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Abstract

We present adeterministic, log-space algorithm that solves st-connectivity in undirected graphs.
The previous bound on the space complexity of undirected st-connectivity waslog4/3(·) obtained by
Armoni, Ta-Shma, Wigderson and Zhou [ATSWZ00]. As undirected st-connectivity is complete for the
class of problems solvable by symmetric, non-deterministic, log-space computations (the classSL), this
algorithm implies thatSL = L (whereL is the class of problems solvable by deterministic log-space
computations). Our algorithm also implies log-space constructible universal-traversal sequences for
graphs with restricted labelling and log-space constructible universal-exploration sequences for general
graphs.

1 Introduction

We resolve the space complexity of undirected st-connectivity (denotedUSTCON), up to a constant factor,
by presenting a log-space (polynomial-time) algorithm for solving it. Given asinput an undirected graphG
and two verticess andt, theUSTCON problem is to decide whether or not the two vertices are connected
by a path inG (our algorithm will also solve the corresponding search problem, of finding a path froms
to t if such a path exists). This fundamental combinatorial problem has received a lot of attention in the
last few decades and was studied in a large variety of computational models.It is a basic building block
for more complex graph algorithms and is complete for the classSL of problems solvable by symmetric,
non-deterministic, log-space computations [LP82] (see [AG96] for a recent study ofSL and quite a few of
its complete problems).

The time complexity ofUSTCON is well understood as basic search algorithms, particularly breadth-
first search (BFS) and depth-first search (DFS), are capable of solvingUSTCON in linear time. In fact, these
algorithms apply to the more complex problem of st-connectivity in directed graphs (denotedSTCON),
which is complete forNL (non-deterministic log-space computations). Unfortunately, the space required to
run these algorithms is linear as well. A much more space efficient algorithm is Savitch’s [Sav70], which
solvesSTCON in spacelog2(·) (and super-polynomial time).

Major progress in understanding the space complexity ofUSTCON was made by Aleliunas et. al. [AKL+79],
who gave arandomizedlog-space algorithm for the problem. Specifically, they showed that a random walk
(a path that selects a uniform edge at each step) starting from an arbitrary vertex of any connected undirected
graph will visit all the vertices of the graph in polynomial number of steps. Therefore, the algorithm can
perform a random walk starting froms and verify that it reachest within the specified polynomial number of
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steps. Essentially all that the algorithm needs to remember is the name of the current vertex and a counter for
the number of steps already taken. With this result we get the following view ofspace complexity classes:
L ⊆ SL ⊆ RL ⊆ NL ⊆ L2 (whereRL is the class of problems that can be decided by randomized log-
space algorithms with one-sided error andLc is the class of problems that can be decided deterministically
in spacelogc(·)).

The existence of a randomized log-space algorithm forUSTCON puts this problem in the context of
derandomization. Can this randomized algorithm be derandomized without substantial increase in space?
Furthermore, the study of the space complexity ofUSTCON has gained additional motivation as an impor-
tant test case for understanding the tradeoff between two central resources of computations, namely between
memory space and randomness. Particularly, a natural goal on the way to proving RL = L is to prove that
USTCON ∈ L, asUSTCON is undoubtedly one of the most interesting problems inRL.

Following [AKL+79], most of the progress on the space complexity ofUSTCON indeed relied on
the tools of derandomization. In particular, this line of work greatly benefitedfrom the development of
pseudorandom generators that fool space-bounded algorithms [AKS87, BNS89, Nis92b, INW94] and it
progressed concurrently with the study of theL vs.RL problem. Another very influential notion, introduced
by Stephen Cook in the late 70’s, is that of a universal-traversal sequence. Loosely, this is a fixed sequence
of directions that guides adeterministicwalk through all of the vertices of any connected graph of the
appropriate size (see further discussion below).

While Nisan’s space-bounded generator [Nis92b], did not directly imply amore space efficientUSTCON
algorithm it did imply quasi-polynomially-long, universal-traversal sequences, constructible in spacelog2(·).
These were extremely instrumental in the work of Nisan, Szemeredi and Wigderson [NSW89] who showed
thatUSTCON ∈ L3/2 – The first improvement over Savitch’s algorithm in terms of space (limited of course
to the case of undirected graphs). Using different methods, but still heavily relying on [Nis92b], Saks and
Zhou [SZ99] showed thateveryRL problemis also inL3/2 (their result in fact generalizes to randomized
algorithms with two-sided error). Relying on the techniques of both [NSW89]and [SZ99], Armoni, et.
al. [ATSWZ00] showed thatUSTCON ∈ L4/3. Their USTCON algorithm was the most space-efficient
one previous to this work. We note that the most space-efficientpolynomial-timealgorithm forUSTCON
previously known was Nisan’s [Nis92a], which still required spacelog2(·).

Our approach

In retrospect, the essence of our algorithm is very natural: If you wantto solve a connectivity problem
on your input graph, firstimprove its connectivity. In other words, transform your input graph (or rather,
each one of its connected components), into an expander.1 We will also insist on the final graph being
constant degree. Once the connected component ofs is a constant-degree expander, then it is trivial to
decide ifs andt are connected: Since expander graphs have logarithmic diameter, it is enough to enumerate
all logarithmically long paths starting withs and to see if one of these paths visitst. Since the degree is
constant, the number of such paths is polynomial and they can easily be enumerated in log space.

How can we turn an arbitrary graph into an expander? First, we note that every connected, non-bipartite,
graph can be thought of as an expander with very small (but non-negligible) expansion. Consider for exam-
ple an arbitrary connected graph with self-loops added to each one of its vertices. The number of neighbors
of every strict subset of the vertices is larger than its size by at least one. In this respect, the graph can be
thought of as expanding by a factor1 + 1/N (whereN is the total number of vertices in the graph). Now, a

1The exact definition of expander graphs is less important for now, andthe following description could be understood by viewing
expanders as graphs with very strong connectivity properties. Still, forthe knowledgable reader, the particular measure that seems
the most convenient to work with is the second eigenvalue (in absolute value) of the adjacency matrix of the graph (we will only
need to work with regular graphs). It may however be that other, morecombinatorial, measures will also do [DRTV04].
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very natural operation that improves the expansion of the graph is powering. Thekth power ofG contains
an edge between two verticesv andw for every path of lengthk in G. Formally, it can be shown that by
taking some polynomial power of any connected non-bipartite graph (equivalently, by repeatedly squaring
the graph logarithmic number of times), it will indeed turn into an expander.

The down side of powering is of course that it increases the degree of the graph. Taking a polynomial
or any non-constant power is prohibited if we want to maintain constant degree. Fortunately, there exist
operations that can counter this problem. Consider for example, the replacement product of aD-regular
graphG with a d-regular graphH on D vertices (withd ≪ D). This can be loosely defined as follows:
Each vertexv of G is replaced with a “copy”Hv of H. Each of theD vertices ofHv is connected to its
neighbors inHv but also to one vertex inHw, where(v, w) is one of theD edges going out ofv in G. The
degree in the product graph isd + 1 (which is smaller thanD). Therefore, this operation can transform a
graphG into a new graph (the product ofG andH) of smaller degree. It turns out that ifH is a “good
enough” expander, the expansion of the resulting graph is “not worseby much” than the expansion ofG.
Formal statements to this affect were proven by Reingold, Vadhan and Wigderson [RVW01] for both the
replacement product and the zig-zag product, introduced there. Independently, Martin and Randall [MR00],
building on previous work of Madras and Randall [MR96], proved a decomposition theorem for Markov
chains that also implies that the replacement product preserves expansion.

Given the discussion above, we are ready to informally describe ourUSTCON algorithm. First, turn
the input graph into a constant-degree, regular graph with each connected component being non-bipartite
(this step is very easy). Then, the main transformation turns each connected component of the graph, in
logarithmic number of phases, into an expander. Each phase starts by raising the current graph to some
constant power and then reducing the degree back via a replacement ora zig-zag product with a constant-
size expander. We argue that each phase enhances the expansion atleast as well as squaring the graph would,
andwithout the disadvantage of increasing the degree. Finally, all that is left is to solveUSTCON on the
resulting graph (which is easy as the diameter of each connected component is only logarithmic).

To conclude thatUSTCON ∈ L, we need to argue that all of the above can be done in logarithmic
space, which easily reduces to showing that the main transformation can be carried out in logarithmic space.
For that, consider the graphGi obtained afteri phases of the transformation. We note that a step onGi (i.e.,
evaluating thejth neighbor of some vertexv in Gi) is composed of a constant number of operations that are
either a step on the graphGi−1 from the previous phase or an operation that only requires a constant amount
of memory. As the memory for each of these operations can be freed after itis performed, the memory for
carrying out a step onGi is only larger by an additive constant than the memory for carrying out a step on
Gi−1. This implies that the entire transformation is indeed log space.

Universal traversal sequences While universal-traversal sequences were introduced as a way for proving
USTCON ∈ L, these are interesting combinatorial objects in their own right. A universal-traversal sequence
for D-regular graphs onN -vertices, is a sequence of edge labels in{1, . . . , D} such that for every such
graph, for every labelling of its edges, and for every start vertex, thedeterministicwalk defined by these
labels (where in theith step we take the edge labeled by theith element of the sequence), visits all of
the vertices of the graph. Aleliunas et. al. [AKL+79] showed that polynomial-length universal-traversal
sequence exists, and in fact almost every sequence of the appropriatelength will do. We are interested in
obtaining a polynomially-long, universal-traversal sequence that isconstructible in logartihmic space(even
less explicit sequences may still be interesting). This is again a derandomization problem. Namely, can we
derandomize the probabilistic construction of universal-traversal sequences?

Explicit constructions of polynomially-long universal-traversal sequences are only known for extremely
limited classes of graphs. Even for expander graphs, such sequences are only known when the edges are
“consistently labelled” [HW93] (this means that the labels of all of the edges that lead to any particular
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vertex are distinct). It is therefore not very surprising that our algorithm on its own does not imply full
fledged universal-traversal sequences. Still, our algorithm can be shown to imply a very local, and quite
oblivious, deterministic procedure for exploring a maze. We can think of our algorithm as maintaining a
single pebble, that is placed on theedgesof the graph. The pebble is moved either from one side of the
edge to another, or between different edges that are adjacent to the same vertex (say to the next or to the
previous edge). As with universal-traversal sequences, the fixed sequence of instructions is good for every
graph, for every labelling of its edges, and for any starting point on the graph. The only difference from
universal-traversal sequences is that the pebble here is placed on theedges rather than on the vertices of the
graph. In more established terms, our algorithm implies a polynomially-long, universal-traversal sequence
that isconstructible in logartihmic spaceunder some restrictions on the labelling. These restrictions were
relaxed in a subsequent work [DRTV04] to be identical to those of [HW93]. Finally, we get polynomially-
long, universal-explorationsequences for general graphs. In universal-exploration sequences, introduced
by Koucky [Kou01], the elements of the sequence are not interpreted asabsolute edge-labels but rather as
offsets from the previous edge that was traversed. For more details seeSection 5.

More on previous work

Graph connectivity problems and space-bounded derandomization are the focus of a vast and diverse body
of research. The scope of this paper only allows for an extremely partialdiscussion of this area. Some
very beautiful and influential research (as many of the papers mentionedabove) is only briefly touched
upon, other areas will not be discussed at all (examples include, time-space tradeoffs for deterministic and
randomized connectivity algorithms, restricted constructions of universal traversal sequences, and analysis
of connectivity in many other computational models). Insightful, though somewhat outdated, surveys on
these topics were given by Wigderson [Wig92] and by Saks [Sak96]. Useful discussion and pointers were
also given by Koucky [Kou03]. We continue here by mentioning a few of the most related previous results
(most of which are subsumed by the results of this paper). A more technicalcomparison with some previous
work appears in Section 6.

Following Aleliunas et. al. [AKL+79], Borodin et. al. [BCD+89] gave azero-error, randomized, log-
space algorithm forUSTCON. An upper bound of different nature onSL was given by Karchmer and
Wigderson [KW93], who showedSL ⊆ ⊕L.

Nisan and Ta-Shma [NTS95] showed thatSL is closed under complement, thus collapsing the “sym-
metric log-space hierarchies” of both Reif [Rei84] and Ben Asher et. al. [YBAS95], and putting some very
interesting problems intoSL (we refer again to [AG96] for a list ofSL-complete problems).

A research direction initiated by Ajtai et. al. [AKS87], and continued with Nisan and Zuckerman [NZ96]
is to fully derandomize (i.e., to put inL) log n-space computations that use fewer thann random bits
(poly log n bits in the case of [NZ96]). Raz and Reingold [RR99] showed how to derandomize2

√
log n

bits for subclasses ofRL. One of their main applications can be viewed as derandomizing2
√

log n bits for
SL. It is interesting to note (and personally gratifying to the author) that the techniques of [RR99] played a
major roll in the definition of the zig-zag product and with this work found theirway back to the study of
space-bounded derandomization.

Goldreich and Wigderson [GW02] gave an algorithm that on all but a tiny fraction of the graphs, evalu-
atesUSTCON correctly (and on the rest of the graphs outputs an error message).

Based on rather relaxedcomputational hardness assumptions, Klivans and van Melkebeek [KvM02]
proved both thatRL = L and that efficiently constructible, polynomial length, universal traversal sequences
exist.
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2 Preliminaries

This section discusses various aspects of graphs: their representation, eigenvalue expansion, graph powering,
and two graph products (the replacement product and the zig-zag product). The definitions and notation used
here are borrowed directly from [RVW01].

2.1 Graphs representations

There are several standard representations of graphs. Fortunately, there exist log-space transformations
between natural representations. Thus, the space complexity ofUSTCON is to a large extent independent
of the representation of the input graph.

When discussing the eigenvalue expansion of a graph, we will consider itsadjacency matrix. That is,
the matrix whose (nonnegative, integral) entry(u, v) equals to the number of edges that go from vertexu
to vertexv. Note that this representation allows graphs with self loops and parallel edges (and indeed such
graphs may be generated by our algorithm). A graph isundirected iff its adjacency matrix is symmetric
(implying that for every edge fromu to v there is an edge fromv to u). It is D-regular if the sum of entries
in each row (and column) isD (so exactlyD edges are incident to every vertex).

Let G be aD-regular undirected graph onN vertices. When considering a walk onG, we would like to
assume that the edges leaving each vertex ofG are labeled from1 to D in some arbitrary, but fixed, way. We
can then talk about thei’th edge incident to a vertexv, and similarly about thei’th neighbor ofv. A central
insight of [RVW01] is that when taking a step on a graph from vertexv to vertexw, it may be useful to keep
track of the edge traversed to get tow (rather than just remembering that we are now atw). This gave rise to
a new representation of graphs through the followingpermutationon pairs of vertex name and edge label:

Definition 2.1 For a D-regular undirected graphG, therotation map RotG : [N ] × [D] → [N ] × [D] is
defined as follows:RotG(v, i) = (w, j) if the i’th edge incident tov leads tow, and this edge is thej’th
edge incident tow.

Rotation maps will indeed be the representation of choice for this work. Specifically, the first step of our
algorithm will be to transform the input graph into a regular one specified byits rotation map (in particular,
this step will give labels to the edges of the graph).

2.2 Eigenvalue expansion and st-connectivity for expanders

Expanders are sparse graphs which are nevertheless highly connected. The strong connectivity properties
of expanders make them very desirable in our context. Specifically, sincethe diameter of expander graphs
is only logarithmically long, there is a trivial log-space algorithm for finding paths between vertices in
constant-degree expanders. The particular formalization of expanders used in this paper is the (algebraic)
characterization based on the spectral gap of their adjacency matrix. Namely, the gap between the first and
second eigenvalues of the (normalized) adjacency matrix.

Thenormalized adjacency matrixM of aD-regular undirected graphG, is the adjacency matrix ofG
divided byD. In terms of the rotation map, we have:

Mu,v =
1

D
·
∣

∣{(i, j) ∈ [D]2 : RotG(u, i) = (v, j)}
∣

∣ .

M is simply the transition probability matrix of a random walk onG. By theD-regularity ofG, the all-1’s
vector1N = (1, 1, . . . , 1) ∈ R

N is an eigenvector ofM of eigenvalue 1. It turns out that all the other
eigenvalues ofM have absolute value at most 1. We denote byλ(G), thesecond largest eigenvalue(in
absolute value) ofG’s normalized adjacency matrix. We refer to aD-regular undirected graphG on N
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vertices such thatλ(G) ≤ λ as an(N, D, λ)-graph. It is well-known that the second largest eigenvalue of
G is a good measure ofG’s expansion properties. In particular, it was shown by Tanner [Tan84] and Alon
and Milman [AM85] that second-eigenvalue expansion implies (and is in factequivalent [Alo86]) to the
standard notion ofvertex expansion. In particular, for everyλ < 1 there existsε > 0 such that for every
(N, D, λ)-graphG and for any setS of at most half the vertices inG, at least(1 + ε) · |S| vertices ofG are
connected by an edge to some vertex inS. This immediately implies thatG has a logarithmic diameter:

Proposition 2.2 Let λ < 1 be some constant. Then for every(N, D, λ)-graphG and any two verticess
andt in G, there exists a path of lengthO(log N) that connectss to t.

Proof: By the vertex expansion ofG, for someℓ = O(log N) both s andt have more thanN/2 vertices of
distance at mostℓ from them inG. Therefore, there exists a vertexv that is of distance at mostℓ from both
s andt.

We can therefore conclude that st-connectivity in constant-degree expanders can be solved in log-space:

Proposition 2.3 Letλ < 1 be some constant. Then there exists a spaceO(log D · log N) algorithmA such
that when aD-regular undirected graphG onN vertices is given toA as input, the following hold:

1. If s and t are in the same connected component and this component is an(N ′, D, λ)-graph thenA
outputs ‘connected’.

2. IfA outputs ‘connected’ thens andt are indeed in the same connected component.

Proof: The algorithmA simply enumerates allDℓ paths of lengthℓ = O(log N) from s. (Where the lead-
ing constant in the big-O notation depends onλ as in Proposition 2.2.) The algorithmA outputs ‘connected’
if and only if at least one of these paths encounterst.

Following any particular path froms of length ℓ requires spaceO(log N), (when given as input the
sequence ofℓ edge labels in[D] = {1, 2, . . . D} traversed by this path). Enumerating all theseDℓ paths
requires spaceO(log D · log N). By Proposition 2.2, in case (1),s andt are of distance at mostℓ of each
other andA will indeed find a path froms to t and will output ‘connected’. On the other hand,A never
outputs ‘connected’ unless it finds a path froms to t, implying (2).

Using the Probabilistic Method, Pinsker [Pin73] showed that most 3-regular graphs are expanders (in
the sense of vertex expansion), and this result was extended to eigenvalue bounds in [Alo86, BS87, FKS89,
Fri91]. Variousexplicit families of constant-degree expanders, some with optimal tradeoff betweendegree
and expansion, were given in literature (cf. [Mar73, GG81, JM87, AM85, AGM87, LPS88, Mar88, Mor94,
RVW01]). Our algorithm will employ a single constant size expander with rather weak parameters. This
expander can be obtained by exhaustive search or by any of the explicit constructions mentioned above.
In fact, one can use simpler explicit constructions than the ones given above, as we can afford a rather
large degree (with respect to the number of vertices), rather than a constant degree. An example of a simpler
construction that would suffice is the one given by Alon and Roichman [AR94], (see also related discussions
in [RVW01] regarding their “base graph”).

Proposition 2.4 There exists some constantDe and a((De)16, De, 1/2)-graph.

Finally, a key fact for our algorithm is that every connected, non-bipartite graph has a spectral gap
which is at least inverse polynomial in the size of the graph (recall that a graph is non-bipartite if there is no
partition of the vertices such that all the edges go between the two sides of thepartition).

Lemma 2.5 ([AS00]) For everyD-regular, connected, non-bipartite graphG on [N ] it holds thatλ(G) ≤
1− 1/DN2.
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2.3 Powering

Our main transformation will take a graph and transform each one of its connected components (that in itself
will be a connected, non-bipartite graph), into a constant degree expander. If we ignore the requirement that
the graph remains constant degree, a simple way of amplifying the (inverse polynomial) spectral gap of a
graph is by powering.

Definition 2.6 LetG be aD-regular multigraph on[N ] given by rotation mapRotG. Thet’th power ofG is
theDt-regular graphGt whose rotation map is given byRotGt(v0, (a1, a2, . . . , at)) = (vt, (bt, bt−1, . . . , b1)),
where these values are computed via the rule(vi, bi) = RotG(vi−1, ai).

Proposition 2.7 If G is an(N, D, λ)-graph, thenGt is an(N, Dt, λt)-graph.

Proof: The normalized adjacency matrix ofGt is thet’th power of the normalized adjacency matrix ofG,
so all the eigenvalues also get raised to thet’th power.

2.4 Two graph products

While taking a power of a graph reduces its second eigenvalue, it also increases its degree. As we are
interested in producing constant-degree graphs, we need a complementingoperation that reduces the degree
of a graph without harming its expansion by too much. We now discuss two graph products that are capable
of doing exactly that.

The first is the very natural product, known as thereplacement product. Assume thatG is aD-regular
graph on[N ] andH is ad-regular graph on[D] (whered is significantly smaller thanD). Very intuitively,
the replacement product of the two graphs is defined as follows: Each vertex v of G is replaced with a
“copy” Hv of H. Each of theD vertices ofHv is connected to its neighbors inHv but also to one vertex
in Hw, where(v, w) is one of theD edges going out ofv in G. The degree in the product graph isd + 1
(which is smaller thanD).2 A second, slightly more evolved, product introduced by Reingold, Vadhanand
Wigderson [RVW01], is thezig-zag graph product. Here too we replace each vertexv of G with a “copy”
Hv of H. However, the edges of the zig-zag product ofG andH correspond to a subset of the paths of
length three in the replacement product of these graphs3 (see formal definition below). The degree of the
product graph here isd2 (which should still be thought of as significantly smaller thatD).

It is immediate from their definition, that both products can transform a graphG to a new graph (the
product ofG andH) of smaller degree. As discussed in the introduction, it was previously shown [RVW01,
MR00] that if H is a “good enough” expander, then the expansion of the resulting graphis “not worse by
much” than the expansion ofG (see formal statement below for the zig-zag product). Either one of these
products can be used in ourUSTCON algorithm (with some variation in the parameters). We find it more
convenient to work with the zig-zag product (even though it is a bit more involved), hence we proceed by
formally defining it.

Definition 2.8 ([RVW01]) If G is aD-regular graph on[N ] with rotation mapRotG andH is ad-regular
graph on[D] with rotation mapRotH , then theirzig-zag productG©z H is defined to be thed2-regular
graph on[N ]× [D] whose rotation mapRotG©z H is as follows (see Figure 1 for an illustration):

2Sometimes it is better to consider thebalancedreplacement product, where every edge inG is takend times in parallel. The
degree of the product graph in this case is2d instead ofd + 1.

3Those length three paths that are composed of a “short edge” (an edge inside one of the copiesHv), a “long edge” (one that
corresponds to an edge ofG), and finally one additional “short edge”.
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Figure 1: On the left – an edge of the zig-zag product is composed of three steps: a “short step” (inHv), a
“big step” (betweenHv andHw which corresponds to an edge ofG betweenv andw), and a final “small
step” (inHw). The valuesi, i′, j andj′ are labels of edges ofH (going out of theH verticesa, a′, b′ andb
respectively). On the right – the projection of these steps on the graphG (which corresponds to the middle
step specified by(w, b′) = RotG(v, a′)).

RotG©z H((v, a), (i, j)):

1. Let(a′, i′) = RotH(a, i).

2. Let(w, b′) = RotG(v, a′).

3. Let(b, j′) = RotH(b′, j).

4. Output((w, b), (j′, i′)).

In [RVW01], λ(G©z H) was bounded as a function ofλ(G) andλ(H). The interesting case there was
when bothλ(G) andλ(H) were small constants (and in fact,λ(G) is significantly smaller thanλ(H)). In
our context,λ(H) will indeed be a small constant butG may have an extremely small spectral gap (recall
that the spectral gap ofG is 1 − λ(G)). In this case, we want the spectral gap ofG©z H to be roughly
the same as that ofG (i.e., smaller by at most a constant factor). It turns out that the stronger bound on
λ(G©z H), given in [RVW01] implies a useful bound also in this case. We note that a simpler proof for the
sort of bound on the zig-zag product we need is given in [DRTV04] (ina more general setting than the one
considered in [RVW01]).

Theorem 2.9 ([RVW01]) If G is an (N, D, λ)-graph andH is a (D, d, α)-graph, thenG©z H is a (N ·
D, d2, f(λ, α))-graph, where

f(λ, α) =
1

2
(1− α2)λ +

1

2

√

(1− α2)2λ2 + 4α2.

As a simple corollary, we have that the spectral gap ofG©z H is smaller than that ofG by a factor that
only depends onλ(H).
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Corollary 2.10 If G is an(N, D, λ)-graph andH is a (D, d, α)-graph, then

1− λ(G©z H) ≥
1

2
(1− α2) · (1− λ).

Proof: Sinceλ ≤ 1 we have that

1

2

√

(1− α2)2λ2 + 4α2 ≤
1

2

√

(1− α2)2 + 4α2 =
1

2
(1 + α2) = 1−

1

2
(1− α2).

Therefore,f(λ, α) from Theorem 2.9 satisfiesf(λ, α) ≤ 1− 1
2(1− α2)(1− λ).

3 Transforming graphs into expanders

This section gives a log-space transformation that essentially turns each one of the connected components
of a graph into an expander. This is the main part of ourUSTCON algorithm.

Definition 3.1 (Main Transformation) On inputG andH, whereG is aD16-regular graph on[N ] andH
is aD-regular graph on[D16], both given by their rotation maps, the transformationT outputs the rotation
map of a graphGℓ defined as follows:

• Setℓ to be the smallest integer such that(1− 1/DN2)2
ℓ

< 1/2.

• SetG0 to equalG, and fori > 0 defineGi recursively by the rule:

Gi = (Gi−1©z H)8.

Denote byTi(G, H) the graphGi, andT (G, H) = Gℓ

Note that by the basic properties of powering and the zig-zag product, it follows inductively that eachGi

is aD16-regular graph over[N ] × ([D16])i. In particular, the zig-zag product ofGi andH is well defined.
In addition, ifD is a constant, thenℓ = O(log N) andGℓ haspoly(N) vertices. Our first lemma shows that
T is capable of turning an input graphG into an expanderGℓ (as long asH is in itself an expander).

Lemma 3.2 Let G andH be the inputs ofT as in Definition 3.1. Ifλ(H) ≤ 1/2 andG is connected and
non-bipartite thenλ(T (G, H)) ≤ 1/2.

Proof: SinceG = G0 is connected and non-bipartite we have by Lemma 2.5 thatλ(G0) ≤ 1 −
1/DN2. By the choice ofℓ it is therefore enough to prove that for everyi > 0, it holds thatλ(Gi) ≤
max{λ(Gi−1)

2, 1/2}. Denoteλ = λ(Gi−1). Sinceλ(H) ≤ 1/2, we have by Corollary 2.10 thatλ(Gi−1©z
H) ≤ 1 − 3/8(1 − λ) < 1 − 1/3(1 − λ). By the definition ofGi and by Proposition 2.7 we have that
λ(Gi) < [1 − 1/3(1 − λ)]8. We now consider two cases. First, ifλ < 1/2 thenλ(Gi) < (5/6)8 < 1/2.
Otherwise, elementary calculation shows that[1− 1/3(1−λ)]4 ≤ λ and thereforeλ(Gi) < λ2. The lemma
follows.

As we are working our way to solving st-connectivity, rather than solving connectivity (the problem of
deciding if the input graph is connected or not), our transformation shouldbe meaningful even for graphs
that are not connected (as even in this case the two input verticess andt may still be in the same connected
component). For that, we will argue thatT operates separately on each connected component ofG. The
reason is thatT is composed of two operations (the zig-zag product and powering), thatalso operate sepa-
rately on each connected component. We will need some additional notation: For any graphG and subset of
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its verticesS, denote byG|S the subgraph ofG induced byS (i.e., the graph onS which contains all of the
edges inG between vertices inS). A setS is a connected component ofG if G|S is connected and the set
S is disconnected from the rest ofG (i.e., there are no edges inG between vertices inS and vertices outside
of S).

Lemma 3.3 Let G andH be the inputs ofT as in Definition 3.1. IfS ⊆ [N ] is a connected component of
G then

T (G|S , H) = T (G, H)|S×([D16])ℓ .

Proof: We will only rely on S being disconnected from the rest ofG, and will prove inductively that
Ti(G|S , H) = Ti(G, H)|S×([D16])i . Note that fori > 0 this directly implies thatS×([D16])i is disconnected
from the rest ofTi(G, H) (since bothTi(G|S , H) andTi(G, H) areD16-regular, and thus all of theD16

edges incident to a vertex inS × ([D16])i reside insideTi(G, H)|S×([D16])i). The base casei = 0 is trivial,
and here tooS × ([D16])i = S is disconnected from the rest ofTi(G, H) = G, by assumption.

Assume by induction thatTi(G|S , H) = Ti(G, H)|S×([D16])i . SetGi = Ti(G, H) andSi = S×([D16])i

(and recall thatSi is disconnected from the rest ofGi). Then, by the definition of the zig-zag product,
Si× [D16] is disconnected from the rest ofGi©z H and the edges incident toSi× [D16] in Gi©z H are exactly
as inGi|Si×[D16]©z H. By the definition of powering we now have thatSi × [D16] is disconnected from the
rest of(Gi©z H)8 and the edges incident toSi × [D16] in (Gi©z H)8 are exactly as in(Gi|Si×[D16]©z H)8.
This proves the induction hypothesis fori + 1 and completes the proof.

Finally, we need to argue thatT is a log-space transformation (whenD is a constant). The reason is that
the evaluation of the rotation mapRotGi+1

of each graphGi+1 in the definition ofT requires just a constant
additional amount of memory over the evaluation ofRotGi

. Simply, the evaluation ofRotGi+1
is composed

of a constant number of operations, where each operation is either an evaluation ofRotGi
or it requires

constant amount of memory (and the same memory can be used for each one of these operations). So the
additional memory needed for evaluatingRotGi+1

is essentially a constant size counter (keeping track of
which operation we are currently performing).

Lemma 3.4 For every constantD the transformationT of Definition 3.1 can be computed in spaceO(log N)
on inputsG andH, whereG is aD16-regular graph on[N ] andH is aD-regular graph on[D16].

Proof: We describe an algorithmA that on inputsG andH computes the rotation mapRotGℓ
of Gℓ =

T (G, H). Namely, givenG andH (written on the read-only input tape), it enumerates all values(v̄, ā) in
the domain ofRotGℓ

and outputs[(v̄, ā), RotGℓ
(v̄, ā)]. Recall that a value(v̄, ā) in the domain ofRotGℓ

consists of̄v ∈ [N ]× ([D16])ℓ which is the name of aGℓ vertex, and̄a ∈ [D16], which is the label of aGℓ

edge. Sinceℓ = O(log N) andD is a constant, the length of each value(v̄, ā) is O(log N) and therefore
enumerating all of these values can be done in spaceO(log N). It remains to show that for any particular
value(v̄, ā), evaluatingRotGℓ

(v̄, ā) can also be done in the required space.
The algorithmA will first allocate the following variables:v which will take value in[N ] (specifying

a vertex ofG), andℓ + 1 variablesa0, a1 . . . aℓ each taking value in[D16] (and each specifying a vertex
name ofH; In addition,a0 may specify an edge label ofG). It is sometimes convenient to view each one
of a1 . . . , aℓ as specifying a sequence of 16 edge labels ofH. In this case we denoteai = ki,1 . . . ki,16.
Now,A will copy the value(v̄, ā) into the above mentioned variables:v̄ into v, a0, . . . , aℓ−1 andā into aℓ.
Throughout the execution ofA, the values of these variables will slowly evolve such that whenA finishes
(for this particular(v̄, ā)), the same variableswill contain the desired outputRotGℓ

(v̄, ā) (which is of the
same range as the input(v̄, ā)).
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We describe the operation ofA in a recursive manner that closely follows the definition ofT . Particu-
larly, at each level of the recursion,A will evaluateRotGi

for somei on the appropriate prefixv, a0, . . . , ai

of the variables defined above. For the base casei = 0, RotG0
= RotG is written on the input tape, and

can therefore be evaluated in spaceO(log N) by simply searching the input tape for the desired entry. For
largeri, the evaluation ofRotGi

is as follows:

For j = 1 to 16

• Setai−1, ki,j ← RotH(ai−1, ki,j).

• If j is odd, recursively setv, a0 . . . ai−1 ← RotGi−1
((v, a0 . . . ai−2), ai−1).

• If j = 16, reverse the order of the individual labels inai: Setki,1, . . . , ki,16 ← ki,16, . . . , ki,1.

The correctness ofA immediately follows from the definition ofT and from the operations of which it
consists (powering and the zig-zag product). We therefore concentrate on the space complexity ofA. Note
that each node of the recursion tree performs a constant number of operations and makes a constant number
of recursive calls. In addition the depth of the recursion isℓ + 1 = O(log N). Therefore, maintaining the
recursion can be done in spaceO(log N). Furthermore, each one of the basic operations (evaluatingRotG,
evaluatingRotH , and reversing the order of labels in the last step) can be performed in spaceO(log N).
Finally, the only memory that needs to be kept after a basic operation is performed, is the memory holding
the variablesv, a0, . . . , aℓ (that are shared by all of these operations), and the memory for maintainingthe
recursion. We therefore conclude that the space complexity ofA is O(log N) which completes the proof.

4 A log-space algorithm forUSTCON

This section puts together the tools developed above into a deterministic log-space algorithm that decides
undirected st-connectivity. As will be discussed in Section 5, the algorithm can also output a path froms to
t if such a path exists.

Theorem 4.1 USTCON ∈ L

As undirectedUSTCON is complete forSL [LP82], Theorem 4.1 can be rephrased as follows.

Theorem 4.2 SL = L

Proof: [of Theorem 4.1] We give an algorithmA that gets as input a graphG over the set of vertices[N ],
and two verticess andt in [N ]. For concreteness, we assume that the graph is given via the adjacencymatrix
representation.A will answer ‘connected’ if and only if there exists a path inG betweens andt (i.e.,s and
t are in the same connected component). Furthermore,G will use space which is logarithmic in its input
size.

The algorithmA will need to evaluate the rotation map of a((De)16, De, 1/2)-graphH, whereDe is
some constant. By Proposition 2.4, there exists such a graph and thereforeA can obtain it by exhaustive
search using constant amount of memory (a more efficient alternative is ofcourse to obtainH by any of the
explicit constructions of expanders mentioned in Section 2.2).

Let T be the transformation given by Definition 3.1. We would like to applyT to G andH in order to
obtain a graph where each connected component is an expander. For such graphs,st-connectivity can be
solved in logarithmic space by Proposition 2.3. However, we will first need topreprocessG in order to get a
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new graphGregsuch that(Greg, H) is a correct input toT . In particular, we needGregto be aD16
e -regular

graph given by its rotation map. There are various ways of transformingG to Greg. The one given here was
selected for its simplicity even though it is not the most efficient one possible (interms of the size ofGreg).
Essentially, we replace every vertex ofG with a cycle of lengthN and each of the vertices(v, w), where
there is an edge betweenv andw in G, is also connected to(w, v) (the rest of the edges are self loops). The
rotation mapRotGreg : ([N ]× [N ])× [D16

e ] 7→ ([N ]× [N ])× [D16
e ] of Gregis formally defined as follows:

• RotGreg((v, w), 1) = ((v, w′), 2), wherew′ = w + 1 if w < N andw′ = 1 otherwise.

• RotGreg((v, w), 2) = ((v, w′), 1), wherew′ = w − 1 if w > 1 andw′ = N otherwise.

• In case there is an edge betweenv andw in G thenRotGreg((v, w), 3) = ((w, v), 3). Otherwise,

RotGreg((v, w), 3) = ((v, w), 3).

• For i > 3, RotGreg((v, w), i) = ((v, w), i).

The transformation fromG (given by its adjacency matrix) toGreg(given by its rotation map) is clearly
computable in logarithmic space. Furthermore,Gregis D16

e -regular by definition and all its connected com-
ponents are non-bipartite (as every vertex inGreg has self loops). Finally, for every connected component
S ⊆ [N ] of G we have thatS × [N ] is a connected component inGreg. To see that, we first note that for
every vertexv ∈ [N ] the set of verticesv × [N ] is in the same connected component ofGreg (as this set
is connected by a cycle). Furthermore, there is an edge inGreg between some vertex inv × [N ] and some
vertex inw × [N ] if and only if v andw are connected by an edge inG (the only possible edge that can
connect these subsets is an edge between(v, w) and(w, v) which only exists inGreg if there is an edge
betweenv andw in G).

Now defineGexp = T (Greg, H), andℓ = O(log N) is the corresponding value as in Definition 3.1.
Let S be the connected component ofG, such thats ∈ S. By the arguments above,S × [N ] is a connected
component ofGreg, andGreg|S×[N ] is non-bipartite. By Lemma 3.3,S×[N ]×([D16])ℓ is a connected com-
ponent ofGexp (as bothGexp andGexp|S×[N ]×([D16])ℓ areD16

e -regular). By Lemma 3.2 and Lemma 3.3,
we have thatλ(Gexp|S×[N ]×([D16])ℓ) ≤ 1/2.

Let A′ be the the algorithm guaranteed by Proposition 2.3 (which decides undirected st-connectivity
correctly in graphs where the connected component of the starting vertexis an expanders). The algorithm
A will now invokeA′, on the graphGexp and the verticess′ = (s, 1ℓ+1) andt′ = (t, 1ℓ+1). If A′ outputs
thats′ andt′ are connected inGexp thenA will output thats andt are connected inG. Otherwise,A will
output thats andt are not connected.

The algorithmA is log-space since it is composed of a constant number of log-space procedures: (1)
The transformation fromG to Greg. (2) The transformation fromGreg to Gexp, which is log-space by
Lemma 3.4. (3) The algorithmA′ which is log-space by Proposition 2.3. Correctness ofA is argued as
follows. First,s′ andt′ are connected inGexp if and only if s andt are connected inG (sinceS × [N ] ×
([D16])ℓ is a connected component ofGexp, whereS is the connected component ofG that containss).
The correctness ofA now follows since Proposition 2.3 implies thatA′ will output ‘connected’ if and only
if s′ andt′ are indeed connected inGexp(asλ(Gexp|S×[N ]×([D16])ℓ) ≤ 1/2).

5 Universal traversal and exploration sequences

In this section, we look closer into ourUSTCON algorithm and conclude that it also solves the correspond-
ing search problem (i.e., finding the path froms to t if such a path exist). In addition, it implies efficiently-
constructible universal-traversal sequences for graphs with restricted labelling, and universal exploration
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sequences for general graphs. The sort of restriction we pose on the labelling of graphs is a strengthening
of the “consistent labelling” used in [HW93]. In a subsequent work [DRTV04], our restriction is relaxed to
that of [HW93].

We start by analyzingT , the main transformation of the algorithm, given by Definition 3.1. We show
that every edge inT (G, H) translates to a path inG between the appropriate vertices, and that this path
is log-space constructible (as this path is indeed computed during the log-space evaluation ofT ). Looking
ahead to the universal-traversal sequences, we note that if we restrict the labelling ofG, then the labels of
edges, traversed along this path, are independent ofG.

Definition 5.1 Letπ be a permutation over[D] andRotG the rotation map of aD-regular graphG. Then
RotG is π-consistent if for everyv, i, w andj such thatRotG(v, i) = (w, j), it holds thatj = π(i). In such
a case we may also say that the labelling ofG is π-consistent.

An example of aπ-consistent labelling is symmetric labelling whereπ is simply the identity. Namely,
every edge is labelled in the same way from both its end points. However, other kinds of π-consistent
labellings come up naturally. An example for that is the labelling ofGreg in the proof of Theorem 4.1. We
can now state the appropriate technical lemma regarding the transformationT .

Lemma 5.2 LetD be some constant. LetG be aD16-regular graph on[N ] and letH be aD-regular graph
on [D16], both given by their rotation maps. LetGℓ = T (G, H), whereT andℓ are given by Definition 3.1.

There exists a log-space algorithm such that givenRotG, RotH and (v̄, ā) in the domain ofRotGℓ
, it

outputs a sequence of labels in[D16] with the following property: If the first element ofv̄ is a vertexu ∈ [N ]
and the the first element ofRotGℓ

(v̄, ā) is a vertexw ∈ [N ], then the walk onG fromu using the labels that
the algorithm outputs leads tow.

Furthermore, for every fixed permutationπ on [D16], if the labelling ofG is π-consistent, the log-space
algorithm can evaluate the sequence of labels without access toRotG.

Proof: Consider the log-space algorithmA in the proof of Theorem 3.4, as it evaluatesRotGℓ
(v̄, ā). We

revise it a bit, to define an algorithmA′ as claimed by the lemma. Consider in particular the two variablesv
anda0 used byA. To begin with,v will be initialized to the valueu (the first element of̄v). At the end,v will
contain the valuew. Throughout the run ofA, the variablev is only updated by the rulev, a0 ← RotG(v, a0)
(used at the bottom of the recursion). Therefore, all thatA′ needs to do is to output the value ofa0 just before
each timeA updatesv.

Regarding the second part of the lemma. We note that the value ofa0 is only influenced byRotG,
through the evaluationsv, a0 ← RotG(v, a0). If G is π-consistent, thenA′ can completely ignore the
variablev and the rotation map ofG. To simulateA, it is sufficient that wheneverA evaluatesv, a0 ←
RotG(v, a0), thenA′ will evaluatea0 ← π(a0).

Using Lemma 5.2, it is not hard to obtain the algorithm that finds paths in undirected graphs.

Theorem 5.3 There exists a log-space algorithm that gets as input a graphG over the set of vertices[N ],
and two verticess andt in [N ], and outputs a path froms to t if such a path exists (otherwise it outputs ‘not
connected’).

Proof: Consider the algorithmA from the proof of Theorem 4.1. We revise it to an algorithmA′ as
required by the theorem. First, we note that it is enough forA′ to output a path from(s, 1) to (t, 1) in Greg
if such a path exists, as it is easy to transform (in log-space) such a path toa path froms to t in G (and the
existence of the two paths is equivalent).
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Next we note thatA enumerates all logarithmically-long paths froms′ = (s, 1ℓ+1) in Gexp. If it does
not find a path that visitst′ = (t, 1ℓ+1), it concludes thats andt are not connected inG. Therefore, in such
a case,A′ can output ‘not connected’. OtherwiseA found a short path froms′ to t′. Apply the algorithm
guaranteed by Lemma 5.2 on each edge on the path froms′ to t′. Each time the algorithm outputs a sequence
of edge-labels inGreg. Let~a be the concatenation of these sequences. It follows from Lemma 5.2 that the
path inGreg starting from(s, 1) and following the edges according to the labels in~a leads to(t, 1). The
theorem now follows.

To give our result regarding universal-traversal sequences, weneed some notation. Let~a = {a1, ..., am}
be a sequence of values in[D] (these are interpreted as edge labels).~a is an (N, D)-universal traversal
sequence, if for every connectedD-regular, labelled graphG onN vertices, and every start vertexs ∈ [N ],
the walk that starts ats and follows the edges labelleda1, ..., am, visits every vertex in the graph. For a
permutationπ over [D], we say that~a is an(N, D) π-universal traversal sequence, if the above property
holds for every connectedD-regular graph onN vertices,that has aπ-consistent labelling, (rather than for
all such graphs).

Theorem 5.4 There exists a log-space algorithm that takes as input1N and a permutationπ over [D] and
outputs an(N, D) π-universal traversal sequence.

Proof: First we argue that it is enough to construct an(N ·D, D16
e ) π′-universal sequence for the following

simple permutation:π′(1) = 2, π′(2) = 1 and for everyi > 2 π′(i) = i. Furthermore, all we need is that the
sequence will traverse non-bipartite graphs. Consider a (connected)D-regular graphG on N vertices that
has aπ-consistent labelling. This graph can be transformed into aD16

e -regular (connected and non-bipartite)
graphG′ onN ·D vertices that has aπ′-consistent labelling. Each vertexv ∈ N is transformed into a cycle
over D vertices(v, 1), . . . , (v, D), the edges of the cycle are labelled1 and2 (just as in the definition of
Greg in the proof of Theorem 4.1). The edge labelled3 going out of(v, i) will lead toRotG(v, i) (and will
be labelled3 from that end as well). All other edges are self loops.

Assume that a sequence of labelsa1, ..., am, visits every vertex ofG′ starting from every vertex(v, 1)
(this is even less general than what we obtain). We can translate this (in log space) into a sequence of labels
b1, . . . , bm′ that traversesG from every vertexv. To do that, we simulate the walk onG′ from an arbitrary
vertex(v, 1). As v is unknown and our simulation does not rely onG, it will only know at each point the
valueb such that the walk at this point visits some vertex(w, b) of G′ (wherew is unknown). Firstb is set
to 1. Then, during the simulation, labelsai > 3 can be ignored (as they are self loops). Given labels1 and
2, b can easily be updated (these are edges on the cycle). Finally, when encounteringai = 3 the walk moves
from a vertex(w, b) to a vertex(w′, π(b)) (as the labelling ofG is π-consistent), and so it is easy to update
the value ofb (given access toπ). The projection of the walk onG is exactly the edges labelled3 that are
taken by the walk onG′. Therefore, to transform the sequence ofai’s to the sequence ofbi’s we can simply
output (throughout the simulation) the current value ofb, whenever we encounter a labelai = 3.

Now we consider aD16
e -regular (connected and non-bipartite) graphG′ on N · D vertices that has a

π′-consistent labelling. LetH be a((De)16, De, 1/2)-graph. Finally letGℓ = T (G, H), whereT and
ℓ are given by Definition 3.1. By Lemma 3.2,λ(Gℓ) ≤ 1/2 and therefore its diameter is logarithmic.
Therefore, for every two verticesv andu of G′ one of the polynomially many sequences of labels (of the
appropriate logarithmic length) will visit(u, 1ℓ), starting at(v, 1ℓ). LetB be the set of all these sequences of
labels. Lemma 5.2 gives a way to translate in log-space each one of the sequences inB into a corresponding
sequence of edge-labels ofG′. Let B′ be the set of translated sequences. By Lemma 5.2 and the above
argument, for every two verticesv andu of G′ one of the sequences inB′ will lead a walk inG′ that starts
in v through the vertexu. We should also note that given a sequence~a = a1, . . . , am that leads from a
vertexv to a vertexu, we have that the sequenceπ′−1(am), . . . , π′−1(a1) leads fromu to v (this operation
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simply reverses the walk). We refer to this latter sequence as the reverse of ~a. Finally, we can define a
sequence that traverses all of the vertices ofG′ regardless of the starting vertex. Simply, we concatenate for
each sequences inB′ its reversed sequence and concatenate all of these sequences one after the other. By
the arguments above, for every vertexv, the sequence we obtain will visitv after every pair of a sequence
and its reversed sequence. Furthermore, for every vertexu, one of these sequences will lead tou. As the
log-space construction of this sequence ignores the graphG′ (and only relies onπ′), we obtained the desired
(N ·D, D16

e ) π′-universal sequence for non-bipartite graphs. The lemma follows.

In an(N, D)-universalexplorationsequence, the sequence of labels is interpreted as offsets rather than
absolute labels. This means that if we entered a vertexv on an edge labelleda (from v’s view point), and
we are reading the labelb, then we will leavev on the edge labelleda + b (or a + b − D if a + b > D).
In fact this notion can apply to graphs that are not-regular and in this casewe let D be a bound on the
largest degree (it then makes sense to allow negative elements in the sequence). Universal-exploration
sequences have more flexibility than universal-traversal sequences.For example, it is not clear how to
transform a universal-traversal sequence for degree-3 graphs to one for higher-degree graphs. This is easy
for universal-exploration sequences (and seems desirable asUSTCON can easily be reduced toUSTCON
for regular-graphs of any degree larger than2). Koucky [Kou03] showed how to transform a universal-
traversal sequence to a universal-exploration sequence. His transformation (which is essentially the same as
the one fromG to G′ in the proof of Theorem 5.4), only needs the universal-sequence to work for graphs
with π-consistent labelling for some simple permutationπ. We can therefore conclude from Theorem 5.4 a
log-space construction for general universal-exploration sequences.

Corollary 5.5 There exists a log-space algorithm that takes as input(1N , 1D) and produces an(N, D)-
universal exploration.

6 Discussion and further research

We start by comparing the techniques of this paper with some previous ones,with the goal of shading some
light on the source of our improvements. We continue by discussing some open problems and the results of
a subsequent work.

Comparison with previous techniques TheUSTCON algorithms of [Sav70, NSW89, ATSWZ00] also
operate by transforming, in phases, the input graph into a more accommodating one. In each one of these
algorithms, each phase “charges” logarithmic amount to the space complexity of the algorithm. The im-
provement in the space complexity is directly correlated to reducing the numberof phases needed for the
transformation. With this approach, the only way to obtain a log-space algorithm is to reduce the number of
phases to a constant. We deviate from this direction, as we use a logarithmic number of phases (just as in
Savitch’s algorithm), to gradually improve the connectivity of the input graph. The space efficiency of our
algorithm stems from each transformation being significantly less costly in space.

The parameter being improved by [NSW89, ATSWZ00], is the size of the graph (each transformation
shrinks the graph by collapsing it to a “representative” subset of the vertices). In contrast, our transformation
will in fact expand the graph by a polynomial factor (as each phase, enlarges our graph by a constant factor).
The parameter Savitch’s transformation improves is the diameter of the graph,which is much closer to the
parameter we improve (the expansion). In fact, each phase of Savitch’salgorithm can be described very
similarly to our algorithm. Each one of these phases consists of squaring the graph and then removing
parallel edges (which may reduce the degree). One crucial difference is that our transformation manages to
preserve constant degree of the graph (rather than linear degree in Savitch’s algorithm). In addition, even
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though we eventually only need the diameter of the graph to be small, our analysis relies on bounding the
expansionof intermediate graphs – a stronger notion of connectivity than the diameter.

It also seems instructive to compare with the combinatorial construction of expander graphs of [RVW01].
There, an arbitrarily large expander graphs was constructed, startingwith a constant size expander. This
small expander is made larger and larger, while its degree is kept constantvia the zig-zag or the replacement
product. Our main transformation shows how to turnanyconnected graph (which is already large) into an
expander. This means that the above mentioned products need to be appliedwhen one of the graphs is an
extremely weak expander (whereas in [RVW01] both graphs were fairlygood expanders). Very fortunately,
both products work quite well in this unusual setting of parameters.

Further Research There are many open problems and new research directions brought upby this work,
we discuss just a few of those. A very natural question is whether the techniques of this paper can be
used towards a proof ofRL = L. While progress in the context ofRL does not seem immediate (as the
case of symmetric computations does seem easier), we feel that it is still quite plausible. We also feel
that this paper should give an opportunity to reevaluate the common conjecture that Savitch’s algorithm
is optimal forSTCON. While this conjecture may very well be correct, we feel that there is not enough
evidence supporting it. Another open problem is to come up with full-fledged,efficiently-constructible,
universal-traversal sequences. Interestingly, it seems that this problem shares some of the obstacles that one
encounters when trying to generalize theUSTCON algorithm to solvingRL. Finally, we have made no
attempt to optimize our algorithm in terms of running time (or the constant in the spacecomplexity). Major
improvements in efficiency can come about by better analysis of the zig-zag and replacement products.
These may also determine which one of these products yields a more efficientalgorithm.

In a subsequent work, Dinur, Reingold, Trevisan and Vadhan [DRTV04], make some initial progress on
extending our techniques to dealing with directed graphs. In particular, they give a new complete problem for
RL that seems more amendable to our techniques. They give universal traversal sequences to directed graphs
that are bi-regular with consistent labelling, and show how to find a path from s to t given good estimates on
the state probabilities under the stationary distribution of the walk starting withs (and conditioned on these
probabilities being non-negligible).
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