Expander Graphs in Computer Science

Lecture 6: Undirected Connectivity in Log-Space

Lecturer: He Sun

We consider the undirected connectivity problem. Given an undirected graph G represented by adjacency matrix and two vertices s and t, the *undirected connectivity problem* is to decide whether there is a path from s to t. Formally we define the language USTCON.

Definition 6.1 USTCON is defined as a set of triples (G, u, v) where G = (V, E) is an undirected graph, u, v are two vertices in G so that there is a path from u to v in G.

This problem has received a lot of attention in the past few decades and the complexity of USTCON has been well studied. The first randomized log-space algorithm for USTCON was shown in 1979 by Aleliunas, Karp, Lipton, Lovász and Rackoff. In 1970, Savitch demonstrated a simulation of a non-deterministic space S machine by a deterministic space S^2 machine. Thus USTCON \in SPACE (log² n). Nisan, Szemerdi and Wigderson in 1989 showed that USTCON \in SPACE(log^{3/2} n). Armoni, Ta-Shma, Wigderson and Zhou in 2000 proved that USTCON \in SPACE(log^{4/3} n). In 2005, Reingold used expander graphs to show that USTCON is in L and SL collapses to L.

In this lecture we present Reingold's algorithm for the USTCON problem.

1 Algorithm

Let G be an input graph. At a high-level overview, the algorithm reduces G to an expander G_ℓ such that

- $|V[G_{\ell}]| = \text{poly}(|V[G]|).$
- G_{ℓ} is regular and the degree of G_{ℓ} is constant.
- For any two vertices u and v in G, u and v are connected if and only if the vertices in G_{ℓ} that correspond to u and v are also connected.
- Each connected component of G_{ℓ} is an expander. (The spectral expansion is at most 1/2.)

Therefore for any two vertices u and v in G, u and v are connected if and only if there is a path of length $O(\log |V[G_{\ell}]|) = O(\log |V[G]|)$ to connect the vertices in G_{ℓ} that correspond to u and v.

In the preprocessing step, we would like to transform the input graph G into a D^{16} -regular graph G_1 . Now let G_1 be a D^{16} -regular graph on [N] and H is a $(D^{16}, D, 1/2)$ -graph. The existence of such graphs is proven by probabilistic methods and for a constant D, such a graph can be obtained by exhaustive search. Moreover, we can express H by the rotation map in constant time.

Let ℓ be the smallest integer such that $\left(1 - \frac{1}{DN^2}\right)^{2^{\ell}} \leq 1/2$. The algorithm is as follows.

- For i=1 to $\ell = \mathcal{O}(\log |V[G_0]|)$ do $G_{i+1} = (G_i \otimes H)^8$
- Check if s and t are connected in G_{ℓ} by enumerating over all $O(\log N)$ paths originating at s.

Note that each G_i is a D^{16} -regular graph over $[N] \times ([D^{16}])^i$. Since D is constant and $\ell = O(\log N), G_\ell$ has poly(N) vertices.

2 Analysis

The working space of the algorithm comes from two aspects: The space for calculating G_i iteratively and the space for deciding the connectivity between s and t in G_{ℓ} .

Now assume that the input graph G is connected and we prove that G_{ℓ} is an expander.

Lemma 6.2 For every D-regular, connected, non-bipartite graph G on [N] it holds that $\lambda(G) \leq 1 - 1/DN^2$.

Theorem 6.3 If $\lambda(H) \le 1/2$, then $1 - \lambda(G \boxtimes H) \ge 1/3 \cdot (1 - \lambda(G))$.

Theorem 6.4 For $i = 1, \dots, \ell$, we have $\lambda(G_i) \le \max \{\lambda^2(G_{i-1}), 1/2\}$.

Proof: Because $G_i = (G_{i-1} \boxtimes H)^8$, by Theorem 6.3 we have

$$\lambda(G_i) = \lambda^8(G_{i-1} \oslash H) \le \left(1 - \frac{1}{3} \cdot (1 - \lambda(G_{i-1}))\right)^8.$$

We consider the following two cases.

(1) $\lambda(G_i) \leq 1/2$. Then

$$\lambda(G_i) = \lambda^8(G_{i-1}(\mathbf{z})H) \le \left(1 - \frac{1}{3} \cdot \left(1 - \frac{1}{2}\right)\right)^8 \le \left(\frac{5}{6}\right)^8 \le \frac{1}{2}.$$

(2) $\lambda(G_i) > 1/2$. Because for any $x \in [1/2, 1]$ it holds

$$\left(1 - \frac{1}{3} \cdot (1 - x)\right)^4 \le x$$

we have

$$\lambda(G_i) = \lambda^8(G_{i-1} \odot H) \le \left(1 - \frac{1}{3} \cdot (1 - \lambda(G_{i-1}))\right)^8 \le \lambda^2(G_{i-1}).$$

Therefore for any $i \in \{1, \dots, \ell\}, \lambda(G_i) \leq \max\{\lambda^2(G_{i-1}), 1/2\}.$

Corollary 6.5 The spectral expansion of each connected component of G_{ℓ} is at most 1/2.

Proof: By Lemma 6.2 and Theorem 6.4.

Lemma 6.6 For every constant D, the transformation of G_i can be computed in space $O(\log N)$ on inputs G and H, where G is a D^{16} -regular graphs on [N] and H is a D-regular graph on $[D^{16}]$.

Therefore we can implement the algorithm in space $O(\log n)$.

Theorem 6.7 $USTCON \in L$.

Corollary 6.8 SL = L.

Proof: Because USTCON is an **SL**-complete problem, thus $USTCON \in L$ implies SL = L.

Appendix

Definition 6.9 The complexity class **L** consists of the language decidable within deterministic logarithmic space.

Definition 6.10 SL is the class of problems solvable by a nondeterministic Turing machine in logarithmic space, such that:

- 1. If the answer is 'yes', one or more computation paths accept.
- 2. If the answer is 'no', all paths reject.
- 3. If the machine can make a nondeterministic transition from configuration A to configuration B, then it can also transition from B to A. (This is what 'symmetric' means.)

The current view of log-space complexity classes is

 $\mathbf{L} \subseteq \mathbf{SL} \subseteq \mathbf{RL} \subseteq \mathbf{NL} \subseteq \mathbf{L}^2.$

Open Problem 1 $\mathbf{RL} = \mathbf{L}$?