Expander Graphs in Computer Science Introduction to Expander Graphs

He Sun

Max Planck Institute for Informatics

Oct., 19, 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Course Information

What are expander graphs

Applications

Super Concentrators Error Correcting Codes Saving Random Bits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Course Information

- Time: Tuesday 2:00PM 4:00PM
- Location: Lecture Hall 003, Campus E1. 3
- Credit: 6 ECTS credit points
- ► Lecturer: He Sun
- Email: hsun@mpi-inf.mpg.de
- Prerequisites: Basic knowledge of Complexity and Probability

Course Information(cont'd)

Grading

- Homework 60% (3 problem sets), Final exam 40% (oral exam)
- You need to collect at least 50% of the homework points to be eligible to take the final exam.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Course Homepage

http://www.mpi-inf.mpg.de/departments/D1/teaching/WS10/EG/WS10.html

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Outline

Course Information

What are expander graphs

Applications

Super Concentrators Error Correcting Codes Saving Random Bits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Combinatorically, expanders are highly connected graphs, and to disconnect a large part of the graph, one has to sever many edges.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Combinatorically, expanders are highly connected graphs, and to disconnect a large part of the graph, one has to sever many edges.
- Geometrically, every vertex set has a relatively very large boundary.

- Combinatorically, expanders are highly connected graphs, and to disconnect a large part of the graph, one has to sever many edges.
- Geometrically, every vertex set has a relatively very large boundary.
- From the Probabilistic view, expanders are graphs whose behavior is "like" random graphs.

- Combinatorically, expanders are highly connected graphs, and to disconnect a large part of the graph, one has to sever many edges.
- Geometrically, every vertex set has a relatively very large boundary.
- From the Probabilistic view, expanders are graphs whose behavior is "like" random graphs.
- Algebraically, expanders are the real-symmetric matrix whose first positive eigenvalue of the Laplace operator is bounded away from zero.

- Combinatorically, expanders are highly connected graphs, and to disconnect a large part of the graph, one has to sever many edges.
- Geometrically, every vertex set has a relatively very large boundary.
- From the Probabilistic view, expanders are graphs whose behavior is "like" random graphs.
- Algebraically, expanders are the real-symmetric matrix whose first positive eigenvalue of the Laplace operator is bounded away from zero.

Vertex Expansion

We consider <u>undirected</u>, regular graphs G=(V,E). G can have self-loops and multi-edges.

For any set $S \subseteq V$, let

$$\Gamma(S) := \{ u : v \in S \text{ and } (u, v) \in E \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

be the neighboring set of S.

Vertex Expansion

We consider <u>undirected</u>, regular graphs G = (V, E). G can have self-loops and multi-edges.

For any set $S \subseteq V$, let

$$\Gamma(S) := \{ u : v \in S \text{ and } (u, v) \in E \}$$

be the neighboring set of S.

Definition

A graph G = (V, E) is said to have vertex expansion (K, A) if

 $|\Gamma(S)| \geq A \cdot |S|, \; \forall S \subseteq V, |S| \leq K.$

Edge Expansion

Let G = (V, E) be an undirected graph. For any set $S \subseteq V$, let

 $\partial S := E(S, \overline{S})$

be the edge boundary of S.

Definition

The edge expansion of a graph G = (V, E) is

$$h(G) := \min_{S:|S| \le |V|/2} rac{|\partial S|}{|S|}.$$

Examples:

- If G is a complete graph, then $h(G) = \lceil |V|/2 \rceil$.
- If G is not connected, then h(G) = 0.

Definition of Expander Graphs

Definition

Let $d \in \mathbb{N}$. A sequence of *d*-regular graphs $\{G_i\}_{i \in \mathbb{N}}$ of size increasing with *i* is a family of expanders if there is $\epsilon > 0$ such that $h(G_i) \ge \epsilon$ for all *i*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

Any expander graph is a connected graph.

Two General Problems on Expanders

Existence

- Probabilistic methods
- Kolmogorov complexity
- Constructibility
 - Combinatorial methods

- Algebraic methods
- ▶ ...

Existence of Expander Graphs

Two general problems

- Existence
- Constructibility

Let $\mathcal{G}_{d,N}$ be the set of bipartite graphs with bipartite sets L, R of size N and left degree d.

Theorem

For any d, there exists an $\alpha(d) > 0$, such that for all N

$$\Pr[G \text{ is an } (\alpha N, d-2)\text{-expander}] \geq 1/2,$$

where G is chosen uniformly from $\mathcal{G}_{d,N}$.

Constructibility of Expander Graphs

Two general problems

- Existence
- Constructibility

Definition

Let $\{G_i\}_i$ be a family of expander graphs where G_i is a *d*-regular graph on n_i vertices and the integers $\{n_i\}$ are increasing, but not too fast.(e.g. $n_{i+1} \leq n_i^2$ will do)

- 1. The family is called Mildly Explicit if there is an algorithm that generates the *j*-th graph in the family $\{G_i\}_i$ in time polynomial in *j*.
- 2. The family is called Very Explicit if there is an algorithm that on input of an integer i, a vertex $v \in V(G_i)$ and $k \in \{1, \dots, d\}$ computes the k-th neighbor of the vertex v in the graph G_i . The algorithm's running time should be polynomial in its input length.

Examples

Theorem (Margulis, 1973)

Fix a positive integer M and let $[M] = \{1, 2, \dots, M\}$. Define the bipartite graph G = (V, E) as follows. Let $V = [M]^2 \cup [M]^2$, where vertices in the first partite set as denoted $(x, y)_1$ and vertices in the second partite set are denoted $(x, y)_2$. From each vertex $(x, y)_1$, put in edges

$$(x,y)_2, (x,x+y)_2, (x,x+y+1)_2, (x+y,y)_2, (x+y+1,y)_2, \\$$

where all arithmetic is done modulo M. Then G is an expander.

Theorem (Jimbo and Maruoka, 1987)

Let $G = (L \cup R, E)$ be the graph described above, then $\forall X \subset L$, $|\Gamma(X)| \ge |X|(1 + d_0|\overline{X}|/n)$, where $d_0 = (2 - \sqrt{3})/4$ is the optimal constant.

Outline

Course Information

What are expander graphs

Applications

Super Concentrators Error Correcting Codes Saving Random Bits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Applications of Expanders

- In Computer Science
 - Derandomization
 - Circuit complexity
 - Error correcting codes
 - Communication networks
 - Approximation algorithms

In Mathematics

- Graph theory
- Group theory
- Number theory
- Information theory

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Three Motivating Problems

1. Super Concentrators

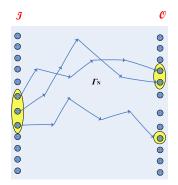
2. Error Correcting Code

3. Deterministic Error Amplification for RP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Super Concentrators

For any integer $N \in \mathbb{N}$, an N-super concentrator Γ_N is a directed graph with input set I and output set O, |I| = |O| = N, such that for any subset $S \subseteq I$ and $T \subseteq O$ satisfying |S| = |T| = k, there are k vertex-disjoint directed paths in Γ_N from S to T.



Applications

- 1. Complexity Theory
- 2. Network Design
- 3. Matrix Theory

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

4.

Progress in the Past 30 Years

The density of a super concentrator Γ_N is

$$\frac{\# \text{ of edges in } \Gamma_N}{N}.$$

Table: Explicit construction of super concentrator

Authors	Density	Year	Conf./Jour.
Valiant	238	1975	STOC
Gabber	271.8	1981	JCSS
Shamir	118	1984	STACS
Alon	60	1987	JACM
Alon	44 + o(1)	2003	SODA

Note: Alon's construction in 2003 is feasible only if $N \ge 262,080$.

Existence: Super concentrators with density 28 exists.

Lower Bound of the Density[Valiant, 1983]: 5 - o(1).

Expanders Used in Super Concentrators

Lemma

Assume that $\{G_i\}_{i\in\mathbb{N}}$ is a family of bipartite expanders with bipartite sets L, R with $|R| = \alpha |L|, 1/2 < \alpha < 1$ and left degree d. Moreover each graph in $\{G_i\}_{i\in\mathbb{N}}$ has vertex expansion ≥ 1 . Then there is a super concentrator with density

$$\frac{1+2d}{1-\alpha}.$$

Error Correcting Codes

Let $\mathcal{C} \subseteq \{0,1\}^n$ be a dictionary. The <u>rate</u> and <u>normalized distance</u> are

$$R := \frac{\log |\mathcal{C}|}{n} \quad \delta := \frac{\min_{c_1 \neq c_2 \in \mathcal{C}} d_H(c_1, c_2)}{n}$$

Problem: Is it possible to design arbitrarily large dictionaries $\{C_k\}$ of size $|C_k| = 2^k$, with $R(C_k) \ge R_0$ and $\delta(C_k) \ge \delta_0$ for some absolute constant $R_0, \delta_0 > 0$? Moreover, can we make these code explicit and efficiently encodable and decodable?

Definition (RP)

The complexity class RP is the class of all languages L for which there exists a probabilistic polynomial-time Turning machine M, such that

 $\begin{aligned} x \in L \Rightarrow \Pr[M(x) = 1] \geq 3/4 \\ x \notin L \Rightarrow \Pr[M(x) = 1] = 0 \end{aligned}$

Independent V.S. Dependent Sampling

No.	# of random bits	Methods	Error Prob.
1	r	Def. of RP	1/4
2	$O(r \log \frac{1}{\delta})$	Chernoff Bound	δ
3	r	Expander Graph	$\frac{1}{\operatorname{poly}(r)}$

Algorithm for Saving Random Bits

Lemma

There is an algorithm A^* , such that for the given vertex v and index $i \in \{1, \dots, d\}$, Algorithm A^* can output the *i*-th neighbor of v with time complexity poly(|v|, |i|).

Algorithm Description M^*

1. Run the original RP algorithm M for all strings y lying within a ball of radius c around $v, v \sim_u V$.

- 2. If for all these y, M(x, y) = 0, reject x.
- 3. If M(x, y) = 1 for any y, accept x.

<u>Note:</u> Algorithm M^* uses an (N/2, A)-expander, where $N = 2^r$. The parameter c is satisfying $1/4A^c < \delta$.

Algorithm for Saving Random Bits (cont'd)

For any language $L \in RP$ and $x \in L$, define

 $Bad_x = \{y|M(x,y) = 0\} \quad B = \{v|\Gamma'_c(v) \subseteq Bad_x\}$

So $M^*(x,v) = 0$ if and only if $v \in B$.

By definition of RP, $|Bad_x| \leq N/4, N = 2^r$, and

 $\Gamma'_{i}(B) \subseteq \Gamma'_{i+1}(B) \subseteq Bad_{x}, \forall 1 \le i \le c-1,$

therefore $|\Gamma'_c(B)| \ge A^c |B|$ and $N/4 \ge |Bad_x| \ge |\Gamma'_c(B)| \ge A^c |B|$. Thus

$$\Pr[M^*(x) = 0] = \frac{|B|}{N} \le \frac{1}{4A^c} < \delta.$$