators.

A more specialized approach for saving random bits is to construct pseudoran-
dom generators for some specific subclass of algorithms; and to do this without relying
on any unproven assumptions. The first such result is due to Ajtai and Wigderson
([3]) who construct generators which look r andom to all polynomial size constant
depth circuits. In [15], Nisan and Wigderson give an improved construction, and

AMS subject classification code (1991): 68 Q 15
*This work was done in the Laboratory for Computer Science, MIT, supported by NSF 865727-

CCR and ARO DALL03-86-K-017

450 NOAM NISAN

generalize it to show how "lower bounds" for a complexity class C can be used to
construct a generator that looks random to any algorithm from C.

Iii [5], Babai, Nisan and Szegedy consider classes of space-bounded algorithms
and construct generators which look random to all Logspace algorithms (or in general,
any "small" space algorithms). In this paper we give an improved construction of a
pseudorandom generator for space-bounded computation. Our construction is based
upon universal hash functions (Carter, Wegman [7]), and is totally different from
the one in [5]. The generator is very efficient as it requires one hashing operation on
n-bits strings (typically one modular multiplication) for every n bits generated; it is
also in NC.

Theorem 1. There exists a fixed constant c > 0 such that for any R and S there
exists an (explicitly given) pseudorandom generator which converts a random seed
of length eSlogR to R bits which cannot be distinguished from truly random bits
by any algorithm running in space(S).

In particular O(log 2 n) random bits are sufficient to produce a polynomial num-
ber of bits which look random to any Logspace machine. This is an exponential
improvement over the generators constructed in [5], which require exp(lox/l-0-~) ran-
dom bits.

As an immediate corollary we get that any randomized polynomial time algo-
rithm that runs in Space(S) can be simulated in polynomiM time using at most
O(Slogn) random bits (and O(Slogn) space).

Our generator implies what may be considered a black box version of the ran-
domized analogue of Savitch's theorem: Not only can RSPACE(S) be simulated
deterministically in DSPACE(S2), but the simulation is the same for all random-
ized space(S) algorithms: Simply run the algorithm with every possible output string
of the generator.

As shown in [5] pseudorandom generators for space-bounded machines allow
explicit constructions of universal traversal sequences (as defined in Aleliunas et
al. [1]). The generators obtained in [5] give constructions of universal traversal
sequences of length exp(exp(ox/I-o-~)) for arbitrary regular n-vertex graphs. The
only other explicit constructions known are for the special cases of degree 2 graphs
(a polynomial length construction due to Istrail [10]), and degree n - 1 graphs
(an n O(l~ construction due to Karloff et al. [13]). We achieve an exponential
improvement over known results for general graphs, matching the construction for
degree n - 1 graphs.

Theorem 2. There exist (explicitly given) universal traversal sequences of length
n O(l~ for regular n-vertex graphs. Moreover, the sequences can be produced by
a deterministic Turing machine running in space logarithmic in the length of the
sequence.

The generator we construct actually looks random to a more general class of
algorithms. The generator outputs the pseudorandom bits in "blocks" of a certain
size. It turns out that the space bound on the algorithm is only necessary between
the different blocks, while within each block no limitation is needed. This fact allows
the generator to be used for several other applieations.

Consider the following problem: Given are k randomized algorithms A1,. . . , Ak,
each requiring at most R random bits. Our task is to run all of them such that the

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 451

probability that they all succeed is (to within an error of ~) equal to the product of the
individual success probabilities. We define a generator to be a pseudo-independent
block generator if its output can be used for such a task for every choice of A1,.. . Ak.
(In this definition "succeed" can be replaced by "reject", "find a witness", "prints
17", etc; a formal definition appears in section 5.)

A special case of this problem, "deterministic amplification", has been widely
studied (see below), but the first nontrivial solution to this general problem is
(implicitly) given by Impagliazzo and Zuckerman in [11]. The construction allows
running k = O (v ~) many algorithms with ~ = e x p (- v ~) while using only O(R)
random bits. Our generator can be used to run a much larger number of algorithms,
and with a smaller value of c but incurring a small additional cost in the number of
random bits needed.

Theorem 3. Any k algorithms, each using R random bits, can be run using O(Rlog k)
random bits, such that the probability that they all succeed is within 2 -R of the
product of the individuM success probabilities.

The special case where A1,... , Ak are all repetitions of the same algorithm, and
our only aim is to reduce the probability that they all fail (not necessarily close
to the optimal value obtained from independent runs) is called the deterministic
amplification problem. The possibility of deterministic amplification was pointed
out, nonconstructively, by Sipser [18] and Santha [17]. The first constructions were
obtained by Karp, Pippenger and Sipser [12], and Chor and Goldreich [6] who reduce
the failure probability down to 1/p(n) for any polynomial p(n), while still using only
O(R) random bits. Reduction to an exponentially small probability of failure ("quasi-
perfect pseudorandom generation" in the terminology of Vazirani [19]) was recently
obtained by Cohen and Wigderson [8] and Impagliazzo and Zuckerman [11]. The only
construction that reduces the error probability as much as we do (to exp(-R)) while
using fewer random bits is, as shown in [8,11], due to Ajtai, Komlds and Szemer@di
[2] and requires the explicit constructions of constant degree expanders. Our results
also apply to randomized algorithms with 2-sided error, and also to algorithms that
have only a polynomially small probability of success (the constructions of [2] and
of [11] do not yield good bounds in this last case).

Many algorithms can be naturally broken into "stages" such that each stage
requires a small number of random bits and the space required between the different
stages is small. In all these cases the number of random bits required can be reduced
by using the output of the generator instead of truly random bits. As an example
we show how O(nlogn) random bits suffice for uniformly generating a random n-bit
prime number.

The paper is organized as follows. In section 2 we make some necessary defi-
nitions including the definition of the class of algorithms that our generator fools.
Section 3 contains the construction of the generator. In section 4 we give the applica-
tions regarding space-bounded computation. Section 5 discusses pseudo-independent
block generators and deterministic amplification. Finally, in section 6, the example
of generating random primes is given.

452 N O A M N I S A N

2. Def init ions and N o t a t i o n

2.1. Requirements of the Generator

The generators we construct produce their ou tpu t broken into blocks, each n
bits long. They "fool" every program tha t accepts its r andom bits an n-bit block at
a time, and tha t uses at most Space(w) between the different blocks 1. We say tha t
such a program uses Space(w) with block- size n. We model such a program by a
finite state machine of size 2 w, over the a lphabet {0,1} n (with a fixed star t state,
and an arbi t rary number of accepting states). Each state of the FSM corresponds
to a possible configuration of the original program between the blocks. Each edge
(v,u) of the FSM is labeled by a subset of {0,1} n, which is the set of n-bit strings
which when accepted as the random block cause the original program to move from
configuration v to configuration u; for each vertex v, each n-bit str ing thus appears
in exactly one of the outgoing edges. From this point on we phrase everything in the
language of such FSMs.

Definition 1. A generator G : {0,1} m --* ({0,1}n) k is a pseudorandom generator for
space(w) and block size n with parameter c if for every FSM Q of size 2 w over
a lphabet {0,1} n we have tha t

IPry[Q accepts y] - Prx[Q accepts G(x)] I <

where y is chosen uniformly at r andom in ({0,1}n) k and x in (0,1} m.

2.2. Universal Hashing

Our generators are based upon universal hash functions (Carter, Wegman [7]).
Formally, let H be a set of functions h: {0,1}n--~ {0,1} m.

Definition 2. (Car te r -Wegman) H is called a universal family o/hash functions if for
any Xl •x2 E {0,1} n and Yl,Y2 E {0,1} m we have tha t

Prheg[h(Xl) = Yl and h(x2) = Y2] = 2-2m-

It is only impor tant for this paper tha t it is possible to efficiently give small
universal families of hash functions, i.e. such tha t each h E H can be represented by
at most O(n § m) bits, and such tha t comput ing h(x) given the representations of
h and x is efficient. An example of such a family is convolution: Let x be an n-bit
string, a an m + n - 1 bit string, and b an m-bit string. Denote by a , x the m-bi t

n convolution of a and x (i.e. the j ' t h bit of a*x is ~i=l ai+j-lXi (m~ 2)), and by
c§ the bit-wise exclusive-or of the vectors b and c. The family H= { (a , x) + b i n , b}
is a universal family of hash functions (see e.g. [14]).

1 Our measurement of space includes all information regarding the configuration of the machine.
For Turing machines this includes the state of the finite control, the location of the heads, and the
contents of the work tapes, all measured in bits. This inflates by at most a constant factor the space
requirement of any machine that uses at least space S(n)= ~(logn).

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 453

3 . T h e G e n e r a t o r

Before describing the generator we need to prove a certain useful property of
universal families of hash functions. This property is of independent interest, and
indeed a variant of it has already been used for proving time-space tradeoffs by
Mansour et al. in [14].

3.1. A Proper ty of Universal Hash|ng

The main trick used in the pseudorandom generator is to replace the usage of
two random strings x and y with one random string x, and use h(x) for y. For this
to work we require some kind of "independence" between the values of x and h(x).
This independence is not information theoretic, but rather only relative to a specific
application. We now define exactly the kind of independence we require:
Definition 3. Let A C {0,1} n, B C {0,1} m, h: {0,1} n --* {0,1} m, and e > 0. We say
that h is (e,A,B)-independent if

[PrxE{O,1}~[x E A and h(x) E B] - Q(A)Q(B)I _<

where Q(A)= IAI/2 n and g (B) =]BI/2 m.

Lemma 1. Let A C {0,1} n, B C {0,1} m, H be a universal family of hash functions
h: {O, 1}n---+{O, 1} m, and e>O, then

PrheH[h isn't (~, A, B)-independent] < Q(A)0(B)(1 - Q(B))
-- 2n~2

where h is chosen uniformly at random in H.

Proof. Consider the matr ix M, having a row for each x E {0,1} n and a column for
each h E H, given by M(x, h) = 1 if h(x) E B, and M(x, h) = 0 otherwise. Define now
f(h) = ExEAM(x,h) = PrxeA[h(x) E B] and denote p = Q(B). First note that the
expected value of f (over all h E H) is p - this is simply because for every fixed x,
h(x) is uniformly distributed when h is chosen at random. Next, observe that by the
definition of (e, A, B)-independence, h is (e, A, B)-independent iff

]p - f(h)[< e/Q(A)

We will bound the variance of f from above, and will then be able to conclude
that for "most" h, f(h) is indeed very close to p.

Var(f) = EhEH(p -- ExEAM(X , h)) 2 ----

ExlEA,x2EAEhEH(p -- M(xl , h))(p - M(x2, h))

Rearranging, and recalling that for every x, EheHM(x , h)=p, we get that

Var(f) = ExleA,x2EAEheHM(xl, h)M(x2, h) - p2

This quantity is evaluated by looking at the two cases: Case 1 (happens with
probabili ty 1 - 1/IA1): x l 5 x2. In this case we use the definition of universal
hash functions, and since h(xl) and h(x2) are distributed independently when h is
chosen at random we have that Eh~HM(Xl,h)M(x2,h) = p2. Case (2) (happens

454 NOAM NISAN

with probability 1/IAI): x l --x2. In this case M(x l , h)M(x2, h) = M (x l , h) and thus
EheHM(Xl , h)M(x2, h) =p. We thus get

Var(f) = (1 - 1/[AI)p 2 + (1/IAI) p - p2 = Q(B)(1 - o(B))
[A[

By Chebychev's theorem applied to the random variable f (h) , for any 5 > 0 we
have that:

Q(B)(1 - Q(B))
PrhcH[Ip -- f(h)l >_ 5] <_

IA[5 2
The lemma is implied by letting 5 = e/Q(A). |

Consider the special case where m = 1, B = {1}, and IHI = 2 n. In this case our
matrix M is essentially a Hadamard matrix (with entries 0,1 instead of 1,-1), and
the statement of the lemma is a well known property of Hadamard matrices. Our
lemma can be thought of as a natural generalization of this fact.

3.2. More Notat ion

Let Q be a FSM with 2 w states over alphabet {O, 1} n and let D be any distri-
bution on ({0,1}n) k (sequences of k n-bit strings). We denote by Q(D) the matrix
whose (i , j) ' t h entry is the probability of getting from node i in Q to node j via a ran-
dom y E ({0,1}n) k drawn according to distribution D. We denote by Un the uniform
distribution on n-bit strings, and by (Un) k the uniform distribution on sequences of
k n-bit strings.

I t will be convenient to measure the distance between the effects of two distribu-
tions D1,D2 on a FSM Q by the 1 - n o r m of the difference matrix Q (D 1) - Q (D 2) .
For a vector x E :~s we define I[xN = ~ I xil, and for a s • s real matrix M We define

lixMII
HMN= sup

0exEcs]lxll

All norms appearing in this paper are these 1-norms. The following facts are stan-
dard:

1.][M + N[[<_ HM[t + [[N[I
2 IIMN[l lIMl[lINll
3. I[Mll =ma iEj IMij[
4. If each entry of an s• matrix M is bounded in absolute value by ~ then [[M H _<

8g .

5. If M is a transition probability matrix, i.e. all entries are non negative, and the
sum of entries in each row is 1, then [[M[I = 1.

3.3. The Generator

Fix H, a universal family of hash functions h: {0,1} n --* {0,1} n. For every integer
k _> 0 we define a generator

G k : {0,1} n • H k --* ({0,1}n) 2k

Gk is defined recursively by

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 455

and

Gk(x, h l , . . . , h k) =
Gk_l (X, hl, . . . , hk_l) o Gk_l (hk(x), h l , . . . , hk_l)

Here o means concatenation of the two sequences of strings.
For any fixed choice of h i , . . . , h k, denote by Gk(*, h i , . . . , hk) the distribution of

Gk(x, h i , . . . , hk) induced by a random choice of x.
The generator has the property that for almost all choices of h i , . . . , hk, the dis-

tribution Gk(*, h l , . . . ,hk) is "close" to the uniform distribution. Here the closeness
property is relative to a fixed FSM Q. We now define this exactly.
Definition 4. Let Q be a FSM over alphabet {0,1} n, ~ > 0, and h i , . . . , hk : {0, 1} n--*
{0, 1} n. Then the sequence (h l , . . . , hk) is called (~, Q)-good if

[IQ(Gk(*, h i , . . . , hk)) - Q((Un)2k)H <_ e

Lemma 2. Let S be a universal family of hash functions h: {0,1}n--* {0,1} n. Let Q
be a FSM of size 2 w over alphabet {0,1} n, let s>0 , and let k be any integer then

Pr[(h l , . . . hk) is not ((2 k - 1)~, Q)-goo(~ < 26Wk
, _ ~22n

where h l , . . . ,hk are chosen uniformly at random in H.

Proof. The proof is by induction on k. For k--0 the statement is trivial. Assume it
is true for k - 1 and prove for k.

Choose h l , . . . , hk at random from H. For every fixed choice of h l , . . . , hk-1, and
for every two nodes i , j of Q define the sets:

Bh~,'"'hk-1 =

{xl Gk-l (X, h l , . . . , hk-1) takes i to j}

Consider the following two events:
1. (h l , . . . , hk -1) is ((2 k - l - 1)~,Q)-good. (Informally, h l , . . . , hk_ 1 were chosen

"well" .)

2. For every triplet of nodes i, l, j: h k is (2-2We, Bh}'""hk-l,B~,j hk-1)_

independent. (Informally, hk is chosen "well".)
We claim that (1) The probability that both events happen simultaneously is at

26W k
least 1 - - - ~ - , and (2) When both events happen, (h l , . . . , hk) is ((2k--1)r Q)-good.

These two claims imply the lemma.
Proof of Claim 1. The probability of event 1 not happening is bounded by

26W(k- 1)
the induction hypothesis to be at most r We now bound the prob-

ability of event 2 not happening. Consider a fixed choice of h l , . . . , hk_ 1.
By Lemma 1 we get that for any fixed triplet of nodes i , l , j the probabil-
ity that h k is not (2-2Wc, Bh~'"hk-l ,B~,j hk-1)-independent is bounded by

456 NOAM NISAN

24w~lB hi hk -1)C-22-n . Summing up over all triplets i , t , j , and recalling that
~ i , l

x-~ t B h l , . . . , h k - 1 for every fixed i 2_.,I ~ i,l) = 1, we obtain that the probability of event 2
26w

not happening is bounded by r Adding the probabilities of events 1 and 2 not

happening, we conclude the proof of claim 1.

Proof of Clair- 2. Assume that events 1 and 2 hold. We can estimate
2 k

I I Q (G k (* , h l , . . . , h k)) - Q ((U n))11 from above by:

2 k
I l Q (G k (* , h l , . . . , h k)) - Q((Un))]l <-

IIQ(Gk(., h i , . . . , hk)) - Q(G k - I (* , h i , . . . , hk-1))2[l+

HQ(Gk_ I (*, hl , . , hk_ l)) 2 2e
�9 . - Q ((V n))l[.

We will bound the first summand by ~, and the second by (2 k - 2)~. This implies
claim 2, and will conclude the proof of the lemma.

Consider the matrix Q(G k(*, h i , . . . , hk)). By the definition of Gk, its i , j entry
is given by

Bhl,...,hk-1 Bhl,. . . ,hk-ll E P r x [x E i,l and hk(x) E l,j J"
l

On the other hand, consider the matrix Q (G k - l (* , h l , . . . , h k - 1)) 2. Its i , j entry is
given by

E ,Bh~,...,hk_1, iBhl,...,hk-1 Q~ ~,l)Q~ l,j)"
1

Since event 2 holds we get that each entry i , j of the matrix Q (G k (, , h l , . . . , hk)) -
Q (G k - I (* , h l , . . . , hk-1)) 2 is bounded in absolute value by 2-we. It follows that the
norm of this matrix is at most c.

2 ~ l) { (U, ~2 k - 1 Now consider the second summand. Note that Q((Un)) = ~ nj)2 thus
the second summand can be rewritten as

2 k - 1 2 I I Q (G k - l (* , h l , ' . . , h k - 1)) 2 - Q ((U n)) I1"
2 k 1

Denote Q (G k _ l (* , h l , . . . , h k _ l)) by M, and Q((Un)) by N, then we can bound

JIM 2 - Y2[[_< [[MHI[M - NIl + IIM - NHIlNI[.

Event 1 means that J IM-NI l is bounded by (2k-1-1)r The norms of M and N are
1 since they are transition probability matrices. It follows that the second summand
is bounded by (2 k - 2)~. I

In conclusion we have:

Lemma 3, There exists a constant c > 0 such that for all integers n and k <_ cn we

have that Gk : {0,1} n x H k --+ ({0,1}n) 2k is a pseudorandom generator for space(cn)
and block-size n with parameter 2 -on.

Proof. Let Q be a FSM, our aim is to bound the difference between Pr[Q accepts y]

where y is chosen uniformly in ({0,1}n) 2k , and Pr[Q accepts Gk(x , hi , . . . , hk)] where

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 457

x is chosen uniformly in {0,1) n and hl , . . . , ha in H. This difference we bound from
above by

Pr[(hl , . . . , hk) is not (~, Q)-good]+

I Pr[Q accepts y] - Pr[Q accepts Gk(x , h i , . . . , hk) I h i , . . . , hk is (e, Q)-good] I

(where ~ is chosen below.)
Let us first evaluate the second term. Fix ~ > 0 and any choice of (hl, . . . ,hk)

which is (~, Q)-good. Let lstar t be the probability distribution concentrated on the
starting state of Q, and let laccept be the vector having l 's on all the accepting
states of Q (and O's elsewhere). The probability that Q accepts y is given by

lstart.Q((Un)2k).laccept and the probability that Q accepts G(x, hl , . . . , hk) is given
by lstar t. Q(G(*, h l , . . . , hk))'laccept. The difference is thus given by

2 k
lstart" (Q(G(*, h l , . . . , hk)) - Q((Un)))" 1accept

Since 1start has a 1-norm of 1, and 1accept has all of its entries bounded in absolute
value by 1, the above expression is bounded in absolute value by

2 k
HQ(G(*,hl, . . . ,hk)) - Q(Un)ll -<

Using Lemma 2, the probability that (h l , . . . , hk) is not (e,Q)-good is bounded
22k26cn k

from above by ~22n . We require the total difference in probability of/acceptance

22cn26cncn
to be at most 2 -ca, for all k<cn. This is obtained when ~+ ~22n <2 -ca, an

inequality which can be satisfied for e.g. c= 0.05 and ~ = 2 -ca-1 . 1

4. G e n e r a t o r s for S p a c e - B o u n d e d C o m p u t a t i o n

Definition 5. A generator G : {0,1} m --* (0,1} n is called a pseudorandom generator
for space(S) with parameter ~ if for every randomized space(S) algorithm A and
every input to it we have that

IPr[A(y) accep ts] - Pr[A(G(x)) accepts]l <

where y is chosen uniformly at random in {0,1} n, and x uniformly in {0,1} m.
In the above definition, it is implied that the algorithm A is being run on its

input while accessing the bits of y or of G(x) as the random coin tosses. For a more
detailed definition and discussion of pseudorandom generators for space bounded
computation refer to [5].

Proposition 1. Let G: {0,1} m --+ ({0,1}n) k be a pseudorandom generator for space(S)
and block size n with parameter ~ then G is a pseudorandom generator for space(S)
with parameter e (where we concatenate the strings output by G to obtain a kn-bit
long string).
Proof. Given a space(S) algorithm A and an input to it, we build a FSM Q of size
28 consisting of all of A's configurations. We label each edge (i,j) with the set of n -
bit strings that cause A to move from configuration i to configuration j after being:
accepted as the next n coin tosses. The proposition now follows from definitions. 1

458 NOAM NISAN

By using the generators Gk obtained in section 3, using a family of universal
hash functions with linear size descriptions we get:

Theorem 1. For any R = R(n) and S -- S(n) there exists an (explicitly given) pseu-
dorandom generator G : {0,1} O(Sl~ R/ S)) --~ {0,1} R for space(S) with parameter
2 -8. Moreover, G can be computed in polynomial time (in R and S) and O(SlogR)
space.

This implies that randomized polynomial t ime algorithms that run in space(S)
can be simulated using O(Slogn) random bits.

Corollary 1. Any randomized algorithm running in space(S) and using R random
bits may be converted to one that uses only O(SlogR) random bits (and runs in
space(O(Slog R))).

In fact, the extra logR factor in the space is only due to the necessity of storing
the random bits. If the random bits are given as input (say, on a special tape of the
Turing machine with 2-way access to it allowed) then the generator can be computed
in space(S), and so can the simulation.

Pseudorandom generators for Logspace can be used for explicit constructions
of universal traversal sequences. For definitions of universal traversal sequences see
[1]. In [5] it is shown that the concatenation of all possible output strings of a
pseudorandom generator for Logspace is a universal traversal sequence. Using our
generator we obtain:

Theorem 2. For all n and 2 < d < n - l , there exist (explicitly given) universal traversaI
sequences of length n O(l~ for d-regular n-vertex graphs. Moreover, the sequences
can be produced by a Turing machine running in space logarithmic in the length of
the sequence.

5. Pseudo-independent Block Generators

We are interested in generators whose output may be used to run several random-
ized algorithms, with the property that it "looks" as though the different algorithms
got independent random strings. Formally:

Definition 6. Let G: {0,1} m --+ ({0,1}n) k, and s > 0, G is called a pseudo-independent
block generator with parameter ~ if for any sequence of sets A1, . . . ,Ak C {0,1} n we
have that

IPr[yl E A1 and . . . and Yk E Ak] - P l . . . P k [<- c

IA~I and the probability where Yi denotes the i ' th n-bit string produced by G, Pi = -~-
is taken over a random input to G.

By going over the proofs of [11], it is not difficult to verify that the generator
proposed there is in fact a pseudo-independent block generator. The generator uses
only linearly (in R) many random bits and produces k = O (v ~) strings with param-
eter ~ = e x p (- x / ~) . Our generator is also a pseudo-independent block generator,
and can be used for larger values of R and smaller values of c. It requires, however,
slightly more random bits.

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 459

Proposition 2. Let G : {0,1} m --~ ({0,1}n) k be a pseudorandom generator for
space(log(k+2)) and block size n with parameter e, then G is a pseudo-independent
block generator with parameter e.

Proof. We build a FSM Q with states 0. . . k and an extra fail state. The start state
is state 0, and the only accepting state is state k. Each edge (i - 1 , i) is labeled with
the set of n-bit strings in Ai, and each edge (i - 1, fail) is labeled with the strings
not in A i. The proposition now follows from definitions. |

Using our generator we obtain:

Theorem 3. There exists a constant e > 0 such that for any integers R and k <_ 2 R
there exists an (explicitly given) pseudo-independent block generator with parameter
2 -R that converts eRlogk random bits into k strings of length R.

Proof. Use the generator assured by Lemma 3, for space R, block size R, parameter
2 -R , that produces k R-bit strings. (In fact, Lemma 3 gives larger block size, but
excess bits can be thrown away). Then apply Proposition 2. |

As a special case we obtain deterministic amplification: Given any randomized
algorithm that uses R random bits and has success probability 1/2 and given k <
R, we can run the algorithm k times using the output of our generator. This
requires only O(Rlogk) random bits and will reduce the probability of failure to
(1+o(1))2 -k. Notice also that even if the original algorithm had a success probability
of only 1/poty(k) we could still run the algorithm poly(k) times, reducing the failure
probability to 2 - k and still using only O(Rlogk) random bits.

These results are all s tated for algorithms with one-sided error 2, but they easily
extend to algorithms which have 2-sided error (BPP-type algorithms) 3.

6. O t h e r Applications

Many algorithms can be naturally broken into stages with the property that only
small space is required between the different stages and each stage uses only a small
number of random bits. In all these algorithms it is possible to reduce the number
of random bits used by using the output of our generator instead of truly random
bits (each stage of the algorithm gets a block that is output by the generator). We
now give an example how a random n-bit prime can be chosen using only O(nlogn)
random bits. We believe that this is in itself interesting, but the main point we wish
to make is that the techniques used are very general, and can be used for a variety
of problems.

The following algorithm is the standard one used for uniformly generating prime
numbers in the range 1 . . . N :

1. Repeat until success

2 I.e. the algorithm is always correct on inputs not in the language and is correct with probability
at least 1/2 on inputs in the language. Thus if any run of it says "yes" we can immediately conclude
that the input is in the language

3 I.e. algorithms which are always correct with probability of at least 2/3. In this case amplifi-
cation is achieved by taking a majority vote of all runs of the algorithm.

460 NOAM NISAN

1.1. Choose a random integer x in the range 1.. . N.
1.2. Test: is x prime? If "yes" then success:=true.

2. Output x.
The expected number of times that the loop is performed until a prime number

is found is approximately i n N = O(n) (since the density of prime numbers in 1. . . N
is approximately 1 / l nN) . Even assuming, for now, that we have a deterministic
primality test, the algorithm requires an expected O(n 2) random bits. Using our
generator we can reduce the number of random bits used to O(nlogn) without
assuming a deterministic primality test, but using, e.g., the Rabin-Miller randomized
primality test [16].

The basic step in this primality test uses O(n) random bits and detects non-
primes with probability of at least 1/2. To get a test that fails with exponentially
small probability, the test is repeated O(n) times. We can now break the algorithm
into stages: Choosing a random x is a stage, and a basic primality test is a stage.
Note that now each stage requires O(n) random bits, and that the space required
between any two stages is also O(n) (for storing x). We can thus use the output of
our generator for space O(n) and block size O(n), with parameter 2 -[~(n), instead
of truly random bits. This requires only O(nlogn) random bits.

Acknowledgements. I 'd like to thank Russell Impagliazzo, Yishay Mansour, Avi
Wigderson, Oded Goldreich, Shaft Goldwasser, Muli Safra, Mike Sipser, and Martin
Tompa for helpful suggestions and discussions.

References

[1] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. LOV~.SZ, and C. RACKOFF: Random
walks, universal sequences and the complexity of maze problems, in: 20 th Annual
Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1979,
218-223.

[2] M. AJTAI, J. and E. SZEMEREDI: Deterministic simulation in logspace, In: KOML6S,19t h
Proceedings of the Annual ACM Symposium on Theory of Computing, New
York City, 1987, 132 141.

[3] M. AJTAI and A. WIGDERSON: Deterministic simulation of probabilistic constant
depth circuits, In: 26 th Annual Symposium on Foundations of Computer Science,
Portland, Oregon, 1985, 11-19.

[4] M. BLUM and S. MICALI: How to generate cryptographically strong sequences of
pseudo-random bits, SIAM J. Comp., 13, (1984) 850-864.

[5] L. BABAI, N. NISAN, and M. SZEGEDY: Multiparty protocols and logspace-hard
pseudorandom sequences, In: Proceedings of the 21 st Annual ACM Symposium on
Theory of Computing, Seattle, Washington, 1989, 1-11.

[6] B. CHOR and O. GOLDREICH: On the power of two points biased sampling, Manuscript,
1986.

[7] L. CARTER and M. WEGMAN: Universal hash functions, J. Comp. and Syst. Sci. 18,
(1979) 143-154.

[8] A. COHEN and A. WIGDERSON: Dispersers, deterministic amplification, and weak
random sources, In: 30 th Annual Symposium on Foundations of Computer Science,
Reseach Triangle Park, NC, 1989, 14-19.

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED COMPUTATION 461

[9] R. IMPAGLIAZZO, L. LEVIN, and M. LUBY: Pseudorandom generation from one-
way functions, In: Proceedings of the 21 st Annual ACM Symposium on Theory
of Computing, Seattle, Washington, 1989, 12-24.

[10] S. ISTRAIL: Polynomial traversing sequences for cycles are constructable, In: Proceed-
ings of the 20 th Annual ACM Symposium on Theory of Computing, 1988, 491-503.

[11] R. IMPAGLIAZZO and D. ZUCKERMAN: How to recycle random bits, In: 30 th Annual
Symposium on Foundations of Computer Science, Reseach Triangle Park, NC, 1989,
248-253.

[12] R. KARP, N. PIPPENGER, and M. SIPSER: A time-randomness tradeoff, In: AMS
Conference on Probabilistic Computational Complexity, 1985.

[13] H. KARLOFF, R. PATURI, and J. SIMON: Universal sequences of length n O(l~ for
cliques, Inf. Proc. Let. 28, (1988) 241-243.

[14] Y. MANSOUR, N. NISAN, and P. TIWARI: The computational complexity of univer-
sal hashing, In: Proceedings of the 22 nd Annual ACM Symposium on Theory of
Computing, 1990, 235-243.

[15] N. NISAN and A. WIGDERSON: Hardness vs. randomness, In: 29 th Annual Symposium
on Foundations of Computer Science, White Plains, New York, 1988, 2-12.

[16] M. O. RABIN: Probabilistic algorithm for testing primality, J. of Number Theory 12,
(1980) 128-138.

[17] M. SANTttA: On using deterministic functions to reduce randomness in probabilistie
algorithms, Manuscript, 1986.

[18] M. SIPSER: Expanders, randomness or time vs. space, JCSS 36 (1988), 379-383.
[19] U. VAZIRANI: Efficieney considerations in using semi-random sources, In: Proceedings

of the 19 th Annual ACM Symposium on Theory of Computing, New York City,
1987, 160-168.

[20] A. C. YAO: Theory and applications of trapdoor functions, In: 23 rd Annual Symposium
on Foundations of Computer Science, 1982, 80-91.

Noam Nisan

Department of Computer Science,
Hebrew University of Jerusalem.
91904 Jerusalem, Israel.
noam@cs, huj i. ac. il

