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Lecture 11: List-Decodable Codes

Lecturer: He Sun

In this course we discuss list-decodable codes. In contrast to Lecture 4 in which we use
expander graphs to construct codes, list-decodable codes present nice combinatorial properties
and we will see how to use these codes to construct condensers and unbalanced expanders.

1 List-Decodable Codes

Definition 11.1 For two strings x, y ∈ Σn, their (relative) Hamming distance dH(x, y) equals
Pri[xi 6= yi]. The agreement is defined by agr(x, y) = 1− dH(x, y).

Throughout this lecture, we use the relative Hamming distance to evaluate the difference
between two strings.

Definition 11.2 A q-ary code is a set C ⊆ Σn, where Σ is an alphabet of size q. Elements of
C are called codewords. Some key parameters:

• n is the block length.

• k = log2 |C| is the message length.

Definition 11.3 Let Enc : {0, 1}k → Σn be an encoding algorithm for a code C. A δ-decoding
algorithm for Enc is a function Dec : Σn → {0, 1}k such that for every m ∈ {0, 1}k and r ∈ Σn

satisfying dH(Enc(m), r) < δ, we have Dec(r) = m. If such a function Dec exists, we call the
code δ-decodable.

A (δ, L)-list-decoding algorithm for Enc is a function Dec : Σn →
(
{0, 1}k

)L
such that for

every m ∈ {0, 1}k and r ∈ Σn satisfying dH(Enc(m), r) < δ, we have m ∈ Dec(r). If such a
function Dec exists, we call the code (δ, L)-list-decodable.

The main goals in constructing codes are to have infinite families of codes in which we

• Maximize the faction δ of errors correctible.

• Maximize the rate ρ = k/n.

• Minimize the alphabet size q = |Σ|.

• Keep the list size L relatively small.

• Have computationally efficient encoding and decoding algorithms.

Proposition 11.4 (Johnson Bound) (1) If C has minimum distance 1 − ε, then it is a
(1−O (

√
ε) , O (1/

√
ε))-list-decodable. (2) If a binary code C has minimum distance 1/2 − ε,

then it is (1/2−O(
√
ε), O(1/ε))-list-decodable.
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2 Lecture 11: List-Decodable Codes

Definition 11.5 Let C be a code with encoding function Enc : {0, 1}k → Σn. For r ∈ Σn,
define LIST(r, ε) = {w : agr(w, r) > ε}.

Let us look at two examples of list-decodable codes.

Definition 11.6 (Hadamard Code) For k ∈ N, the (binary) Hadamard code of message
length k is the binary code of blocklength n = 2k consisting of all functions c : Zk

2 → Z2 that are
linear (modulo 2).

Proposition 11.7 The Hadamard code:

• is explicit with respect to the encoding function that takes a message m ∈ Zm
2 to the linear

function cm defined by cm =
∑

imixi mod 2.

• has minimum distance 1/2.

• is O
(
1/2− ε,O

(
1/ε2

))
list decodable for every ε > 0.

Proof: It suffices to prove Item (2) and Item (3). Since for any two distinct functions
c1, c2 : Zk

2 → Z2, Pr[c1(x) = c2(x)] = Pr[(c1 − c2)(x) = 0] = 1/2, therefore the minimum
distance is 1/2. Item (3) follows from the Johnsen Bound.

Definition 11.8 (Reed-Solomon Code) For a prime power q and d ∈ N, the q-ary Reed-
Solomon code of degree d is the code of blocklength n = q and message length k = (d + 1) log q
consisting of all polynomials p : Fq → Fq of degree at most d.

Proposition 11.9 The q-ary Reed-Solomon Code of degree d:

• is explicit with respect to the encoding function that takes a vector of coefficients m ∈ Fd+1
q

to the polynomial pm defined by pm(x) =
∑d

i=1mix
i.

• has minimum distance δ = 1− d/q and

• is
(

1/2−O(
√
d/q), O

(√
q/d
))

-list-decodable.

2 List-Decoding Views of Expanders and Extractors

Given a code Enc : [N ] → [M ]D, we define the corresponding extractor Ext : [N ] × [D] →
[D]× [M ] and the neighbor function of the corresponding expander Γ : [N ]× [D]→ [D]× [M ]
via the correspondence:

Ext(x, y) = Γ(x, y) = (y,Enc(x)y). (1)

Definition 11.10 Let Enc,Ext and Γ be the corresponding code, extractor and expander defined
by Eq. (1). For a subset T ⊆ [D]× [M ] and ε ∈ [0, 1), we define

LIST(T, ε) := {x : Pr[(y,Enc(x)y) ∈ T ] > ε}

=

{
x : Pr

y
[Ext(x, y) ∈ T ] > ε

}
=

{
x : Pr

y
[Γ(x, y) ∈ T ] > ε

}
.

We define LIST(T, 1) analogously, except that replace “> ε” with “= 1”.
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According to this definition, we have the following proposition.

Proposition 11.11 Enc : [N ] → [M ]D is a (1 − 1/M − ε,K)-list-decodable iff for every r ∈
[M ]D, we have

|LIST(Tr, 1/M + ε)| ≤ K, (2)

where Tr = {(y, ry)|y ∈ [D]}.

Proposition 11.12 If Ext : [N ]× [D]→ [M ] is a (k, ε)-extractor then for every T ⊆ [D]× [M ],
we have

|LIST(T, µ(T ) + ε)| < K, (3)

where K = 2k and µ(T ) = |T |/M . Conversely, if Eq. (3) holds for every T ⊆ [D] × [M ], then
Ext is a (k + log(1/ε), 2ε)-extractor.

Proof: (⇒): The proof is by contradiction. Suppose that there is a set T ⊆ [D]× [M ] with
the property that |LIST(T, µ(T ) + ε)| ≥ K. Let X be a random variable distributed uniformly
over LIST(T, µ(T ) + ε). Then H∞(X) ≥ k. However, we have

Pr[Ext(X,U[D]) ∈ T ] = E
x∈RX

[
Pr[Ext(x, U[D]) ∈ T ]

]
> µ(T ) + ε

= Pr[U[D]×[M ] ∈ T ] + ε.

So Ext(X,U[D]) is ε-far from U[D]×[M ], which contradicts that Ext is a (k, ε)-extractor.
(⇐): Suppose Eq. (3) holds, we show that Ext is a (k + log(1/ε), 2ε)-extractor. Let X be

any (k + log(1/ε))-source taking values in [N ]. We need to show that Ext(X,U[D]) is 2ε-close
to U[M ], i. e. for every T ⊆ [M ], it holds that Pr[Ext(X,U[D]) ∈ T ] < µ(T ) + 2ε. Let T be any
subset of [M ]. Then

Pr[Ext(X,U[D]) ∈ T ]

≤Pr [X ∈ LIST(T, µ(T ) + ε)] + Pr[Ext(X,U[D]) ∈ T |X 6∈ LIST(T, µ(T ) + ε)]

≤|LIST(T, µ(T ) + ε)| · 2−(k+log(1/ε)) + (µ(T ) + ε)

≤K · 2−(k+log(1/ε)) + µ(T ) + ε

=µ(T ) + 2ε.

Corollary 11.13 If Ext : [N ]× [D]→ [D]× [M ] is a (k, ε)-extractor, then corresponding code
Enc is (1− 1/M − ε,K)-list-decodable.

Proposition 11.14 If Enc : [N ] → [M ]D is (1 − 1/M − ε,K)-list-decodable, then the cor-
responding function Ext : [N ] × [D] → [D] × [M ] given by Ext(x, y) = (y,Enc(x)y) is a
(k + log(1/ε),M · ε)-extractor.

Proof: Let X be a (k + log(1/ε))-source and Y = U[D]. Then the statistical difference
between Ext(X,Y ) and Y × U[M ] equals

∆(Ext(X,Y ), Y × U[M ]) = E
y∈RY

[
∆(Enc(X)y, U[M ])

]
≤ M

2
· E
y∈RY

[
max

z
Pr[Enc(X)y = z]− 1/M

]
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So if we define r ∈ [M ]D by setting ry to be the value z maximizing Pr[Enc(X)y = z] − 1/M ,
we have

∆(Ext(X,Y ), Y × U[M ]) ≤
M

2
· (Pr[(Y,Enc(X)Y ) ∈ Tr]− 1/M)

≤ M

2
· (Pr[X ∈ LIST(Tr, 1/M + ε)] + ε)

≤ M

2
·
(

2−(k+log(1/ε)) ·K + ε
)

≤M · ε.

Lemma 11.15 For k ∈ N, Γ : [N ]× [D]→ [D]× [M ] is an (= K,A) expander iff for every set
T ⊆ [D]× [M ], such that |T | < KA, we have

|LIST(T, 1)| < K.

Proof:

Γ is not an (= K,A) expander⇔ ∃S ⊆ [N ] s. t. |S| = k and |N(S)| ≤ KA
⇔ ∃S ⊆ [N ] s. t. |S| ≥ k and |N(S)| ≤ KA
⇔ ∃T ⊆ [D]× [M ] s. t. |LIST(T, 1)| ≥ k and |T | < KA.


