
Expander Graphs in Computer Science WS 2010/2011

Lecture 7: Pesudorandom Generators (I)

Lecturer: He Sun

When we design randomized algorithms, we assume that all the randomized algorithms can
get truly random bits, i. e. the bits are unbiased and completed independent. This assumption
leads to the question of generating truly random bits. Can we generate truly random bits using
the source with little randomness? Can we effectively generate “almost random bits” that any
polynomial-time algorithm fails to distinguish from truly random bits?

Another motivation of studying pseudorandomness is to understand the roles and limitations
of randomness. It was shown that, under reasonable assumptions, a number of randomized
complexity classes, e. g. BPP and RL, can be derandomized.

1 Indistinguishability

Definition 7.1 (probability ensembles) A probability ensemble X is a family X = {Xn}n≥1

such that Xn is a probability distribution on some finite domain.

Definition 7.2 (Computational Indistinguishability) Let D and E be probability ensem-
bles. The success probability of algorithm A for distinguishing D and E is

spn(A) =
∣∣Pr[A(X) = 1]− Pr[A(Y) = 1]

∣∣,
where X has distribution D and Y has distribution E. Distributions D and E are called compu-
tationally indistinguishable if for any probabilistic polynomial-time algorithm A, for any positive
polynomial p(·), and for all sufficiently large n’s spn(A) < 1/p(n).

We use D ∼c E to express that D and E are computationally indistinguishable.

Definition 7.3 (Statistical Distance) Let D and E be two distributions on a set Ω. The
statistical distance between D and E is defined by

∆(D, E) = max
X⊆Ω

∣∣∣∣Pr
D

(X)− Pr
E

(X)

∣∣∣∣ .
We say that D and E are ε-close if ∆(D, E) ≤ ε.

Lemma 7.4 ∆(D, E) = 1
2 ·
∑

α∈Ω |Pr [D = α]− Pr [E = α]| .

Definition 7.5 (Statistical Indistinguishability) Two probability ensembles {Xn}n∈N and
{Yn}n∈N are called statistically indistinguishable if for any positive polynomial p(·), and for all
sufficiently large n’s, it holds that

∆(Xn, Yn) <
1

p(n)
.

1

2 Lecture 7: Pesudorandom Generators (I)

We use D ∼s E to express that D and E are statistically indistinguishable.

Theorem 7.6 Let D1 and D2 be two distributions. For any function f , we have

∆(f(D1), f(D2)) ≤ ∆(D1,D2).

Additionally, if f is polynomial-time computable, and D1 and D2 are computationally indistin-
guishable, then f(D1) and f(D2) are also computationally indistinguishable.

Proof: Let B be any event on Ω′ and f : Ω→ Ω′, then

Pr
f(D1)

[B]− Pr
f(D2)

[B] = Pr
D1

[
f−1(B)

]
− Pr
D2

[
f−1(B)

]
≤
∣∣∣∣Pr
D1

[
f−1(B)

]
− Pr
D2

[
f−1(B)

]∣∣∣∣
≤ ∆(D1,D2)

If f is polynomial-time computable, and there is an algorithm A to distinguish f(D1) and
f(D2) with probability δ, then there is a new algorithm A′ to distinguish D1 and D2: For the
input x ∈ Ω, Algorithm A′ outputs A(f(x)).

The complexity of A′ is essentially equal to A, and

Pr
x∈D1

[
A′(x) = 1

]
= Pr

f(x)∈f(D1)
[A(f(x)) = 1].

So A′ can distinguish D1 and D2 with probability δ.
In conclusion, if D1 and D2 are computationally indistinguishable, so are f(D1) and f(D2)

computationally indistinguishable.

Proposition 7.7 1. Given two distributions D and E, if D ∼s E, then D ∼c E.
2. The both are closed under function applications.(Note that for computational indistin-

guishability, the function must be computable.)
3. The both are closed under direct products with independent distributions.

We note that there are computationally indistinguishable probability ensembles which are
statistically distinguishable, i. e. the notion of computational indistinguishability is a relaxation
of the notion of statistical indistinguishability.

2 Measures of Entropy

Definition 7.8 (Entropy) Let D = {p1, p2, · · · , pn} be a probability distribution. Then the
quantity

Hb(D) = −
n∑
i=1

pi logb pi =

n∑
i=1

pi logb
1

pi

is called the b-ary entropy of the distribution D.

In general, we use the 2-ary entropy. In this situation, we ignore suffix of H2 and only write
H.

The entropy measures both the amount of uncertainty in a distribution before sampling,
and the amount of information obtained by sampling.

Lecture 7: Pesudorandom Generators (I) 3

Definition 7.9 Given a distribution D on {0, 1}n, the min-Entropy H∞(D) is defined as

H∞(D) = min
x∈{0,1}n

{− log2 (Pr[D = x])} .

A k-source is a distribution with min-entropy at least k. The entropy rate of a k-source on
{0, 1}n is k/n; we sometimes call a k-source a rate-k/n-source.

Note that the Shannon entropy measures the amount of randomness a distribution contains
on average and the min-entropy measures the amount of randomness on the worst case.

Definition 7.10 (Renyi Entropy) Let D be a distribution on a set S. The Renyi entropy of
D is

HRen(D) = − log(Pr[X = Y])

where X ∈D S and Y ∈D S are independent.

Definition 7.11 (Collision Probability) Let D be a distribution on a set S. The collision
probability of D is

CP(D) = Pr
X,Y ∈S

[X = Y]

where X ∈D S and Y ∈D S are independent.

From the above notation, we found that the collision probability can be expressed as∑
x∈S

(Pr[D = x])2 and HRen(D) = − log CP(D). Especially, if D is uniform on {0, 1}n, then

CP(D) = 2−n and HRen(D) = n.

Lemma 7.12 For any distribution D on a set S, it holds that

1

2
·HRen(D) ≤ H∞(D) ≤ HRen(D) ≤ H(D).

Proof: Since

CP(D) =
∑
x∈S

(
Pr[D = x]

)2 ≤ max
x∈S

{
Pr[D = x]

}
·
∑
y∈S

Pr[D = y] = max
x∈S

{
Pr[D = x]

}
,

therefore − log CP(D) ≥ − log
(
maxx∈S

{
Pr[D = x]

})
, i. e. HRen(D) ≥ H∞(D).

Secondly, because ∑
x∈S

(
Pr[D = x]

)2 ≥ max
x∈S

{
(Pr[D = x])2

}
,

we get

− log

(∑
x

(Pr[D = x])2

)
≤ − log

(
max
x∈S

{
(Pr[D = x])2

})
,

i. e. HRen(D) ≤ 2H∞(D).
Thirdly, by AG inequality1 we have∑

x∈S
(Pr [D = x])2 ≥

∏
x∈S

(Pr[D = x])Pr[D=x] .

1Let x1, · · · , xn > 0, and δ1, · · · , δn > 0,
∑n
i=1 δi = 1. Then

∑n
i=1 δixi ≥

∏n
i=1 x

δi
i .

4 Lecture 7: Pesudorandom Generators (I)

Thus

− log

(∑
x∈S

(Pr[D = x])2

)
≤ − log

(∏
x∈S

(Pr[D = x])Pr[D=x]

)
= −

∑
x∈S

Pr[D = x] · log Pr[D = x],

which implies HRen(D) ≤ H(D).
Combining with the inequalities above, we get the result.
Besides Lemma 7.12, all the three measures of entropy satisfies the following properties:

• 0 ≤ H̃(D) ≤ log |support(D)|. Here H̃ ∈ {H,HRen,H∞} .

• For every deterministic function f , we have H̃(f(D)) ≤ H̃(D).

3 Pseudorandom Generators

Motivated by the need of making nuclear weapon, Monte Carlo method is introduced by Ulam
in 1940s. Closely related is the notion of pseudorandom generators. In 1982, Blum and Micali
introduced the idea of a generator which procedures its output in polynomial time such that
its output passes a polynomial time test. In the same year, Yao gave another definition of
pseudorandom generators, and proved this definition is equal to Blum’s definition.

Loosely speaking, pseudorandom generators are defined as efficient deterministic algorithms
which stretch short random seeds into longer pseudorandom sequences. There are three funda-
mental aspects for pseudorandom generators.

• Efficiency: The generator must be efficient, which means that the pseudorandom genera-
tors must produce pseudorandom sequences with polynomial-time. In fact, pseudorandom
generators are one kind of deterministic polynomial-time algorithm.

• Stretching: The generator is required to stretch its input seed to a longer output sequence.
Specifically, the generator stretches an n-bit input into an `(n)-bit long output, where
`(n) > n. The function ` is called the stretching function of the generator.

• Pseudorandomness: The generator’s output has to look random to any efficient observer.
That is, any procedure should fail to distinguish the output of a generator (on a random
seed) from a truly random sequence of the same length in the polynomial time. For
instance, a procedure could count the number of 0’s and 1’s and any pseudorandom
generator need output almost the same number of 0’1 and 1’s.

Definition 7.13 (Pseudorandom Generators) A deterministic polynomial-time algorithm
G is called a pseudorandom generator if there exists a stretching function ` : N 7→ N, such that
the following two probability ensembles, denoted {Gn}n∈N and {Un}n∈N, are computationally
indistinguishable.

1. Distribution Gn is defined as the output of G whose length is `(n) on a uniformly selected
seed in {0, 1}n.

2. Distribution Un is defined as the uniform distribution on {0, 1}`(n), `(n) > n.

Lecture 7: Pesudorandom Generators (I) 5

That is, letting Um denote the uniform distribution over {0, 1}m, we require that for any prob-
abilistic polynomial-time algorithm A, for any positive polynomial p(·), and for all sufficiently
large n’s, it holds that ∣∣∣Pr [A(G(Un)) = 1]− Pr

[
A
(
U`(n)

)
= 1
] ∣∣∣ < 1

p(n)
.

From the above definition, we know that pseudorandomness is defined in terms of its ob-
server. It is a distribution which cannot be told apart from a uniform distribution by any
polynomial-time observer. However, pseudorandom sequences may be distinguished from truly
random ones by infinitely powerful observers or more powerful observers. For instance, the pseu-
dorandom sequence that cannot be distinguished from truly random ones by any polynomial-
time observer could be distinguished from truly random ones by an exponential-time machine.
So pseudorandomness is subjective to the abilities of the observer.

The Formulation of Pseudorandom Generators

The formulation of pseudorandom generators consists of three aspects: (1) The
stretching measure of the generators; (2) The class of distinguishers that the
generators are supposed to fool, i. e. the class of algorithms that are allowed
to distinguish the output of generators and the truly uniform distributions;
(3) The resources that generators are allowed to use.

As mentioned above, pseudorandom generators and computational difficulty are strongly
related. To show the computational difficulty, we introduce the notion of one-way functions.

One-way functions is the foundation of modern cryptography, and closely related to public-
key cryptosystem, pseudorandom generators, and digital signature. Intuitively, one-way func-
tions are the class of functions that are easy computed and hard inverted. The formal definition
of one-way functions is as follows.

Definition 7.14 (One-way Functions) A function f : {0, 1}∗ → {0, 1}∗ is one-way if f
satisfies the following two conditions:

1. There exists a polynomial-time algorithm A to compute f , i. e. ∀x : A(x) = f(x).

2. For all probabilistic polynomial-time A′, polynomials p(·) and sufficiently large n’s, it holds
that

Pr
[
A′(f(Un)) = f−1 ◦ f(Un)

]
<

1

p(n)
.

We call the algorithm that tries to invert a one-way function or tries to distinguish the
output of a pseudorandom generator from a truly random string an adversary.

In 1993, H̊astad, Impagliazzo, Levin and Luby proved the following definitive theorem:
Starting with any one-way function, one can construct a pseudorandom generator.

Theorem 7.15 Pseudorandom generators exist if and only if one-way functions exist.

6 Lecture 7: Pesudorandom Generators (I)

There are a few problems that seem to be one-way in practice and are conjectured to be
one-way. A typical example is the discrete logarithm function.

Problem 7.16 (The Discrete Logarithm Problem) Given a prime modulus p and a gen-
erator g ∈ Z∗p, for y = gx mod p find the index x.

Before giving the constructions of PRGs, we show that it suffices to construct PRGs with
stretching function `(n) = n+ 1.

Theorem 7.17 (amplification of stretch function) Suppose we have a pseudorandom gen-
erator G with a stretch function n+ 1, then for every polynomial `(n) > n there exists a pseu-
dorandom generator with stretch function `(n).

Proof: Let G be a pseudorandom generator with a stretching function n+ 1. We construct
a pseudorandom generator Gi with stretching function `(n) = n+ 1. Define

Gi(Xn) =

{
G (Xn) i = 1
Gi−1 (G (Xn)1···n) ◦G (Xn)n+1 i > 1

where G(Xn)i is the i-bit of G(Xn), G(Xn)i···j is the substring of G(Xn) from the i-th bit up
to the j-th bit, and ◦ represents the concatenation operator between two strings.

Define a sequence of distributions as follows:

D0 : Xn ◦ Um, D1 : G(Xn) ◦ Um−1, · · · , Dm : Gm(Xn).

Now we show that each Gi is a PRG. At first, an obvious fact is that Gm(Xn) ∼c Un+m

if and only if Gm(Xn) ∼c D0. So it suffices to show that there is no algorithm to distinguish
Gm(Xn) from D0. Assume that there is an algorithm A, and polynomial p, such that

|Pr [A(Dm) = 1]− Pr [A(D0) = 1]| ≥ 1

p(n)
.

Because∣∣∣Pr[A(Dm) = 1]− Pr[A(D0) = 1]
∣∣∣ =

∣∣∣∣∣
m∑
i=1

(Pr[A(Di) = 1]− Pr[A(Di−1) = 1])

∣∣∣∣∣
≤

m∑
i=1

∣∣∣Pr[A(Di) = 1]− Pr[A(Di−1) = 1]
∣∣∣

therefore there is i ∈ {1, · · · ,m} such that∣∣∣Pr[A(Di) = 1]− Pr[A(Di−1) = 1]
∣∣∣ > 1

m · p(n)

which contradicts the assumption that Di ∼c Di+1.

