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1 Definitions

Extractors are functions which can extract random bits from any distribution which contains
sufficient randomness and have played a unifying role in the theory of pseudorandomness.

Examples of k-sources:

• k random and independent bits, together with n − k fixed bits (in an arbitrary order).
They are called oblivious bit-fixing sources.

• k random and independent bits, and n− k bits that depend arbitrarily on the first k bits.
They are called adaptive bit-fixing sources.

• Uniform distribution on S ⊆ {0, 1}n with |S| = 2k. These are called flat k-sources.

Proposition 9.1 Every k-source is a convex combination of flat k-sources (provided that 2k ∈
N), i. e. X =

∑
i piXi with 0 ≤ pi ≤ 1,

∑
pi = 1 and all the Xi are flat k-sources.

Definition 9.2 (deterministic extractors) Let C be a class of sources on {0, 1}n. An ε-
extractor for C is a function Ext : {0, 1}n → {0, 1}m such that for every X ∈ C, Ext(X) is
“ε-close” to Um.

Lemma 9.3 Let A(w; r) be a randomized algorithm such that A(w;Um) has error probability
at most γ, and let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε)-extractor for a class C of sources
on {0, 1}n. Define A′(w, r) = A(w,Ext(x)). Then for every source X ∈ C, A′(w;X) has error
probability at most γ + ε.

Proposition 9.4 For any Ext : {0, 1}n → {0, 1} there exists an (n − 1)-source X such that
Ext(X) is constant.

Proof: Without loss of generality, we assume that |Ext−1(0)| ≥ |Ext−1(1)|. Then |Ext−1(0)| ≥
2n−1. Let X be the uniform distribution on Ext−1(0).

So we require a weaker concept of extractors. That is, we hope that, by using a small
number of random bits which is an additional input, the output of extractors is ε-close to
uniform distributions.

Definition 9.5 (seeded extractors) A (k, ε)-extractor is a function Ext : {0, 1}n×{0, 1}d →
{0, 1}m such that for every distribution X on {0, 1}n with H∞(X) ≥ k the distribution Ext(X,Ud)
is ε-close to Um.
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Every extractor has five different parameters:

• The length of the source n.

• The output length m.

• The length of seeds d.

• The min-entropy threshold k.

• The error of the extractor ε.

We refer to the ratio k/n as the entropy rate of the source X and to the ratio m/k as
the fraction of randomness extracted by Ext. The goal of constructing good extractors is to
minimize d and maximize m.

Applications of extractors include:

• Simulating randomized algorithms using weak random sources.

• Random sampling using few random bits.

• Expanders that beat the eigenvalue bound.

• Explicit constructions of error correcting codes.

As an example, let us see the applications of extractors for simulating randomized algorithms.
Assume that algorithm A uses m random bits. Since we do not know how to obtain truly random
bits, algorithm A uses the “almost random” strings to instead to purely random ones. That is,
the random strings for A come from the output of Ext(X,Ud). The randomness used for seeds
can be eliminated by running all the possible seeds and taking the majority value. In particular,
an explicit extractor with logarithmic seed length can be used to simulate BPP given access to
a weak random source of sufficient min-entropy.

Lemma 9.6 Let A(w; r) be a randomized algorithm such that A(w;Um) has error probability
at most γ, and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Define

A′ = majy∈{0,1}d {A(w,Ext(x, y))} .

Then for every k-source X on {0, 1}n, A′(x;X) has error probability at most 2(γ + ε).

2 Extractors as Hash Functions

Throughout the note, capital variables are 2 raised to the power of the corresponding lower
variable, e. g. D = 2d.

Definition 9.7 (pairwise independent hash functions) A family of pairwise hash func-
tions is a set of functions h : D → R such that for any distinct x1, x2 ∈ D and all (not
necessarily distinct) y1, y2 ∈ R, it holds that

Pr[h(x1) = y1 ∧ h(x2) = y2] =
1

|R|2
.
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Theorem 9.8 (Leftover Hash Lemma) If H = {h : {0, 1}n → {0, 1}m} is a family of pair-
wise independent hash functions where m = k − 2 log(1/ε). Then Ext(x, h) = (h, h(x)) is a
(k, ε)-extractor.

Proof: Let X be an arbitrary k-source on {0, 1}n and d be the seed length of Ext. Choose
H randomly from H. We show that (X,H(X)) is ε-close to Ud × Um in the following three
steps.

Step 1: By definition CP(H,H(X)) = Pr[(H,H(X)) = (H ′, H ′(X ′))], where (H ′, H ′(X ′))
is independent of and identically distributed to (H,H(X)). Because (H,H(X)) = (H ′, H ′(X ′))
if and only if H = H ′ and either X = X ′ or X 6= X ′ but H(X) = H(X ′). Therefore

CP(H,H(X)) = CP(H) ·
(
CP(X) + Pr[H(X) = H(X ′)|X 6= X ′]

)
≤ 1

D
·
(

1

K
+

1

M

)
=

1 + ε2

DM
,

where the last equality uses the fact that m = k − 2 log(1/ε).
Step 2:

‖(H,H(X))− Ud × Um‖2 = CP(H,H(X))− CP(Ud × Um)

≤ 1 + ε2

DM
− 1

DM
=

ε2

DM

Step 3:

∆((H,H(X)),Ud × Um) =
1

2
· ‖(H,H(X))− Ud × Um‖1

≤
√
DM

2
· ‖(H,H(X))− Ud × Um‖

≤
√
DM

2
·
√

ε2

DM

=
ε

2
.

Therefore Ext(x, h(x)) is a (k, ε)-extractor.

3 Extractors v.s. Expanders

Extractors Ext : {0, 1}n×{0, 1}d → {0, 1}m can be thought as bipartite graphsG = ([N ], [M ], E)
where the nodes of the left side are strings of length n and the nodes of the right side are strings
of length m. Every node x on the left side is connected to all 2d nodes z for which there exists a
y ∈ {0, 1}d such that Ext(x, y) = z. By the definition of extractors, for every set S ⊆ {0, 1}n of
size 2k on the left hand side and for every set T ⊆ {0, 1}m on the right hand side, the number
of edges between S and T is close to what one expects in a random graph. More precisely, we
have ∣∣∣e(S, T )− |S| · |T | · 2d−m

∣∣∣ ≤ ε,
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where e(S, T ) is the size of E(S, T ).

Comments:

• Extractors are unbalanced bipartite graphs.

• The degree of extractors is not constant.

3.1 Extractors ⇒ Expanders

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be an extractor. Then for any set S ⊆ [N ] of size K, we
have

∆(Ext(US ,Ud),Um) ≤ ε

where US is the uniform distribution on S. Let µ(S) = |S|/N and µ(T ) = |T |/M . Then for
any set T ⊆ [M ], it holds that

|Pr[Ext(US ,Ud) ∈ T ]− µ(T )| ≤ ε,

i. e., ∣∣∣∣e(S, T )

|S| ·D
− µ(T )

∣∣∣∣ ≤ ε.
We rewrite the inequality above as∣∣∣∣e(S, T )

ND
− µ(S)µ(T )

∣∣∣∣ ≤ εµ(S). (1)

Proposition 9.9 Ext is a (k, ε)-extractor iff the corresponding bipartite graph G = ([N ], [M ], E)

with left-degree D has the property that
∣∣∣ e(S,T )

ND − µ(S)µ(T )
∣∣∣ ≤ εµ(S) for every S ⊆ [N ] of size

K and every T ⊆ [M ].

3.2 Expanders ⇒ Extractors

Comparing Eq. (1) with the Expander Mixing Lemma, which states that for any graph G with
spectral expansion λ and for any sets S, T ⊆ [N ], we have∣∣∣∣e(S, T )

N ·D
− µ(S)µ(T )

∣∣∣∣ ≤ λ√µ(S)µ(T ),

it suffices that G is an extractor if λ ·
√
µ(S)µ(T ) ≤ εµ(S) for all S ⊆ [N ] of size K and all

T ⊆ [N ]. So it suffices for λ ≤ ε
√
K/N .

For the constructions of such expanders, we take an appropriate power of a constant degree
expander. Specially, let G0 be a D0-regular expander on N vertices with bounded spectral
expansion. We take the t-th power of G0 and let G = Gt

0 where t = O(log((1/ε)
√
N/K)) =

O(n− k + log(1/ε)).

Theorem 9.10 For every n, k ∈ N and ε > 0, there is an explicit (k, ε)-extractor Ext : {0, 1}n×
{0, 1}d → {0, 1}n with d = O(n− k + log(1/ε)).
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3.3 Comparison

Expanders Extractors

Measured by vertex or spectral expansion Measured by min-entropy/statistical difference
Typically constant degree Typically logarithmic or poly-logarithmic degree
All sets of size at most K expand All sets of size exactly (or at least) K expand
Typically balanced Typically unbalanced, bipartite graphs


