
Expander Graphs in Computer Science WS 2010/2011

Lecture 4: Expander Codes

Lecturer: He Sun

In this lecture we discuss the applications of expander graphs to error-correcting codes. Let
us start with some preliminaries on coding theory.

1 Preliminaries

Suppose that Alice wants to send Bob a k-bit message over a noisy channel (i. e., the channel
flips some bits of the message). To make sure that Bob can get the correct message, Alice
instead of sending the original message, encodes this k-bit message into n-bit encoding, such
that Bob can recover the message from the channel if the codeword was not corrupted too bad
by the channel.

Definition 4.1 A q-ary code is a set C ⊆ Σn, where Σ is an alphabet of size q. Elements of C
are called codewords. Some basic parameters:

1. n is the block length.

2. k = log2 |C| is the message length.

3. ρ = k/n is the relative rate of the codes.

An encoding function for C is an injective mapping Enc : {0, 1}k → {0, 1}n. Given such an
encoding function, we view the string in {0, 1}n as messages. The code is explicit if Enc is
computable in polynomial time.

Definition 4.2 For any two strings x, y ∈ {0, 1}n, the Hamming distance of x and y, denoted
by ∆(x, y), is the number of bits where they differ. The Hamming distance of a code C is
d(C) = minx,y∈C,x 6=y ∆(x, y). The relative distance of C is defined by δ = d(C)/n.

We refer to a code C that maps k-bit messages to n-bit codewords with distance d as a
(n, k, d)-code.

Definition 4.3 A code C is linear if C satisfies the following properties:

1. 0n ∈ C.

2. If x, y ∈ C, then x⊕ y ∈ C.

We use [n, k, d]-code to express a linear code that maps k-bit messages to n-bit codewords
with distance d.

1

2 Lecture 4: Expander Codes

2 Expander Codes

For any d-regular n-vertex graph G = (V,E), the double cover of G is a bipartite graph GB =
(L ∪R,E′), where L = {`1, · · · , `n}, R = {r1, · · · , rn} and (u, v) ∈ E if and only if (`u, rv) and
(`v, ru) are in E′.

Let C be a [d, rd, δd]-code. Given a code C and a d-regular n-vertex graph G, we construct
C′ = Z(C, G) as follows. The length of the codewords in C′ is dn. We give the edges of GB
an arbitrary labeling and use e1, · · · , edn to express the edges in G′. Moreover, we consider
each codeword x ∈ {0, 1}dn as an assignment of e1, · · · , edn and let the assignment of ei be xi.
Given these, a string x ∈ {0, 1}dn is in C′ if and only if for every v ∈ L∪R with adjacent edges
ei1 · · · eid , xi1 · · ·xid is a codeword in C.

Lemma 4.4 For any linear code C, the distance of C equals the minimum Hamming weight of
a non-zero codeword.

Theorem 4.5 Suppose C is a [d, rd, δd]-code with rate r < 1/2 and G is a d-regular expander
on n vertices with spectral expansion λ. Then C′ = Z(C, G) is a [dn, (2r−1)dn, δ(δ−λ)dn]-code.

Proof: By construction, it is easy to see that the length of the codewords in C′ is dn. Since
C is of the form [d, rd, δd], then the number of constraints for C is d− rd = (1− r)d. Because,
for constructing C′, such (1− r)d constraints are applied for each vertex in GB, so the number
of constraints for C′ is at most

2n(1− r)d = nd(2− 2r) = nd(1− (2r − 1))

and the rate of C′ is at least (2r − 1).

Now we analyze the rate of C′. Let x be a codeword in C′. Define X = {ei|xi = 1}. Let S
and T be the respective sets of left and right vertices that are adjacent to one edge in X. By
Lemma 4.4, we get |X| ≥ δd

2 (|S|+ |T |).
On the other side, by the Expander Mixing Lemma, wet get

|X| ≤ |E(S, T)| ≤ d · |S||T |
n

+ λd
√
|S||T |.

Thus
δd

2
(|S|+ |T |) ≤ |S||T |

n
+ λ

√
|S||T |.

Since |S||T | ≤ (|S|+|T |)2
4 , we get

δ

2
(|S|+ |T |) ≤ (|S|+ |T |)2

4n
+
λ

2
(|S|+ |T |) ,

which implies |S|+ |T | ≥ 2n(δ − λ). Therefore the distance of C′ is at least

|X| ≥ δd

2
· 2n(δ − λ) = δ(δ − λ)dn.

Lecture 4: Expander Codes 3

V0 ← L
i← 0;
while ∃v such that xv 6∈ C do

foreach v ∈ Vi such that xv 6∈ C do
decode xv to the nearest codeword in C.

end
if Vi = L then

Vi+1 ← R
else

Vi+1 ← L
end
i← i+ 1

end
return x

Algorithm 1: Decoding Algorithm

3 Decoding Algorithm

Theorem 4.6 Suppose C is a [d, rd, δd]-code and G is a d-regular expander on n vertices with
spectral expansion λ < δ/3. Then for all α, 0 ≤ α ≤ 1, there is a decoding algorithm to correct

α δ2
(
δ
2 − λ

)
dn errors in O

(
lgn

lg(2−α)

)
time.

Proof: Because C′ is linear, we assume that the correct codeword to the corrupted codeword
x is 0n. Let x(0) be the initial corrupt codewords and after i rounds, let the working word be
x(i).

Define E(i) =
{
e|x(i)e = 1

}
. Let S(i) be the set of vertices in Vi−1 with edges in E(i). Consider

the set E
(
S(i), S(i+1)

)
. Because S(i+1) is the set of vertices that do not correctly decode the

zero words in the (i + 1)-th round, therefore with respect to E(i), the degree of each vertex in
S(i+1) is at least δd

2 . We have ∣∣∣E (S(i), S(i+1)
)∣∣∣ ≥ δd

2

∣∣∣S(i+1)
∣∣∣ . (1)

By the Expander Mixing Lemma,∣∣∣E (S(i), S(i+1)
)∣∣∣ ≤ d

∣∣S(i)
∣∣ · ∣∣S(i+1)

∣∣
n

+ λd
√∣∣S(i)

∣∣ · ∣∣S(i+1)
∣∣. (2)

On the other side, we know that
∣∣E(0)

∣∣ ≤ α · δ2 (δ2 − λ) dn and
∣∣E(0)

∣∣ ≥ δd
2

∣∣S(1)
∣∣. So∣∣∣S(1)

∣∣∣ ≤ αn(δ
2
− λ

)
. (3)

Combining Eq. (1) and Eq. (2), we get

δ · d ·
∣∣S(i+1)

∣∣
2

≤
d ·
∣∣S(i)

∣∣ · ∣∣S(i+1)
∣∣

n
+ λd

√∣∣S(i)
∣∣ · ∣∣S(i+1)

∣∣
≤
d ·
∣∣S(i)

∣∣ · ∣∣S(i+1)
∣∣

n
+
λd

2
·
(∣∣∣S(i)

∣∣∣+
∣∣∣S(i+1)

∣∣∣)
≤
d
∣∣S(i+1)

∣∣
n

· αn
(
δ

2
− λ

)
+
λd

2
·
(∣∣∣S(i)

∣∣∣+
∣∣∣S(i+1)

∣∣∣) ,By Inequality (3)

4 Lecture 4: Expander Codes

which implies

(δ − α(δ − 2λ)− λ)
∣∣∣S(i+1)

∣∣∣ ≤ λ ∣∣∣S(i)
∣∣∣ .

By the assumption that δ > 3λ, we get

(2− α)
∣∣∣S(i+1)

∣∣∣ ≤ ∣∣∣S(i)
∣∣∣ .

The formula above tells us the size of S(i) drops exponentially. So the algorithm will finish

in O
(

lgn
lg(2−α)

)
rounds.

