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Abstract

We present aeterministi¢ log-space algorithm that solves st-connectivity in uadied graphs.
The previous bound on the space complexity of undirectemiectivity Waslog4/3(-) obtained by
Armoni, Ta-Shma, Wigderson and Zhou [ATSWZ00]. As undirdcteconnectivity is complete for the
class of problems solvable by symmetric, non-determiiftg-space computations (the cl&dg, this
algorithm implies thaSL. = L (whereL is the class of problems solvable by deterministic log-spac
computations). Our algorithm also implies log-space auoetible universal-traversal sequences for
graphs with restricted labelling and log-space constoletiniversal-exploration sequences for general
graphs.

1 Introduction

We resolve the space complexity of undirected st-connectivity (derétddCON), up to a constant factor,

by presenting a log-space (polynomial-time) algorithm for solving it. Givein@st an undirected grapf

and two vertices andt, the USTCON problem is to decide whether or not the two vertices are connected
by a path inG (our algorithm will also solve the corresponding search problem, of findipath froms

to t if such a path exists). This fundamental combinatorial problem has egteivot of attention in the
last few decades and was studied in a large variety of computational mdddsa basic building block

for more complex graph algorithms and is complete for the cdssf problems solvable by symmetric,
non-deterministic, log-space computations [LP82] (see [AG96] for emtestudy ofSL. and quite a few of

its complete problems).

The time complexity olUSTCON is well understood as basic search algorithms, particularly breadth-
first search (BFS) and depth-first search (DFS), are capabtdviig USTCON in linear time. In fact, these
algorithms apply to the more complex problem of st-connectivity in directedhgrégienoted TCON),
which is complete foNL (non-deterministic log-space computations). Unfortunately, the spacgeddo
run these algorithms is linear as well. A much more space efficient algorithnvit!ss [Sav70], which
solvesSTCON in spacdog?(-) (and super-polynomial time).

Major progress in understanding the space complexityf CON was made by Aleliunas et. al. [AKL79],
who gave aandomizedog-space algorithm for the problem. Specifically, they showed that aranealk
(a path that selects a uniform edge at each step) starting from an ariértex of any connected undirected
graph will visit all the vertices of the graph in polynomial number of stepser&tore, the algorithm can
perform a random walk starting frosrand verify that it reacheiswithin the specified polynomial number of
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steps. Essentially all that the algorithm needs to remember is the name of # entex and a counter for
the number of steps already taken. With this result we get the following viespaxde complexity classes:

L C SL C RL C NL C L2 (whereRL is the class of problems that can be decided by randomized log-
space algorithms with one-sided error difds the class of problems that can be decided deterministically
in spacdog®(-)).

The existence of a randomized log-space algorithmUSTCON puts this problem in the context of
derandomization. Can this randomized algorithm be derandomized withatastibl increase in space?
Furthermore, the study of the space complexitf/6fTCON has gained additional motivation as an impor-
tant test case for understanding the tradeoff between two centralcesmf computations, namely between
memory space and randomness. Particularly, a natural goal on the waywitogRL = L is to prove that
USTCON € L, asUSTCON is undoubtedly one of the most interesting problemRin

Following [AKL *79], most of the progress on the space complexitfyJ6TCON indeed relied on
the tools of derandomization. In particular, this line of work greatly benefit@th the development of
pseudorandom generators that fool space-bounded algorithmsg[AKEBNS89, Nis92b, INW94] and it
progressed concurrently with the study of ihes. RL problem. Another very influential notion, introduced
by Stephen Cook in the late 70’s, is that of a universal-traversal sequéoosely, this is a fixed sequence
of directions that guides deterministicwalk through all of the vertices of any connected graph of the
appropriate size (see further discussion below).

While Nisan's space-bounded generator [Nis92b], did not directly impipee space efficieRi STCON
algorithm it did imply quasi-polynomially-long, universal-traversal seqasnconstructible in spabez?(-).
These were extremely instrumental in the work of Nisan, Szemeredi anceWigd [NSW89] who showed
thatUSTCON e L3/2 — The firstimprovement over Savitch’s algorithm in terms of space (limitedwfseo
to the case of undirected graphs). Using different methods, but stillihealying on [Nis92b], Saks and
Zhou [SZ99] showed thatveryRL problemis also inL3/2 (their result in fact generalizes to randomized
algorithms with two-sided error). Relying on the techniques of both [NSV&8@] [SZ99], Armoni, et.
al. [ATSWZ00] showed thalSTCON e L*/%. Their USTCON algorithm was the most space-efficient
one previous to this work. We note that the most space-effipielynomial-timealgorithm forUSTCON
previously known was Nisan’s [Nis92a], which still required spageé(-).

Our approach

In retrospect, the essence of our algorithm is very natural: If you wasblve a connectivity problem
on your input graph, firsimnprove its connectivityIn other words, transform your input graph (or rather,
each one of its connected components), into an expandee will also insist on the final graph being
constant degree. Once the connected componesti®fa constant-degree expander, then it is trivial to
decide ifs andt are connected: Since expander graphs have logarithmic diameter, itighettoenumerate
all logarithmically long paths starting with and to see if one of these paths vigitsSince the degree is
constant, the number of such paths is polynomial and they can easily beratearia log space.

How can we turn an arbitrary graph into an expander? First, we noteviéigt@nnected, non-bipartite,
graph can be thought of as an expander with very small (but non-itdg)igxpansion. Consider for exam-
ple an arbitrary connected graph with self-loops added to each one efiitses. The number of neighbors
of every strict subset of the vertices is larger than its size by at leastloribis respect, the graph can be
thought of as expanding by a factor- 1/N (whereN is the total number of vertices in the graph). Now, a

The exact definition of expander graphs is less important for nowtharidllowing description could be understood by viewing
expanders as graphs with very strong connectivity properties. Stithéknowledgable reader, the particular measure that seems
the most convenient to work with is the second eigenvalue (in absolute)dltiee adjacency matrix of the graph (we will only
need to work with regular graphs). It may however be that other, wmreinatorial, measures will also do [DRTV04].



very natural operation that improves the expansion of the graph is pamyvéihek' power of G contains
an edge between two verticesandw for every path of lengtlt in G. Formally, it can be shown that by
taking some polynomial power of any connected non-bipartite graphv@equily, by repeatedly squaring
the graph logarithmic number of times), it will indeed turn into an expander.

The down side of powering is of course that it increases the degree gféph. Taking a polynomial
or any non-constant power is prohibited if we want to maintain constameded-ortunately, there exist
operations that can counter this problem. Consider for example, the eapat product of a-regular
graphG with a d-regular graphH on D vertices (withd < D). This can be loosely defined as follows:
Each vertexv of GG is replaced with a “copy’H,, of H. Each of theD vertices ofH, is connected to its
neighbors inf, but also to one vertex ifi,,, where(v, w) is one of theD edges going out of in G. The
degree in the product graphds+ 1 (which is smaller tharD). Therefore, this operation can transform a
graphG into a new graph (the product ¢f and H) of smaller degree. It turns out that# is a “good
enough” expander, the expansion of the resulting graph is “not wayrseuch” than the expansion 6f.
Formal statements to this affect were proven by Reingold, Vadhan ande¥8myu [RVWO01] for both the
replacement product and the zig-zag product, introduced thergpdndently, Martin and Randall [MROO0],
building on previous work of Madras and Randall [MR96], proved eodeposition theorem for Markov
chains that also implies that the replacement product preserves expansio

Given the discussion above, we are ready to informally describ& STCON algorithm. First, turn
the input graph into a constant-degree, regular graph with each dednemmponent being non-bipartite
(this step is very easy). Then, the main transformation turns each codrextgonent of the graph, in
logarithmic number of phases, into an expander. Each phase starts ibg this current graph to some
constant power and then reducing the degree back via a replacensenigezag product with a constant-
size expander. We argue that each phase enhances the expatesashas well as squaring the graph would,
andwithout the disadvantage of increasing the degremally, all that is left is to solvéJSTCON on the
resulting graph (which is easy as the diameter of each connected comooely logarithmic).

To conclude thal7TSTCON € L, we need to argue that all of the above can be done in logarithmic
space, which easily reduces to showing that the main transformation carrieel ©out in logarithmic space.
For that, consider the grapgh; obtained aftei phases of the transformation. We note that a ste@ of.e.,
evaluating thg’th neighbor of some vertexin G;) is composed of a constant number of operations that are
either a step on the gragh;_; from the previous phase or an operation that only requires a congtani
of memory. As the memory for each of these operations can be freed afigeittormed, the memory for
carrying out a step ofy; is only larger by an additive constant than the memory for carrying outpacste
G,_1. This implies that the entire transformation is indeed log space.

Universal traversal sequences While universal-traversal sequences were introduced as a wayoidng
USTCON € L, these are interesting combinatorial objects in their own right. A univeraatsal sequence
for D-regular graphs oV-vertices, is a sequence of edge labeld1in. .., D} such that for every such
graph, for every labelling of its edges, and for every start vertexdéterministicwalk defined by these
labels (where in theth step we take the edge labeled by & element of the sequence), visits all of
the vertices of the graph. Aleliunas et. al. [AKEZ9] showed that polynomial-length universal-traversal
sequence exists, and in fact almost every sequence of the apprdgnigtie will do. We are interested in
obtaining a polynomially-long, universal-traversal sequence thatristructible in logartihmic spac@ven
less explicit sequences may still be interesting). This is again a derandomigeatiiem. Namely, can we
derandomize the probabilistic construction of universal-traversakesess?

Explicit constructions of polynomially-long universal-traversal segesrare only known for extremely
limited classes of graphs. Even for expander graphs, such seguamcenly known when the edges are
“consistently labelled” [HW93] (this means that the labels of all of the edgassi¢ad to any particular



vertex are distinct). It is therefore not very surprising that our algeritn its own does not imply full
fledged universal-traversal sequences. Sitill, our algorithm candsensto imply a very local, and quite
oblivious, deterministic procedure for exploring a maze. We can think ohtgorithm as maintaining a
single pebble, that is placed on thdgesof the graph. The pebble is moved either from one side of the
edge to another, or between different edges that are adjacent tontleeveatex (say to the next or to the
previous edge). As with universal-traversal sequences, the fegqesace of instructions is good for every
graph, for every labelling of its edges, and for any starting point on taplg The only difference from
universal-traversal sequences is that the pebble here is placed edgie rather than on the vertices of the
graph. In more established terms, our algorithm implies a polynomially-longersaistraversal sequence
that isconstructible in logartihmic spacender some restrictions on the labelling. These restrictions were
relaxed in a subsequent work [DRTV04] to be identical to those of [HWBBally, we get polynomially-
long, universalexplorationsequences for general graphs. In universal-exploration segsieimtroduced

by Koucky [Kou01], the elements of the sequence are not interpretaeldsadute edge-labels but rather as
offsets from the previous edge that was traversed. For more detaBesten 5.

More on previous work

Graph connectivity problems and space-bounded derandomizatioredietls of a vast and diverse body
of research. The scope of this paper only allows for an extremely pdisalission of this area. Some
very beautiful and influential research (as many of the papers mentaivae) is only briefly touched
upon, other areas will not be discussed at all (examples include, tince-ta@eoffs for deterministic and
randomized connectivity algorithms, restricted constructions of univieeseersal sequences, and analysis
of connectivity in many other computational models). Insightful, though sdratwutdated, surveys on
these topics were given by Wigderson [Wig92] and by Saks [Sak9&&ful discussion and pointers were
also given by Koucky [Kou03]. We continue here by mentioning a few efrttost related previous results
(most of which are subsumed by the results of this paper). A more teclepitglarison with some previous
work appears in Section 6.

Following Aleliunas et. al. [AKL"79], Borodin et. al. [BCD 89] gave azero-error, randomized, log-
space algorithm fotJSTCON. An upper bound of different nature &ii. was given by Karchmer and
Wigderson [KW93], who showefl. C ¢ L.

Nisan and Ta-Shma [NTS95] showed tl%dt is closed under complement, thus collapsing the “sym-
metric log-space hierarchies” of both Reif [Rei84] and Ben Asher etY®AS95], and putting some very
interesting problems intBL. (we refer again to [AG96] for a list §L.-complete problems).

A research direction initiated by Ajtai et. al. [AKS87], and continued with Nigad Zuckerman [NZ96]
is to fully derandomize (i.e., to put ih) logn-space computations that use fewer thamandom bits
(poly log n bits in the case of [NZ96]). Raz and Reingold [RR99] showed how tordienaize2vos”
bits for subclasses @tL. One of their main applications can be viewed as derandomiziti§ ™ bits for
SL. It is interesting to note (and personally gratifying to the author) that thenigabs of [RR99] played a
major roll in the definition of the zig-zag product and with this work found theiy back to the study of
space-bounded derandomization.

Goldreich and Wigderson [GW02] gave an algorithm that on all but a tewtifon of the graphs, evalu-
atesUSTCON correctly (and on the rest of the graphs outputs an error message).

Based on rather relaxeztbmputational hardness assumptipidivans and van Melkebeek [KvMO02]
proved both thaRL = L. and that efficiently constructible, polynomial length, universal travseguences
exist.



2 Preliminaries

This section discusses various aspects of graphs: their represereajenvalue expansion, graph powering,
and two graph products (the replacement product and the zig-zaggtyo@he definitions and notation used
here are borrowed directly from [RVWO01].

2.1 Graphs representations

There are several standard representations of graphs. Fortunhgely exist log-space transformations
between natural representations. Thus, the space compleXity BEON is to a large extent independent
of the representation of the input graph.

When discussing the eigenvalue expansion of a graph, we will considaijgsency matrix. That is,
the matrix whose (nonnegative, integral) entryv) equals to the number of edges that go from veitex
to vertexv. Note that this representation allows graphs with self loops and parallesd€dgd indeed such
graphs may be generated by our algorithm). A graptnidirected iff its adjacency matrix is symmetric
(implying that for every edge from to v there is an edge fromto v). It is D-regular if the sum of entries
in each row (and column) i® (so exactlyD edges are incident to every vertex).

Let G be aD-regular undirected graph aoi vertices. When considering a walk 6y we would like to
assume that the edges leaving each vertex afe labeled from to D in some arbitrary, but fixed, way. We
can then talk about th&th edge incident to a vertex, and similarly about th&th neighbor ofv. A central
insight of [RVWO01] is that when taking a step on a graph from vertexvertexw, it may be useful to keep
track of the edge traversed to gettdrather than just remembering that we are now atThis gave rise to
a new representation of graphs through the followgegmutationon pairs of vertex name and edge label:

Definition 2.1 For a D-regular undirected grapld7, therotation map Rotq : [N] x [D] — [N] x [D] is
defined as followsRotg(v,i) = (w, 7) if the ¢'th edge incident ta leads tow, and this edge is th¢'th
edge incident tav.

Rotation maps will indeed be the representation of choice for this work. Sgabifithe first step of our
algorithm will be to transform the input graph into a regular one specifidtsbptation map (in particular,
this step will give labels to the edges of the graph).

2.2 Eigenvalue expansion and st-connectivity for expanders

Expanders are sparse graphs which are nevertheless highly techn&be strong connectivity properties
of expanders make them very desirable in our context. Specifically, giragiameter of expander graphs
is only logarithmically long, there is a trivial log-space algorithm for findinghpabetween vertices in
constant-degree expanders. The particular formalization of expanded in this paper is the (algebraic)
characterization based on the spectral gap of their adjacency matrix.l\#meegap between the first and
second eigenvalues of the (normalized) adjacency matrix.

Thenormalized adjacency matrix M of a D-regular undirected grapfi, is the adjacency matrix @
divided by D. In terms of the rotation map, we have:

1

My = 3 - [{(i,j) € [D]* : Rote(u, i) = (v, )} -
M is simply the transition probability matrix of a random walk @n By the D-regularity ofG, the all-1's
vectorly = (1,1,...,1) € R is an eigenvector of/ of eigenvalue 1. It turns out that all the other

eigenvalues of\/ have absolute value at most 1. We denote\b§), the second largest eigenvaluén
absolute value) o6:’'s normalized adjacency matrix. We refer tal&aregular undirected grapfy’ on N
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vertices such that(G) < X as an(N, D, A)-graph. It is well-known that the second largest eigenvalue of
G is a good measure @¥'s expansion properties. In particular, it was shown by Tanner [Zpagd Alon
and Milman [AM85] that second-eigenvalue expansion implies (and is inefqeivalent [Alo86]) to the
standard notion ofertex expansion In particular, for everyA < 1 there existg > 0 such that for every
(N, D, \)-graphG and for any seb of at most half the vertices i@, at least(1 + ¢) - |S| vertices ofG are
connected by an edge to some verte¥'inThis immediately implies tha® has a logarithmic diameter:

Proposition 2.2 Let A < 1 be some constant. Then for evéry, D, \)-graph G and any two vertices
andt in G, there exists a path of length(log V) that connects to ¢.

Proof: By the vertex expansion @¥, for somel = O(log N) both s and have more thaiv/2 vertices of
distance at mogtfrom them inG. Therefore, there exists a vertexhat is of distance at mogtfrom both
s andt. o

We can therefore conclude that st-connectivity in constant-degremdgps can be solved in log-space:

Proposition 2.3 Let A\ < 1 be some constant. Then there exists a spadeg D - log V) algorithm .4 such
that when aD-regular undirected graplé on NV vertices is given tod as input, the following hold:

1. If s andt are in the same connected component and this component(i&‘ai, \)-graph thenA
outputs ‘connected’.

2. If A outputs ‘connected’ themandt are indeed in the same connected component.

Proof: The algorithmA simply enumerates alb’ paths of lengttf = O(log N) from s. (Where the lead-
ing constant in the big» notation depends okas in Proposition 2.2.) The algorithroutputs ‘connected’
if and only if at least one of these paths encounters

Following any particular path from of length ¢ requires spac€®(log N), (when given as input the
sequence of edge labels ifD] = {1,2,... D} traversed by this path). Enumerating all thésepaths
requires spacé(log D - log N). By Proposition 2.2, in case (1j,andt are of distance at mogtof each
other andA will indeed find a path frons to ¢ and will output ‘connected’. On the other hand,never
outputs ‘connected’ unless it finds a path frero ¢, implying (2). |

Using the Probabilistic Method, Pinsker [Pin73] showed that most 3-regudghs are expanders (in
the sense of vertex expansion), and this result was extended to digeheands in [Alo86, BS87, FKS89,
Fri91]. Variousexplicitfamilies of constant-degree expanders, some with optimal tradeoff betiegeae
and expansion, were given in literature (cf. [Mar73, GG81, JIM87 88MAGM87, LPS88, Mar88, Mor94,
RVWO01]). Our algorithm will employ a single constant size expander witheratteak parameters. This
expander can be obtained by exhaustive search or by any of theiegphstructions mentioned above.
In fact, one can use simpler explicit constructions than the ones givereabe we can afford a rather
large degree (with respect to the number of vertices), rather than tanbdegree. An example of a simpler
construction that would suffice is the one given by Alon and Roichman JARSee also related discussions
in [RVWO0L1] regarding their “base graph”).

Proposition 2.4 There exists some constabg and a((De)'®, De, 1/2)-graph.

Finally, a key fact for our algorithm is that every connected, non-liteagraph has a spectral gap
which is at least inverse polynomial in the size of the graph (recall thaghgs non-bipartite if there is no
partition of the vertices such that all the edges go between the two sidespatrtiton).

Lemma 2.5 (JASO00]) For everyD-regular, connected, non-bipartite gragh on [N] it holds thatA(G) <
1—-1/DN?



2.3 Powering

Our main transformation will take a graph and transform each one of itsctgshcomponents (that in itself
will be a connected, non-bipartite graph), into a constant degree éxpdhwe ignore the requirement that
the graph remains constant degree, a simple way of amplifying the (invelgeomial) spectral gap of a

graph is by powering.

Definition 2.6 LetG be aD-regular multigraph or{ N| given by rotation mafrot¢. Thet'th power of G is
the D*-regular graphG* whose rotation map is given Bot: (vo, (a1, az, - .., az)) = (vg, (b, bi—1, - .,b1)),
where these values are computed via the fuleb;) = Rotg(vi—1, ;).

Proposition 2.7 If G is an(N, D, \)-graph, thenG' is an (N, D!, \*)-graph.

Proof: The normalized adjacency matrix 6f is thet'th power of the normalized adjacency matrix@f
so all the eigenvalues also get raised totttiepower. |

2.4 Two graph products

While taking a power of a graph reduces its second eigenvalue, it alseases its degree. As we are
interested in producing constant-degree graphs, we need a complenog@iagion that reduces the degree
of a graph without harming its expansion by too much. We now discuss tvaph graducts that are capable
of doing exactly that.

The first is the very natural product, known as teplacement product Assume that7 is a D-regular
graph on[N| and H is ad-regular graph onD] (whered is significantly smaller tha®). Very intuitively,
the replacement product of the two graphs is defined as follows: Eatéxveof G is replaced with a
“copy” H, of H. Each of theD vertices ofH,, is connected to its neighbors H, but also to one vertex
in H,, where(v,w) is one of theD edges going out of in G. The degree in the product graphdst 1
(which is smaller tharD).? A second, slightly more evolved, product introduced by Reingold, Vaainan
Wigderson [RVWO01], is theig-zag graph product Here too we replace each vertexf G with a “copy”

H, of H. However, the edges of the zig-zag producttbind H correspond to a subset of the paths of
length three in the replacement product of these grasee formal definition below). The degree of the
product graph here i& (which should still be thought of as significantly smaller thyt

It is immediate from their definition, that both products can transform a géaph a new graph (the
product ofG and H) of smaller degree. As discussed in the introduction, it was previouslyrsfRvVWO01,
MROO] that if H is a “good enough” expander, then the expansion of the resulting gg&pbt worse by
much” than the expansion @f (see formal statement below for the zig-zag product). Either one of these
products can be used in oUISTCON algorithm (with some variation in the parameters). We find it more
convenient to work with the zig-zag product (even though it is a bit more\med), hence we proceed by
formally defining it.

Definition 2.8 ([RVWO01]) If G is a D-regular graph onN] with rotation mapRot and H is ad-regular
graph on[D] with rotation mapRot g, then theirzig-zag productG @ H is defined to be the?-regular
graph on[N] x [D] whose rotation mafRotg is as follows (see Figure 1 for an illustration):

2Sometimes it is better to consider thalancedreplacement product, where every edg&ilis takend times in parallel. The
degree of the product graph in this cas@dsnstead ofd + 1.

3Those length three paths that are composed of a “short edge” (anirside one of the copie.,), a “long edge” (one that
corresponds to an edge @Y, and finally one additional “short edge”.
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Figure 1: On the left — an edge of the zig-zag product is composed & steps: a “short step” (i/,,), a
“big step” (betweenH,, and H,, which corresponds to an edge Gfbetweenv andw), and a final “small
step” (in H,,). The values, ', j and;’ are labels of edges df (going out of theH verticesa, a’, b’ andb
respectively). On the right — the projection of these steps on the grg@hich corresponds to the middle
step specified byw, v’) = Rotg(v, a’)).

(
1. Let(d’,i') = Roty(a, 1)
2. Let(w, V) = Rotg (v, d')
3. Let(b, j') = Roty (¥, 5).
4. Output((w, b), (', i')).

In [RVWO1], \(G@ H) was bounded as a function afG) and\(H). The interesting case there was
when both\(G) and A\(H) were small constants (and in fagt,G) is significantly smaller than(H)). In
our context\(H) will indeed be a small constant bGt may have an extremely small spectral gap (recall
that the spectral gap @ is 1 — A\(G)). In this case, we want the spectral gap®®@ H to be roughly
the same as that a@F (i.e., smaller by at most a constant factor). It turns out that the strormerdoon
MG®@H), given in [RVWO01] implies a useful bound also in this case. We note that deimpmof for the
sort of bound on the zig-zag product we need is given in [DRTVO04&(inore general setting than the one
considered in [RVWO01]).

Theorem 2.9 ([RVWO0L1]) If G is an (N, D, \)-graph andH is a (D, d, «)-graph, thenG@ H is a (N -
D,d? f(\ «))-graph, where

1
f\ ) = 2(1701 A+ = \/ 2)2)2 4 4a2.

As a simple corollary, we have that the spectral gap'@ H is smaller than that of/ by a factor that
only depends on\(H).



Corollary 2.10 If Giisan(N, D, A\)-graph andH is a (D, d, a)-graph, then

1-MG@H) > -(1-a?)-(1-\).

N =

Proof: Since) < 1 we have that

1 1 1 1
5\/(1 —a?)2X\2 +4a? < 5\/(1 —a?)? 4402 = 5(1 +a?)=1- 5(1 —a?).

Therefore f (A, o) from Theorem 2.9 satisfigg\, a) <1 — (1 — a?)(1 — A). |

3 Transforming graphs into expanders

This section gives a log-space transformation that essentially turns eeatf the connected components
of a graph into an expander. This is the main part of GET'CON algorithm.

Definition 3.1 (Main Transformation) On inputG and H, whereG is a D'5-regular graph on[N| and H
is a D-regular graph on[ D], both given by their rotation maps, the transformatibroutputs the rotation
map of a graphz, defined as follows:

e Set/ to be the smallest integer such that— 1/DN?)2" < 1/2.

e SetGy to equalG, and fori > 0 defineG; recursively by the rule:
GZ' = (Gi_1®H)8.
Denote by7;(G, H) the graphG;, and7 (G, H) = Gy

Note that by the basic properties of powering and the zig-zag produatipiv inductively that eacty;
is a D1%-regular graph oveiV] x ([D']). In particular, the zig-zag product 6f; and H is well defined.
In addition, if D is a constant, the6= O(log N) andG/, haspoly (V) vertices. Our first lemma shows that
7T is capable of turning an input graghinto an expandef, (as long a7 is in itself an expander).

Lemma 3.2 Let G and H be the inputs of” as in Definition 3.1. IAN(H) < 1/2 andG is connected and
non-bipartite then\(7 (G, H)) < 1/2.

Proof: SinceG = Gy is connected and non-bipartite we have by Lemma 2.5 Mi&ty) < 1 —
1/DN?. By the choice of it is therefore enough to prove that for every> 0, it holds thatA\(G;) <
max{A\(G;_1)%,1/2}. Denote\ = \(G;_1). SinceA(H) < 1/2, we have by Corollary 2.10 tha{G;_ @
H) <1-3/8(1—-)X) <1-1/3(1 —X). By the definition ofG; and by Proposition 2.7 we have that
AG;) < [1—1/3(1 — X\)]®. We now consider two cases. Firstlf< 1/2 then\(G;) < (5/6)% < 1/2.
Otherwise, elementary calculation shows that 1/3(1 — \)]* < X and therefore\(G;) < A2. The lemma
follows. |

As we are working our way to solving st-connectivity, rather than solvimnectivity (the problem of
deciding if the input graph is connected or not), our transformation shHmilmeaningful even for graphs
that are not connected (as even in this case the two input vestaedt may still be in the same connected
component). For that, we will argue th@atoperates separately on each connected componért dhe
reason is tha¥ is composed of two operations (the zig-zag product and powering)aldmbperate sepa-
rately on each connected component. We will need some additional notadioanygraphG and subset of
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its verticesS, denote byG|s the subgraph off induced bys (i.e., the graph ot$ which contains all of the
edges inG between vertices i¥). A setS is a connected component 6fif G|s is connected and the set
S is disconnected from the rest 6f(i.e., there are no edgesdnbetween vertices il§ and vertices outside
of S).

Lemma 3.3 Let G and H be the inputs of” as in Definition 3.1. IfS C [N] is a connected component of
G then
T(Gls,H) =T(G, H)|gx(pre)ye-

Proof: We will only rely on S being disconnected from the rest @f and will prove inductively that
Ti(G|s, H) = T;(G, H)| s (p1e)):- Note that fori > 0 this directly implies that x ([D'°])" is disconnected
from the rest ofZ;(G, H) (since both7;(G|s, H) and 7;(G, H) are D'®-regular, and thus all of th&1¢
edges incident to a vertex i x ([D'°])’ reside insideZ; (G, H)|sx (prep):). The base case= 0 is trivial,
and here to® x ([D'6])! = S is disconnected from the rest 8f(G, H) = G, by assumption.

Assume by induction thak;(G|s, H) = Ti(G, H)|sxp1e))i- S€tG; = Ti(G, H) andS; = S x ([D'°])’
(and recall thatS; is disconnected from the rest 6f;). Then, by the definition of the zig-zag product,
S; x [D'9] is disconnected from the restGf@H and the edges incident & x [D'6] in G;@H are exactly
as inGilg, x| @ H. By the definition of powering we now have thgt x [D'°] is disconnected from the
rest of (G; @ H)® and the edges incident 8 x [D'®] in (G;@ H)® are exactly as ifiG;| g, [p1e) @ H)®.
This proves the induction hypothesis fo+ 1 and completes the proof. |

Finally, we need to argue thdt is a log-space transformation (whénis a constant). The reason is that
the evaluation of the rotation maot¢,  , of each graplt;  ; in the definition of7 requires just a constant
additional amount of memory over the evaluatioRof,. Simply, the evaluation diot, ,, is composed
of a constant number of operations, where each operation is eithemhragon ofRotg, or it requires
constant amount of memory (and the same memory can be used for eachtivesecoperations). So the
additional memory needed for evaluatiRgtc, , , is essentially a constant size counter (keeping track of
which operation we are currently performing).

Lemma 3.4 For every constanb the transformatiory” of Definition 3.1 can be computed in sp&edog N)
on inputsG and H, whereG is a D'-regular graph on[N] and H is a D-regular graph onD1¢].

Proof: We describe an algorithmd that on inputsG' and H computes the rotation mdpotg, of G, =
7 (G, H). Namely, givenG and H (written on the read-only input tape), it enumerates all val@es) in
the domain ofRot, and outputd(v, a), Rotg, (v, a)]. Recall that a valuév, a) in the domain ofRot,
consists ofs € [N] x ([D'%])? which is the name of & vertex, andz € [D'6], which is the label of &,
edge. Sincé = O(log N) and D is a constant, the length of each valgea) is O(log N') and therefore
enumerating all of these values can be done in sp¥teg V). It remains to show that for any particular
value(7v, a), evaluatingRotq, (v, @) can also be done in the required space.

The algorithmA will first allocate the following variablesv which will take value in[N] (specifying
a vertex of), and/ + 1 variablesag, a; . .. a; each taking value ifnD'®] (and each specifying a vertex
name ofH; In addition,ay may specify an edge label 6f). It is sometimes convenient to view each one
of a; ..., a, as specifying a sequence of 16 edge label#/ofIn this case we denote = k; 1 ...k; 6.
Now, .4 will copy the value(v, a) into the above mentioned variablesinto v, ag, . .., a;—1 anda into a,.
Throughout the execution o4, the values of these variables will slowly evolve such that wHeimishes
(for this particular(v, a)), the same variablewill contain the desired outpiotg, (v, a) (which is of the
same range as the inpt, a)).
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We describe the operation gf in a recursive manner that closely follows the definitiorvofParticu-
larly, at each level of the recursiod, will evaluateRot, for somei on the appropriate prefix ao, . . ., a;
of the variables defined above. For the base ¢asel, Rotg, = Rot¢ is written on the input tape, and
can therefore be evaluated in sp@2gog N) by simply searching the input tape for the desired entry. For
largeri, the evaluation oRot;, is as follows:

Forj =110 16
o Setai_l, ki,j — RotH(ai_l, kz’,j)-
e If jis odd, recursively set, ag . ..a;—1 < Rotg, ,((v,a0...ai—2),a;—1).

e If j =16, reverse the order of the individual labelsain Setk; 1, ..., ki 16 < ki 16, .., ki 1.

)

The correctness oft immediately follows from the definition df and from the operations of which it
consists (powering and the zig-zag product). We therefore contewninghe space complexity of. Note
that each node of the recursion tree performs a constant numberratiope and makes a constant number
of recursive calls. In addition the depth of the recursiohis1 = O(log N). Therefore, maintaining the
recursion can be done in spa@élog N). Furthermore, each one of the basic operations (evaluRting,
evaluatingRot 7, and reversing the order of labels in the last step) can be performe@de Gplog V).
Finally, the only memory that needs to be kept after a basic operation is pedors the memory holding

the variables), ay, . . ., a, (that are shared by all of these operations), and the memory for maint#i@ng
recursion. We therefore conclude that the space complexityiefO(log N') which completes the proof.
|

4 Alog-space algorithm forUSTCON

This section puts together the tools developed above into a deterministic log-aigarithm that decides
undirected st-connectivity. As will be discussed in Section 5, the algoritmatso output a path fromto
t if such a path exists.

Theorem 4.1 USTCON € L
As undirectedJSTCON is complete foiSL [LP82], Theorem 4.1 can be rephrased as follows.
Theorem 4.2 SL = LL

Proof: [of Theorem 4.1] We give an algorithpd that gets as input a gragh over the set of verticelsV],
and two vertices andt in [IN]. For concreteness, we assume that the graph is given via the adjacamiy
representationd will answer ‘connected’ if and only if there exists a patiirbetweens andt (i.e., s and

t are in the same connected component). Furtherni®ngjll use space which is logarithmic in its input
size.

The algorithmA will need to evaluate the rotation map of @e)'%, De, 1/2)-graphH, whereDeg is
some constant. By Proposition 2.4, there exists such a graph and teedefan obtain it by exhaustive
search using constant amount of memory (a more efficient alternative@itfe to obtaid! by any of the
explicit constructions of expanders mentioned in Section 2.2).

Let 7 be the transformation given by Definition 3.1. We would like to agplyo G and H in order to
obtain a graph where each connected component is an expandeuchagraphsst-connectivity can be
solved in logarithmic space by Proposition 2.3. However, we will first ne@idprocess- in order to get a
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new graphGregsuch thalGreg, H) is a correct input t@. In particular, we nee@'regto be aDg’-regular
graph given by its rotation map. There are various ways of transforGiitteg-reg. The one given here was
selected for its simplicity even though it is not the most efficient one possibter(ims of the size ofreg).
Essentially, we replace every vertex@fwith a cycle of lengthV and each of the verticds, w), where
there is an edge betweerandw in G, is also connected tav, v) (the rest of the edges are self loops). The
rotation maRotereg : ([N] x [V]) x [DE] — ([N]x [N]) x [D&] of Gregis formally defined as follows:

. ROtGreg((v,w), 1) = ((v,w'),2), wherew’ = w + 1if w < N andw’ = 1 otherwise.
o ROtGreg((U,w), 2) = ((v,w'), 1), wherew’ = w — 1if w > 1 andw’ = N otherwise.

e In case there is an edge betweeandw in G thenRotGreg((v,w),ZS) = ((w,v),3). Otherwise,
ROtGreg((% w)? 3) = ((Uv w)v 3)-

e Fori > 3, Rot(;reg((v,w),i) = ((v,w),1).

The transformation frond- (given by its adjacency matrix) @Greg (given by its rotation map) is clearly
computable in logarithmic space. Furthermdreegis D& -regular by definition and all its connected com-
ponents are non-bipartite (as every verteXsireg has self loops). Finally, for every connected component
S C [N] of G we have thatS x [N] is a connected component@yeg. To see that, we first note that for
every vertexv € [N] the set of vertices x [N] is in the same connected componentgg (as this set
is connected by a cycle). Furthermore, there is an edgg&digg between some vertex in x [N] and some
vertex inw x [N] if and only if v andw are connected by an edge@h(the only possible edge that can
connect these subsets is an edge betweem) and (w,v) which only exists inGreg if there is an edge
betweerv andw in G).

Now defineGexp = 7 (Greg, H ), and¢ = O(log N) is the corresponding value as in Definition 3.1.
Let S be the connected component®f such thats € S. By the arguments abové, x [N] is a connected
component ofreg, andGreg|sx|x) is non-bipartite. By Lemma 3.3;x [N] x ([D'¢])¢ is a connected com-
ponent ofGexp (as bothGexp andGexpl s (v]x ((p16]) are DgP-regular). By Lemma 3.2 and Lemma 3.3,
we have thaP\(GeXp’Sx[N]><([D16])Z) < 1/2.

Let A’ be the the algorithm guaranteed by Proposition 2.3 (which decides undirget®nnectivity
correctly in graphs where the connected component of the starting verexexpanders). The algorithm
A will now invoke A’, on the graptGexp and the vertices’ = (s, 1°1) andt’ = (¢, 1°"1). If A’ outputs
thats’ andt’ are connected it‘exp then.A will output thats andt are connected if'. Otherwise,A will
output thats andt are not connected.

The algorithmA is log-space since it is composed of a constant number of log-spacedpres: (1)
The transformation frondx to Greg. (2) The transformation fronisreg to Gexp, which is log-space by
Lemma 3.4. (3) The algorithml’ which is log-space by Proposition 2.3. Correctnessiaé argued as
follows. First,s’ andt’ are connected iGrexp if and only if s andt are connected iGr (sinceS x [N] x
([D16]))* is a connected component 6fexp, wheresS is the connected component @fthat containss).
The correctness ofl now follows since Proposition 2.3 implies thdt will output ‘connected’ if and only
if s andt’ are indeed connected {Hexp (asA(Gexplsx|njx(piepe) < 1/2). [

5 Universal traversal and exploration sequences
In this section, we look closer into ourfSTCON algorithm and conclude that it also solves the correspond-

ing search problem (i.e., finding the path frarno ¢ if such a path exist). In addition, it implies efficiently-
constructible universal-traversal sequences for graphs with testriabelling, and universal exploration
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sequences for general graphs. The sort of restriction we pose=daltélling of graphs is a strengthening
of the “consistent labelling” used in [HW93]. In a subsequent work TWB4], our restriction is relaxed to
that of [HW93].

We start by analyzing’, the main transformation of the algorithm, given by Definition 3.1. We show
that every edge i¥ (G, H) translates to a path i& between the appropriate vertices, and that this path
is log-space constructible (as this path is indeed computed during the log-ewauation of/). Looking
ahead to the universal-traversal sequences, we note that if wetrdstrlabelling ofGG, then the labels of
edges, traversed along this path, are independetit of

Definition 5.1 Letn be a permutation oveD] and Rot¢ the rotation map of @-regular graphG. Then
Rotg is m-consistent if for every, i, w andj such thatRotg (v, i) = (w, 7), it holds thatj = 7 (7). In such
a case we may also say that the labelling’bis w-consistent.

An example of ar-consistent labelling is symmetric labelling wherés simply the identity. Namely,
every edge is labelled in the same way from both its end points. However, latfts of r-consistent
labellings come up naturally. An example for that is the labelling/aég in the proof of Theorem 4.1. We
can now state the appropriate technical lemma regarding the transforration

Lemma 5.2 Let D be some constant. Létbe aD'%-regular graph o/ V] and letH be aD-regular graph
on [D'°], both given by their rotation maps. L&Y = 7 (G, H), whereT and/ are given by Definition 3.1.

There exists a log-space algorithm such that gi¥en, Roty and (v, a) in the domain oRot,, it
outputs a sequence of labels[in'®] with the following property: If the first elementofs a vertexu € [N]
and the the first element &ot¢, (v, a) is a vertexw € [N], then the walk o7 from« using the labels that
the algorithm outputs leads to.

Furthermore, for every fixed permutatianon [D'6], if the labelling ofG is 7-consistent, the log-space
algorithm can evaluate the sequence of labels without accd3stig.

Proof: Consider the log-space algorith#hin the proof of Theorem 3.4, as it evaluafest, (v, a). We
revise it a bit, to define an algorithpt’ as claimed by the lemma. Consider in particular the two variables
andag used byA. To begin with,v will be initialized to the value: (the first element of). At the endy will
contain the valua. Throughout the run ofl, the variable is only updated by the rule, ay — Rotg(v, ap)
(used at the bottom of the recursion). Therefore, all #iateeds to do is to output the valuewfjust before
each time4 updates.

Regarding the second part of the lemma. We note that the valug igfonly influenced byRot,
through the evaluations, ay <+ Rotg(v,ap). If G is w-consistent, thend’ can completely ignore the
variablev and the rotation map aff. To simulateA, it is sufficient that wheneved evaluatesy, ay «—
Rotg (v, ap), then A’ will evaluateay < m(agp). [

Using Lemma 5.2, it is not hard to obtain the algorithm that finds paths in undirgcighs.

Theorem 5.3 There exists a log-space algorithm that gets as input a gi@piver the set of verticelsV],
and two vertices andt in [N], and outputs a path fromto ¢ if such a path exists (otherwise it outputs ‘not
connected’).

Proof: Consider the algorithrd from the proof of Theorem 4.1. We revise it to an algoritbthas
required by the theorem. First, we note that it is enough4aio output a path frongs, 1) to (¢, 1) in Greg
if such a path exists, as it is easy to transform (in log-space) such a patbett froms to ¢ in G (and the
existence of the two paths is equivalent).
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Next we note thatd enumerates all logarithmically-long paths frafm= (s, 1‘t1) in Gexp If it does
not find a path that visit§ = (¢, 1°+1), it concludes that andt are not connected i&. Therefore, in such
a case A’ can output ‘not connected’. Otherwiskfound a short path from’ to ¢’. Apply the algorithm
guaranteed by Lemma 5.2 on each edge on the pathdramt’. Each time the algorithm outputs a sequence
of edge-labels iGreg. Leta be the concatenation of these sequences. It follows from Lemma 5.2 that the
path inGreg starting from(s, 1) and following the edges according to the labelsiieads to(z, 1). The
theorem now follows. |

To give our result regarding universal-traversal sequencesge® some notation. L&t= {a1, ..., an,}
be a sequence of values V] (these are interpreted as edge labels)s an (N, D)-universal traversal
sequence, if for every connectédregular, labelled grap&y on NV vertices, and every start vertexc [N],
the walk that starts at and follows the edges labelled, ..., a,,, Visits every vertex in the graph. For a
permutationr over [D], we say that is an (N, D) w-universal traversal sequence, if the above property
holds for every connecteB-regular graph oV vertices that has ar-consistent labelling(rather than for
all such graphs).

Theorem 5.4 There exists a log-space algorithm that takes as irlpuind a permutationr over [D] and
outputs an N, D) w-universal traversal sequence.

Proof: First we argue that it is enough to constructah- D, DE) 7/-universal sequence for the following
simple permutationt’(1) = 2, 7#/(2) = 1 and for everyi > 2 7/(i) = i. Furthermore, all we need is that the
sequence will traverse non-bipartite graphs. Consider a (conndoteeyular graphGG on N vertices that
has ar-consistent labelling. This graph can be transformed infig&regular (connected and non-bipartite)
graphG’ on N - D vertices that has & -consistent labelling. Each vertexc N is transformed into a cycle
over D vertices(v,1),..., (v, D), the edges of the cycle are labellednd?2 (just as in the definition of
Gregin the proof of Theorem 4.1). The edge labelBgoing out of(v, 7) will lead to Rot (v, i) (and will

be labelled from that end as well). All other edges are self loops.

Assume that a sequence of labels..., a,, Visits every vertex of7’ starting from every vertexv, 1)
(this is even less general than what we obtain). We can translate this (ipdog)snto a sequence of labels
by, ..., b, thattraverse& from every vertexo. To do that, we simulate the walk @# from an arbitrary
vertex (v, 1). As v is unknown and our simulation does not rely @hit will only know at each point the
valueb such that the walk at this point visits some vertex b) of G’ (wherew is unknown). Firsb is set
to 1. Then, during the simulation, labets > 3 can be ignored (as they are self loops). Given labelad
2, b can easily be updated (these are edges on the cycle). Finally, whamésriingae; = 3 the walk moves
from a vertex(w, b) to a vertex(w’, w(b)) (as the labelling of is w-consistent), and so it is easy to update
the value ofb (given access ta). The projection of the walk or is exactly the edges labellgdthat are
taken by the walk oit:’. Therefore, to transform the sequence.gé to the sequence @f's we can simply
output (throughout the simulation) the current valué,affhenever we encounter a lakgl= 3.

Now we consider abg’-regular (connected and non-bipartite) graghon N - D vertices that has a
7'-consistent labelling. Lef be a((De)'%, De, 1/2)-graph. Finally letG, = 7 (G, H), where7 and
¢ are given by Definition 3.1. By Lemma 3.2(G;) < 1/2 and therefore its diameter is logarithmic.
Therefore, for every two verticasandw of G’ one of the polynomially many sequences of labels (of the
appropriate logarithmic length) will visitz, 1¢), starting a{v, 1¢). Let B be the set of all these sequences of
labels. Lemma 5.2 gives a way to translate in log-space each one of thesegu&3 into a corresponding
sequence of edge-labels 6f. Let B’ be the set of translated sequences. By Lemma 5.2 and the above
argument, for every two verticesandu of G’ one of the sequences i will lead a walk inG’ that starts
in v through the vertex.. We should also note that given a sequeice aq,...,a,, that leads from a
vertexv to a vertexu, we have that the sequene€(a,,), ..., 7 !(a;) leads fromu to v (this operation
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simply reverses the walk). We refer to this latter sequence as the revedseRinally, we can define a
sequence that traverses all of the vertice§ofegardless of the starting vertex. Simply, we concatenate for
each sequences 8’ its reversed sequence and concatenate all of these sequencetepiteeadther. By

the arguments above, for every vertexthe sequence we obtain will visitafter every pair of a sequence
and its reversed sequence. Furthermore, for every vertere of these sequences will leadito As the
log-space construction of this sequence ignores the gradind only relies on’), we obtained the desired
(N - D, D&) ©'-universal sequence for non-bipartite graphs. The lemma follows. |

In an (N, D)-universalexplorationsequence, the sequence of labels is interpreted as offsets rather than
absolute labels. This means that if we entered a vertest an edge labelled (from v’'s view point), and
we are reading the labé] then we will leavev on the edge labelled + b (ora + b — D if a + b > D).
In fact this notion can apply to graphs that are not-regular and in thiswadet D be a bound on the
largest degree (it then makes sense to allow negative elements in the cgEqubmiversal-exploration
sequences have more flexibility than universal-traversal sequer@@sexample, it is not clear how to
transform a universal-traversal sequence for degrgeaphs to one for higher-degree graphs. This is easy
for universal-exploration sequences (and seems desirabli8 BEON can easily be reduced {6STCON
for regular-graphs of any degree larger tign Koucky [Kou03] showed how to transform a universal-
traversal sequence to a universal-exploration sequence. Hisamaragfon (which is essentially the same as
the one fromG to G’ in the proof of Theorem 5.4), only needs the universal-sequencerofaographs
with 7-consistent labelling for some simple permutatioiVe can therefore conclude from Theorem 5.4 a
log-space construction for general universal-exploration segsenc

Corollary 5.5 There exists a log-space algorithm that takes as irpdt, 1) and produces anN, D)-
universal exploration.

6 Discussion and further research

We start by comparing the techniques of this paper with some previouswitiethe goal of shading some
light on the source of our improvements. We continue by discussing somegiopielems and the results of
a subsequent work.

Comparison with previous techniques The USTCON algorithms of [Sav70, NSW89, ATSWZ00] also
operate by transforming, in phases, the input graph into a more accomngpdaén In each one of these
algorithms, each phase “charges” logarithmic amount to the space compléxity algorithm. The im-
provement in the space complexity is directly correlated to reducing the nurhipbiases needed for the
transformation. With this approach, the only way to obtain a log-space algoistto reduce the number of
phases to a constant. We deviate from this direction, as we use a logarithmi@naf phases (just as in
Savitch’s algorithm), to gradually improve the connectivity of the input grapte space efficiency of our
algorithm stems from each transformation being significantly less costly irspac

The parameter being improved by [NSW89, ATSWZ00], is the size of thehgf@ach transformation
shrinks the graph by collapsing it to a “representative” subset of thie®s). In contrast, our transformation
will in fact expand the graph by a polynomial factor (as each phasegesiaur graph by a constant factor).
The parameter Savitch’s transformation improves is the diameter of the gvhjiin is much closer to the
parameter we improve (the expansion). In fact, each phase of Savatgesthm can be described very
similarly to our algorithm. Each one of these phases consists of squaringahple gnd then removing
parallel edges (which may reduce the degree). One crucial diffelisrtbat our transformation manages to
preserve constant degree of the graph (rather than linear degreeiioh% algorithm). In addition, even
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though we eventually only need the diameter of the graph to be small, our isnaljss on bounding the
expansiorof intermediate graphs — a stronger notion of connectivity than the diameter.

It also seems instructive to compare with the combinatorial construction ahebgp graphs of [RVWO1].
There, an arbitrarily large expander graphs was constructed, staiting constant size expander. This
small expander is made larger and larger, while its degree is kept conistéime zig-zag or the replacement
product. Our main transformation shows how to tarnyconnected graph (which is already large) into an
expander. This means that the above mentioned products need to be apg@iedne of the graphs is an
extremely weak expander (whereas in [RVWO01] both graphs were fgodg expanders). Very fortunately,
both products work quite well in this unusual setting of parameters.

Further Research There are many open problems and new research directions brougittijs work,
we discuss just a few of those. A very natural question is whether thaitears of this paper can be
used towards a proof &L = L. While progress in the context &L does not seem immediate (as the
case of symmetric computations does seem easier), we feel that it is still tpitglpe. We also feel
that this paper should give an opportunity to reevaluate the common comejebairSavitch's algorithm
is optimal forSTCON. While this conjecture may very well be correct, we feel that there is noagm
evidence supporting it. Another open problem is to come up with full-fledg#itjently-constructible,
universal-traversal sequences. Interestingly, it seems that thikeprabares some of the obstacles that one
encounters when trying to generalize ti8TCON algorithm to solvingRL. Finally, we have made no
attempt to optimize our algorithm in terms of running time (or the constant in the spaggexity). Major
improvements in efficiency can come about by better analysis of the zigrmhgealacement products.
These may also determine which one of these products yields a more effigienthm.

In a subsequent work, Dinur, Reingold, Trevisan and Vadhan [DRITMnake some initial progress on
extending our techniques to dealing with directed graphs. In particulggihea new complete problem for
RL that seems more amendable to our techniques. They give universas#iasrjuences to directed graphs
that are bi-regular with consistent labelling, and show how to find a path o ¢ given good estimates on
the state probabilities under the stationary distribution of the walk startingsw@hd conditioned on these
probabilities being non-negligible).
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