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We consider the undirected connectivity problem. Given an undirected graph G represented
by adjacency matrix and two vertices s and t, the undirected connectivity problem is to decide
whether there is a path from s to t. Formally we define the language USTCON.

Definition 6.1 USTCON is defined as a set of triples (G, u, v) where G = (V,E) is an undi-
rected graph, u, v are two vertices in G so that there is a path from u to v in G.

This problem has received a lot of attention in the past few decades and the complexity of
USTCON has been well studied. The first randomized log-space algorithm for USTCON was
shown in 1979 by Aleliunas, Karp, Lipton, Lovász and Rackoff. In 1970, Savitch demonstrated
a simulation of a non-deterministic space S machine by a deterministic space S2 machine. Thus
USTCON ∈ SPACE

(
log2 n

)
. Nisan, Szemerdi and Wigderson in 1989 showed that USTCON ∈

SPACE
(

log3/2 n
)
. Armoni, Ta-Shma, Wigderson and Zhou in 2000 proved that USTCON ∈

SPACE
(

log4/3 n
)
. In 2005, Reingold used expander graphs to show that USTCON is in L and

SL collapses to L.
In this lecture we present Reingold’s algorithm for the USTCON problem.

1 Algorithm

Let G be an input graph. At a high-level overview, the algorithm reduces G to an expander G`

such that

• |V [G`]| = poly(|V [G]|).

• G` is regular and the degree of G` is constant.

• For any two vertices u and v in G, u and v are connected if and only if the vertices in G`

that correspond to u and v are also connected.

• Each connected component of G` is an expander. (The spectral expansion is at most 1/2.)

Therefore for any two vertices u and v in G, u and v are connected if and only if there is a path
of length O (log |V [G`]|) = O(log |V [G]|) to connect the vertices in G` that correspond to u and
v.

In the preprocessing step, we would like to transform the input graph G into a D16-regular
graph G1. Now let G1 be a D16-regular graph on [N ] and H is a

(
D16, D, 1/2

)
-graph. The

existence of such graphs is proven by probabilistic methods and for a constant D, such a graph
can be obtained by exhaustive search. Moreover, we can express H by the rotation map in
constant time.

Let ` be the smallest integer such that
(
1− 1

DN2

)2` ≤ 1/2. The algorithm is as follows.
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• For i=1 to ` = O(log |V [G0]|) do Gi+1 = (Gi©z H)8

• Check if s and t are connected in G` by enumerating over all O(logN) paths originating
at s.

Note that each Gi is a D16-regular graph over [N ] ×
([
D16

])i
. Since D is constant and

` = O(logN), G` has poly(N) vertices.

2 Analysis

The working space of the algorithm comes from two aspects: The space for calculating Gi

iteratively and the space for deciding the connectivity between s and t in G`.
Now assume that the input graph G is connected and we prove that G` is an expander.

Lemma 6.2 For every D-regular, connected, non-bipartite graph G on [N ] it holds that λ(G) ≤
1− 1/DN2.

Theorem 6.3 If λ(H) ≤ 1/2, then 1− λ(G©z H) ≥ 1/3 · (1− λ(G)).

Theorem 6.4 For i = 1, · · · , `, we have λ(Gi) ≤ max
{
λ2(Gi−1), 1/2

}
.

Proof: Because Gi = (Gi−1©z H)8, by Theorem 6.3 we have

λ(Gi) = λ8(Gi−1©z H) ≤
(

1− 1

3
· (1− λ(Gi−1))

)8

.

We consider the following two cases.
(1) λ(Gi) ≤ 1/2. Then

λ(Gi) = λ8(Gi−1©z H) ≤
(

1− 1

3
·
(

1− 1

2

))8

≤
(

5

6

)8

≤ 1

2
.

(2) λ(Gi) > 1/2. Because for any x ∈ [1/2, 1] it holds(
1− 1

3
· (1− x)

)4

≤ x,

we have

λ(Gi) = λ8(Gi−1©z H) ≤
(

1− 1

3
· (1− λ(Gi−1))

)8

≤ λ2(Gi−1).

Therefore for any i ∈ {1, · · · , `}, λ(Gi) ≤ max
{
λ2(Gi−1), 1/2

}
.

Corollary 6.5 The spectral expansion of each connected component of G` is at most 1/2.

Proof: By Lemma 6.2 and Theorem 6.4.

Lemma 6.6 For every constant D, the transformation of Gi can be computed in space O(logN)
on inputs G and H, where G is a D16-regular graphs on [N ] and H is a D-regular graph on[
D16

]
.

Therefore we can implement the algorithm in space O(log n).

Theorem 6.7 USTCON ∈ L.

Corollary 6.8 SL = L.

Proof: Because USTCON is an SL-complete problem, thus USTCON ∈ L implies SL = L.
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Appendix

Definition 6.9 The complexity class L consists of the language decidable within deterministic
logarithmic space.

Definition 6.10 SL is the class of problems solvable by a nondeterministic Turing machine in
logarithmic space, such that:

1. If the answer is ‘yes’, one or more computation paths accept.

2. If the answer is ‘no’, all paths reject.

3. If the machine can make a nondeterministic transition from configuration A to configura-
tion B, then it can also transition from B to A. (This is what ‘symmetric’ means.)

The current view of log-space complexity classes is

L ⊆ SL ⊆ RL ⊆ NL ⊆ L2.

Open Problem 1 RL = L?


