WS 2010/2011

Lecture 11: List-Decodable Codes

Lecturer: He Sun

In this course we discuss list-decodable codes. In contrast to Lecture 4 in which we use expander graphs to construct codes, list-decodable codes present nice combinatorial properties and we will see how to use these codes to construct condensers and unbalanced expanders.

1 List-Decodable Codes

Definition 11.1 For two strings $x, y \in \Sigma^n$, their (relative) Hamming distance $d_H(x, y)$ equals $\Pr_i[x_i \neq y_i]$. The agreement is defined by $\operatorname{agr}(x, y) = 1 - d_H(x, y)$.

Throughout this lecture, we use the relative Hamming distance to evaluate the difference between two strings.

Definition 11.2 A q-ary code is a set $C \subseteq \Sigma^n$, where Σ is an alphabet of size q. Elements of C are called codewords. Some key parameters:

- n is the block length.
- $k = \log_2 |\mathcal{C}|$ is the message length.

Definition 11.3 Let Enc: $\{0,1\}^k \to \Sigma^n$ be an encoding algorithm for a code C. A δ -decoding algorithm for Enc is a function Dec: $\Sigma^n \to \{0,1\}^k$ such that for every $m \in \{0,1\}^k$ and $r \in \Sigma^n$ satisfying $d_H(\text{Enc}(m), r) < \delta$, we have Dec(r) = m. If such a function Dec exists, we call the code δ -decodable.

A (δ, L) -list-decoding algorithm for Enc is a function Dec : $\Sigma^n \to (\{0, 1\}^k)^L$ such that for every $m \in \{0, 1\}^k$ and $r \in \Sigma^n$ satisfying $d_H(\operatorname{Enc}(m), r) < \delta$, we have $m \in \operatorname{Dec}(r)$. If such a function Dec exists, we call the code (δ, L) -list-decodable.

The main goals in constructing codes are to have infinite families of codes in which we

- Maximize the faction δ of errors correctible.
- Maximize the rate $\rho = k/n$.
- Minimize the alphabet size $q = |\Sigma|$.
- Keep the list size L relatively small.
- Have computationally efficient encoding and decoding algorithms.

Proposition 11.4 (Johnson Bound) (1) If C has minimum distance $1 - \varepsilon$, then it is a $(1 - O(\sqrt{\varepsilon}), O(1/\sqrt{\varepsilon}))$ -list-decodable. (2) If a binary code C has minimum distance $1/2 - \varepsilon$, then it is $(1/2 - O(\sqrt{\varepsilon}), O(1/\varepsilon))$ -list-decodable.

Definition 11.5 Let C be a code with encoding function Enc: $\{0,1\}^k \to \Sigma^n$. For $r \in \Sigma^n$, define $\text{LIST}(r,\varepsilon) = \{w : \operatorname{agr}(w,r) > \varepsilon\}.$

Let us look at two examples of list-decodable codes.

Definition 11.6 (Hadamard Code) For $k \in \mathbb{N}$, the (binary) Hadamard code of message length k is the binary code of blocklength $n = 2^k$ consisting of all functions $c : \mathbb{Z}_2^k \to \mathbb{Z}_2$ that are linear (modulo 2).

Proposition 11.7 The Hadamard code:

- is explicit with respect to the encoding function that takes a message $m \in \mathbb{Z}_2^m$ to the linear function c_m defined by $c_m = \sum_i m_i x_i \mod 2$.
- has minimum distance 1/2.
- is $O(1/2 \varepsilon, O(1/\varepsilon^2))$ list decodable for every $\varepsilon > 0$.

Proof: It suffices to prove Item (2) and Item (3). Since for any two distinct functions $c_1, c_2 : \mathbb{Z}_2^k \to \mathbb{Z}_2$, $\Pr[c_1(x) = c_2(x)] = \Pr[(c_1 - c_2)(x) = 0] = 1/2$, therefore the minimum distance is 1/2. Item (3) follows from the Johnsen Bound.

Definition 11.8 (Reed-Solomon Code) For a prime power q and $d \in \mathbb{N}$, the q-ary Reed-Solomon code of degree d is the code of blocklength n = q and message length $k = (d+1)\log q$ consisting of all polynomials $p : \mathbb{F}_q \to \mathbb{F}_q$ of degree at most d.

Proposition 11.9 The q-ary Reed-Solomon Code of degree d:

- is explicit with respect to the encoding function that takes a vector of coefficients $m \in \mathbb{F}_q^{d+1}$ to the polynomial p_m defined by $p_m(x) = \sum_{i=1}^d m_i x^i$.
- has minimum distance $\delta = 1 d/q$ and
- is $\left(1/2 O(\sqrt{d/q}), O\left(\sqrt{q/d}\right)\right)$ -list-decodable.

2 List-Decoding Views of Expanders and Extractors

Given a code Enc : $[N] \to [M]^D$, we define the corresponding extractor Ext : $[N] \times [D] \to [D] \times [M]$ and the neighbor function of the corresponding expander $\Gamma : [N] \times [D] \to [D] \times [M]$ via the correspondence:

$$\operatorname{Ext}(x, y) = \Gamma(x, y) = (y, \operatorname{Enc}(x)_y).$$
(1)

Definition 11.10 Let Enc, Ext and Γ be the corresponding code, extractor and expander defined by Eq. (1). For a subset $T \subseteq [D] \times [M]$ and $\varepsilon \in [0, 1)$, we define

$$\begin{split} \mathrm{LIST}(T,\varepsilon) &:= \left\{ x: \Pr[(y,\mathrm{Enc}(x)_y) \in T] > \varepsilon \right\} \\ &= \left\{ x: \Pr_y[\mathrm{Ext}(x,y) \in T] > \varepsilon \right\} \\ &= \left\{ x: \Pr_y[\Gamma(x,y) \in T] > \varepsilon \right\}. \end{split}$$

We define LIST(T, 1) analogously, except that replace "> ε " with "= 1".

According to this definition, we have the following proposition.

Proposition 11.11 Enc: $[N] \to [M]^D$ is a $(1 - 1/M - \varepsilon, K)$ -list-decodable iff for every $r \in [M]^D$, we have

$$|\text{LIST}(T_r, 1/M + \varepsilon)| \le K,\tag{2}$$

where $T_r = \{(y, r_y) | y \in [D] \}.$

Proposition 11.12 If Ext : $[N] \times [D] \rightarrow [M]$ is a (k, ε) -extractor then for every $T \subseteq [D] \times [M]$, we have

$$|\text{LIST}(T, \mu(T) + \varepsilon)| < K, \tag{3}$$

where $K = 2^k$ and $\mu(T) = |T|/M$. Conversely, if Eq. (3) holds for every $T \subseteq [D] \times [M]$, then Ext is a $(k + \log(1/\varepsilon), 2\varepsilon)$ -extractor.

Proof: (\Rightarrow): The proof is by contradiction. Suppose that there is a set $T \subseteq [D] \times [M]$ with the property that $|\text{LIST}(T, \mu(T) + \varepsilon)| \ge K$. Let X be a random variable distributed uniformly over $\text{LIST}(T, \mu(T) + \varepsilon)$. Then $\mathbf{H}_{\infty}(X) \ge k$. However, we have

$$\begin{aligned} \Pr[\operatorname{Ext}(X, U_{[D]}) \in T] &= \mathop{\mathbb{E}}_{x \in_R X} \left[\Pr[\operatorname{Ext}(x, U_{[D]}) \in T] \right] \\ &> \mu(T) + \varepsilon \\ &= \Pr[U_{[D] \times [M]} \in T] + \varepsilon. \end{aligned}$$

So $\operatorname{Ext}(X, U_{[D]})$ is ε -far from $U_{[D] \times [M]}$, which contradicts that Ext is a (k, ε) -extractor.

(\Leftarrow): Suppose Eq. (3) holds, we show that Ext is a $(k + \log(1/\varepsilon), 2\varepsilon)$ -extractor. Let X be any $(k + \log(1/\varepsilon))$ -source taking values in [N]. We need to show that $\operatorname{Ext}(X, U_{[D]})$ is 2ε -close to $U_{[M]}$, i. e. for every $T \subseteq [M]$, it holds that $\Pr[\operatorname{Ext}(X, U_{[D]}) \in T] < \mu(T) + 2\varepsilon$. Let T be any subset of [M]. Then

$$\begin{aligned} &\Pr[\operatorname{Ext}(X, U_{[D]}) \in T] \\ &\leq \Pr\left[X \in \operatorname{LIST}(T, \mu(T) + \varepsilon)\right] + \Pr[\operatorname{Ext}(X, U_{[D]}) \in T | X \notin \operatorname{LIST}(T, \mu(T) + \varepsilon)] \\ &\leq |\operatorname{LIST}(T, \mu(T) + \varepsilon)| \cdot 2^{-(k + \log(1/\varepsilon))} + (\mu(T) + \varepsilon) \\ &\leq K \cdot 2^{-(k + \log(1/\varepsilon))} + \mu(T) + \varepsilon \\ &= \mu(T) + 2\varepsilon. \end{aligned}$$

Corollary 11.13 If Ext : $[N] \times [D] \rightarrow [D] \times [M]$ is a (k, ε) -extractor, then corresponding code Enc is $(1 - 1/M - \varepsilon, K)$ -list-decodable.

Proposition 11.14 If Enc: $[N] \to [M]^D$ is $(1 - 1/M - \varepsilon, K)$ -list-decodable, then the corresponding function Ext : $[N] \times [D] \to [D] \times [M]$ given by $\text{Ext}(x, y) = (y, \text{Enc}(x)_y)$ is a $(k + \log(1/\varepsilon), M \cdot \varepsilon)$ -extractor.

Proof: Let X be a $(k + \log(1/\varepsilon))$ -source and $Y = U_{[D]}$. Then the statistical difference between $\operatorname{Ext}(X, Y)$ and $Y \times U_{[M]}$ equals

$$\begin{split} \Delta(\operatorname{Ext}(X,Y), Y \times U_{[M]}) &= \mathop{\mathbb{E}}_{y \in_{R}Y} \left[\Delta(\operatorname{Enc}(X)_{y}, U_{[M]}) \right] \\ &\leq \frac{M}{2} \cdot \mathop{\mathbb{E}}_{y \in_{R}Y} \left[\max_{z} \Pr[\operatorname{Enc}(X)_{y} = z] - 1/M \right] \end{split}$$

So if we define $r \in [M]^D$ by setting r_y to be the value z maximizing $\Pr[\operatorname{Enc}(X)_y = z] - 1/M$, we have

$$\begin{split} \Delta(\operatorname{Ext}(X,Y), Y \times U_{[M]}) &\leq \frac{M}{2} \cdot (\Pr[(Y,\operatorname{Enc}(X)_Y) \in T_r] - 1/M) \\ &\leq \frac{M}{2} \cdot (\Pr[X \in \operatorname{LIST}(T_r, 1/M + \varepsilon)] + \varepsilon) \\ &\leq \frac{M}{2} \cdot \left(2^{-(k + \log(1/\varepsilon))} \cdot K + \varepsilon\right) \\ &\leq M \cdot \varepsilon. \end{split}$$

Lemma 11.15 For $k \in \mathbb{N}$, $\Gamma : [N] \times [D] \rightarrow [D] \times [M]$ is an (= K, A) expander iff for every set $T \subseteq [D] \times [M]$, such that |T| < KA, we have

$$|\mathrm{LIST}(T,1)| < K.$$

Proof:

$$\begin{split} \Gamma \text{ is not an } (=K,A) \text{ expander} &\Leftrightarrow \exists S \subseteq [N] \text{ s. t. } |S| = k \text{ and } |N(S)| \leq KA \\ &\Leftrightarrow \exists S \subseteq [N] \text{ s. t. } |S| \geq k \text{ and } |N(S)| \leq KA \\ &\Leftrightarrow \exists T \subseteq [D] \times [M] \text{ s. t. } |\text{LIST}(T,1)| \geq k \text{ and } |T| < KA. \end{split}$$