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Lecture 6: Undirected Connectivity in Log-Space
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We consider the undirected connectivity problem. Given an undirected graph G represented
by adjacency matrix and two vertices s and ¢, the wundirected connectivity problem is to decide
whether there is a path from s to t. Formally we define the language USTCON.

Definition 6.1 USTCON is defined as a set of triples (G,u,v) where G = (V, E) is an undi-
rected graph, u,v are two vertices in G so that there is a path from u to v in G.

This problem has received a lot of attention in the past few decades and the complexity of
USTCON has been well studied. The first randomized log-space algorithm for USTCON was
shown in 1979 by Aleliunas, Karp, Lipton, Lovasz and Rackoff. In 1970, Savitch demonstrated
a simulation of a non-deterministic space S machine by a deterministic space S? machine. Thus
USTCON € SPACE (1og2 n) Nisan, Szemerdi and Wigderson in 1989 showed that USTCON €
SPACE(log‘Q’/2 n) Armoni, Ta-Shma, Wigderson and Zhou in 2000 proved that USTCON €
SPACE(logZL/3 n) In 2005, Reingold used expander graphs to show that USTCON is in L and
SL collapses to L.

In this lecture we present Reingold’s algorithm for the USTCON problem.

1 Algorithm

Let G be an input graph. At a high-level overview, the algorithm reduces G to an expander Gy
such that

o [VIG]| = poly(IV[G])).
e (5 is regular and the degree of Gy is constant.

e For any two vertices v and v in G, v and v are connected if and only if the vertices in G,
that correspond to u and v are also connected.

e Each connected component of Gy is an expander. (The spectral expansion is at most 1/2.)

Therefore for any two vertices v and v in G, u and v are connected if and only if there is a path
of length O (log |V [G¢]|) = O(log |V [G]]|) to connect the vertices in Gy that correspond to u and
.

In the preprocessing step, we would like to transform the input graph G into a D'-regular
graph G1. Now let G1 be a D'-regular graph on [N] and H is a (D16,D, 1/2)—graph. The
existence of such graphs is proven by probabilistic methods and for a constant D, such a graph
can be obtained by exhaustive search. Moreover, we can express H by the rotation map in
constant time.

Let ¢ be the smallest integer such that (1 — T}VQ)Q

14
< 1/2. The algorithm is as follows.
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e For i=1to ¢ = (’)(log |V[G0”) do Gz’+1 = (Gz @H)S

e Check if s and ¢ are connected in Gy by enumerating over all O(log N) paths originating
at s.

Note that each G; is a D'%-regular graph over [N] x ([Dw])i. Since D is constant and
¢ = 0O(log N), Gy has poly(N) vertices.

2 Analysis

The working space of the algorithm comes from two aspects: The space for calculating G;
iteratively and the space for deciding the connectivity between s and t in Gj.
Now assume that the input graph G is connected and we prove that Gy is an expander.

Lemma 6.2 For every D-regular, connected, non-bipartite graph G on [N] it holds that A\(G) <
1—-1/DN2

Theorem 6.3 If\(H) <1/2, then1 — NG @H) >1/3-(1 — \(Q)).
Theorem 6.4 Fori=1,---,{, we have A\(G;) < max {\*(G;_1),1/2}.
Proof: Because G; = (G;_1 @ H)2, by Theorem 6.3 we have

8
MG = NGy @ H) < (1 Sl A(GH))) |

We consider the following two cases.
(1) AM(G;) < 1/2. Then

MGy =X(Gi1 @ H) < (1 — é (1— ;))8 < (2>8 < %

(2) A(G;) > 1/2. Because for any = € [1/2,1] it holds

( —;(1—1:))49,

we have g
ANGi) =X(Gis1@H) < (1 - % (11— )‘(Gi—l))) < N(Gi).
Therefore for any i € {1,---, ¢}, M(G;) < max {\*(G,-1),1/2}. ]

Corollary 6.5 The spectral expansion of each connected component of Gy is at most 1/2.

Proof: By Lemma 6.2 and Theorem 6.4. [ |

Lemma 6.6 For every constant D, the transformation of G; can be computed in space O(log N')
on inputs G and H, where G is a D'%-regular graphs on [N] and H is a D-regular graph on

[DIG] .
Therefore we can implement the algorithm in space O(logn).
Theorem 6.7 USTCON € L.
Corollary 6.8 SL = L.
Proof: Because USTCON is an SL-complete problem, thus USTCON € L implies SL=L. =
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Appendix

Definition 6.9 The complexity class L consists of the language decidable within deterministic
logarithmic space.

Definition 6.10 SL is the class of problems solvable by a nondeterministic Turing machine in
logarithmic space, such that:

1. If the answer is ‘yes’, one or more computation paths accept.
2. If the answer is ‘no’, all paths reject.

3. If the machine can make a nondeterministic transition from configuration A to configura-
tion B, then it can also transition from B to A. (This is what ‘symmetric’ means.)

The current view of log-space complexity classes is
L CSLCRLCNLCL2

Open Problem 1 RL=L?



