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1 Definitions

Over the past decades expanders play an important role in derandomization, network design,
error-correcting codes and so on. Informally expanders are regular graphs with low degree and
high connectivity and we can use different ways to define expanders.

1. Combinatorically, expanders are highly connected graphs, and to disconnect a large
part of the graph, one has to sever many edges.

2. Geometrically, every vertex set has a relatively very large boundary.

3. From the Probabilistic view, expanders are graphs whose behavior is “like” random
graphs.

4. Algebraically, expanders are the real-symmetric matrix whose first positive eigenvalue
of the Laplace operator is bounded away from zero.

Before showing the equivalence between combinatorial and algebraical definitions, let us
present the combinatorial definition at first. For any d-degree graph G = (V,E), we use Γ(v)
to represent the set of neighbors of v, i.e.,

Γ(v) = {u|(u, v) ∈ E}.

For any subset S ⊆ V , let Γ(S) = ∪v∈SΓ(v) and Γ′(S) = Γ(S) ∪ S. Furthermore, for any set
S ⊆ V we define ∂S := E(S, S).

Definition 1.1 (vertex expansion) A graph G with n vertices is said to have vertex expan-
sion (K,A) if

|Γ(S)| ≥ A · |S|, ∀S ⊆ V : |S| ≤ K.

When K = n/2, for simplicity we call G an A-expander.

Informally expanders are graphs with the property that every subsets (under some constraint
on the their size) has many neighborhoods.

Definition 1.2 (edge expansion) The edge expansion of a graph G = (V,E) is defined by

h(G) := min
S:|S|≤|V |/2

|∂S|
|S|

.
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To explain edge expansion, let us see two examples. (1) If G is non-connected, we choose
one connected-component as S and we know that E(S, S) = 0. Therefore h(G) = 0. (2) If G is
a complete graph Kn, then E(S, S) = |S| · (n− |S|) and h(G) = dn/2e.

Definition 1.3 Let d ∈ N. A sequence of d-regular graphs {Gi}i∈N of size increasing with i is
a family of expanders if there is ε > 0 such that h(Gi) ≥ ε for all i.

Usually, when speaking of an expander Gi, we actually mean a family of graphs {Gi}i∈N,
where each graph in {Gi}i∈N is d-regular and has the same expansion coefficient.

Proposition 1.4 Any expander graph is a connected graph.

2 Existence and Constructibility

Expander graphs have two seemingly contradictory properties: low degree and high connectivity.
Two general problems for expanders are existence and constructibility. Between these two
problems, existence proof of a certain family of expanders is easier and, as a black-block, the
existence of such kind of expanders can be used to show the existence of other combinatorial
objects. On the other hand, many applications of expanders really need explicit constructions
and they proved much harder to find. We will show some constructions in this course, but they
do not always match the bounds given by probabilistic methods.

2.1 Existence

Let Gd,N be the set of bipartite graphs with bipartite sets L,R of size N and left degree d.

Theorem 1.5 For any d, there exists an α(d) > 0, such that for all N

Pr[G is an (αN, d− 2)-expander] ≥ 1/2,

where G is chosen uniformly from Gd,N .

Proof: Define
pk := Pr [∃S ⊆ L : |S| = k, |Γ(S)| < (d− 2)|S|] .

So G is not an (αN, d− 2)-expander iff
∑

k pk > 0.
Assume that there is a set S of size K and |Γ(S)| < (d− 2)|S|. Then there are at least 2k

repeats among all the neighbors of vertices in S. We calculate the probability

Pr[at least 2k repeats among all the neighbors of vertices in S] ≤
(
dk

2k

)(
dk

N

)2k

.

Therefore

pk ≤
(
N

k

)(
dk

2k

)(
dk

N

)2k

≤
(
Ne

k

)k
·
(
dke

2k

)2k

·
(
dk

N

)2k

=

(
cd4k

N

)k
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where c = e3. By setting α = 1/(cd4) and k ≤ αN , we know that pk ≤ 4−k and

Pr[G is not an (αN, d− 2)-expander] ≤
αN∑
k=1

pk ≤
αN∑
k=1

4−k ≤ 1/2.

Theorem 1.6 For any fixed d ≥ 3, a random d-regular graph is a (Ω(N), d − 1.01)-expander
with high probability (as N →∞, the probability goes to 1).

2.2 Constructibility

Definition 1.7 Let {Gi}i∈N be a family of expander graphs where Gi is a d-regular graph on
ni vertices and the integers {ni} are increasing, but not too fast.(e.g. ni+1 ≤ n2i will do)

1. The family is called Mildly Explicit if there is an algorithm that generates the j-th graph
in the family {Gi}i∈N in time polynomial in j.

2. The family is called Very Explicit if there is an algorithm that on input of an integer i,
a vertex v ∈ V (Gi) and k ∈ {1, · · · , d} computes the k-th neighbor of the vertex v in the
graph Gi. The algorithm’s running time should be polynomial in its input length.

Theorem 1.8 (Margulis, 1973) Fix a positive integer M and let [M ] = {1, 2, · · · ,M}. De-
fine the bipartite graph G = (V,E) as follows. Let V = [M ]2 ∪ [M ]2, where vertices in the first
partite set as denoted (x, y)1 and vertices in the second partite set are denoted (x, y)2. From
each vertex (x, y)1, put in edges

(x, y)2, (x, x+ y)2, (x, x+ y + 1)2, (x+ y, y)2, (x+ y + 1, y)2,

where all arithmetic is done modulo M . Then G is an expander.

Theorem 1.9 (Jimbo and Maruoka, 1987) Let G = (L ∪ R,E) be the graph described
above, then ∀X ⊂ L, |Γ(X)| ≥ |X|(1 + d0|X|/n), where d0 = (2 −

√
3)/4 is the optimal

constant.

3 Applications

3.1 Super concentrators

Let G = (V,E) be a directed graph and let I and O be two subsets of V with n vertices, each
called the input and the output sets respectively. We call G a super concentrator if for every k
and every S ⊆ I, T ⊆ O with |S| = |T | = k, there exist k vertex disjoint paths in G from S to

T . The density of a super concentrator is defined by Den(G) = |E[G]|
n .

Proposed by Valiant, super concentrators have many applications in computer science and
communication networks. Valiant conjectured that any super concentrator with n inputs must
have � n edges. However, Valiant himself disproved this conjecture and presented super con-
centrators with O(n) edges. The main problems in this topic include:

• Prove the existence of super concentrators with low density. It was known that there exists
a super concentrator with density 28, whose proof is based on Kolmogorov complexity.
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• Give an explicit construction of super concentrators. Gabber and Galil presented the first
explicit construction of super concentrators with density about 270, and so far the best
known result is 44 (SODA 2003).

• Prove the lower bound of Den(G). The best known lower bound is (5− o(1)), proved by
Lev and Valiant.

Now we show that super concentrators with constant density can be constructed from con-
stant degree expanders.

Lemma 1.10 Assume that {Gi}i∈N is a family of bipartite expanders with bipartite sets L,R
with |R| = α|L|, 1/2 < α < 1 and left degree d. Moreover each graph in {Gi}i∈N has vertex
expansion ≥ 1. Then there is a super concentrator with density 1+2d

1−α .

3.2 Saving Random Bits

For several problems, expander graphs provide an efficient way to derandomize complexity
classes. For example, Reingold used expander graphs to derandomize the complexity class SL,
which was open for many years. On the other hand, expanders are used to save random bits and
reduce the randomness complexity in randomized algorithms. Here we consider the complexity
class RP.

Definition 1.11 The complexity class RP is the class of all languages L for which there exists
a probabilistic polynomial-time Turing machine M such that

m ∈ L =⇒ Pr[M(x) = 1] ≥ 3

4

m 6∈ L =⇒ Pr[M(x) = 1] = 0

Fix any RP language L and let r(|x|) be the number of random bits used for the RP machine
M . To decrease the error probability to δ, a basic approach is to use the Chernoff bound. We
run M O(log 1

δ ) independent trials and take the average value. But the number of random bits
used is O(r log 1

δ ).

Now we discuss how to use expanders to decrease the error probability to 1
poly(|r|) with no

extra random bits. At first we assume that there is an explicit family of expanders G = {Gi}i∈N
with vertex expansion A where N = |V [G]| = 2r. Our algorithm is as follows:

Input: x.
Choose a parameter c such that 1/(4Ac) < δ and let v ∼u V [G];
Run M(x, yi) for all strings yi where dist(v, yi) ≤ c;
if ∧iM(x, yi) = 0 then

return 0
else

return 1
end

Algorithm 1: Algorithm for Saving Random Bits
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Assume that L ∈ RP. For any x ∈ L, define Badx = {y|M(x, y) = 0} and B = {v|Γ′c(v) ⊆
Badx}. Then Algorithm 1 outputs 0 iff v ∈ B. By definition, ∀1 ≤ i ≤ c− 1, we have Γ′i(B) ≤
Γ′i+1(B) ⊆ Badx. Since L ∈ RP, we get |Badx| ≤ N/4. On the other hand |Γ′c(B)| ≥ Ac|B|.
Therefore Ac|B| ≤ |Γ′c(B)| ≤ |Badx| ≤ N/4 and the error probability of Algorithm 1 is bounded
by |B|/N ≤ 1/(4Ac) ≤ δ.


