Expander Graphs in Computer Science

Introduction to Expander Graphs

He Sun

Max Planck Institute for Informatics

Oct., 19, 2010



Outline

Course Information



Course Information

> Time: Tuesday 2:00PM - 4:00PM

> Location: Lecture Hall 003, Campus E1. 3
> Credit: 6 ECTS credit points

> Lecturer: He Sun

> Email: hsun@mpi-inf.mpg.de

> Prerequisites: Basic knowledge of Complexity and Probability



Course Information(cont'd)

Grading

» Homework 60% (3 problem sets), Final exam 40% (oral exam)

> You need to collect at least 50% of the homework points to be eligible to
take the final exam.



Course Homepage

http://www.mpi-inf.mpg.de/departments/D1/teaching/WS10/EG/WS10.html
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What are expander graphs



Expander Graphs: Different Definitions

» Combinatorically, expanders are highly connected graphs, and to
disconnect a large part of the graph, one has to sever many edges.
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Vertex Expansion

We consider undirected, regular graphs G = (V, E). G can have self-loops and
multi-edges.

For any set S C V, let

I(S)={u:veSand (uv)e€E}
be the neighboring set of S.



Vertex Expansion

We consider undirected, regular graphs G = (V, E). G can have self-loops and
multi-edges.

For any set S C V, let
I(S)={u:veSand (uv)e€E}
be the neighboring set of S.
Definition
A graph G = (V, E) is said to have vertex expansion (K, A) if

IT(S) = A-1S], v§ C V,[S| < K.



Edge Expansion

Let G = (V, E) be an undirected graph. For any set S C V, let
0S:= E(S, 9)
be the edge boundary of S.

Definition
The edge expansion of a graph G = (V, E) is

N 195]
h(G) := sis1<ivize |8

Examples:
» If G is a complete graph, then h(G) = [|V]/2].

» If G is not connected, then h(G) = 0.



Definition of Expander Graphs

Definition
Let d € N. A sequence of d-regular graphs {G;}ien of size increasing with i is
a family of expanders if there is € > 0 such that h(G;) > € for all 4.

Lemma
Any expander graph is a connected graph.



Two General Problems on Expanders

» Existence

> Probabilistic methods
> Kolmogorov complexity

» Constructibility

» Combinatorial methods

> Algebraic methods
> .



Existence of Expander Graphs

Two general problems

» Existence

» Constructibility

Let G4, v be the set of bipartite graphs with bipartite sets L, R of size N and
left degree d.

Theorem
For any d, there exists an a(d) > 0, such that for all N
Pr[G is an (aN,d — 2)-expander] > 1/2,

where G is chosen uniformly from Gg N .



Constructibility of Expander Graphs

Two general problems

» Existence

» Constructibility

Definition

Let {G;}; be a family of expander graphs where G; is a d-regular graph on n;
vertices and the integers {n;} are increasing, but not too fast.(e.g. ni41 < n?
will do)

1. The family is called Mildly Explicit if there is an algorithm that generates
the j-th graph in the family {G;}: in time polynomial in j.

2. The family is called Very Explicit if there is an algorithm that on input of
an integer ¢, a vertex v € V(G;) and k € {1,--- ,d} computes the k-th
neighbor of the vertex v in the graph G;. The algorithm’s running time
should be polynomial in its input length.



Examples

Theorem (Margulis, 1973)

Fix a positive integer M and let [M] = {1,2,---,M}. Define the bipartite
graph G = (V, E) as follows. Let V = [M]*> U [M)]?, where vertices in the first
partite set as denoted (x,y)1 and vertices in the second partite set are denoted
(z,y)2. From each vertex (z,y)1, put in edges

(33721)27 (.T,.Z‘ + y)27 (.T,.Z‘ +y+ 1)27 (iE +v, y)27 (33 +y+ Ly)?:

where all arithmetic is done modulo M. Then G is an expander.

Theorem (Jimbo and Maruoka, 1987)

Let G = (LU R, E) be the graph described above, then VX C L,
IT(X)| > | X|(1 + do|X|/n), where do = (2 — \/3)/4 is the optimal constant.
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Applications of Expanders

» In Computer Science
> Derandomization

> Circuit complexity
> Error correcting codes
» Communication networks

> Approximation algorithms

> In Mathematics
> Graph theory

> Group theory

> Number theory

v

Information theory



Three Motivating Problems

1. Super Concentrators

2. Error Correcting Code

3. Deterministic Error Amplification for RP



Super Concentrators

For any integer N € N, an N-super concentrator ['y is a directed graph with
input set I and output set O, |I| = |O| = N, such that for any subset S C I
and T' C O satisfying |S| = |T| = k, there are k vertex-disjoint directed paths
in'y from StoT.




Applications

1. Complexity Theory
2. Network Design

3. Matrix Theory



Progress in the Past 30 Years

The density of a super concentrator I'y is

# of edges in 'y

N
Table: Explicit construction of super concentrator

Authors Density Year Conf./Jour.
Valiant 238 1975 STOC
Gabber 271.8 1981 JCSS
Shamir 118 1984 STACS

Alon 60 1987 JACM

Alon 44 + o(1) 2003 SODA

Note: Alon's construction in 2003 is feasible only if N > 262, 080.
Existence: Super concentrators with density 28 exists.

Lower Bound of the Density[Valiant, 1983]: 5 — o(1).



Expanders Used in Super Concentrators

Lemma

Assume that {G;}icn is a family of bipartite expanders with bipartite sets L, R
with |R| = a|L|,1/2 < a < 1 and left degree d. Moreover each graph in
{Gi}ien has vertex expansion > 1. Then there is a super concentrator with

density
14 2d

1—o’




Error Correcting Codes

Let C C {0,1}" be a dictionary. The rate and normalized distance are

mine, #e,ec du(c1, c2)

@

_ loglc] 5.

R:
n n

=\
(

N~
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Problem: Is it possible to design arbitrarily large dictionaries {C} of size
|Cr| = 2%, with R(Ci,) > Ro and §(Cy) > 8o for some absolute constant
Ro, d0 > 0?7 Moreover, can we make these code explicit and efficiently
encodable and decodable?




Saving Random Bits for RP

Definition (RP)
The complexity class RP is the class of all languages L for which there exists a
probabilistic polynomial-time Turning machine M, such that

z € L=Pr[M(z)=1] >3/4

¢ L=Pr[M(z)=1]=0



Independent V.S. Dependent Sampling

No.  # of random bits Methods Error Prob.
1 r Def. of RP 1/4
2 O(rlog ) Chernoff Bound 5
3 r Expander Graph m




Algorithm for Saving Random Bits

Lemma
There is an algorithm A, such that for the given vertex v and index
1€ {1,---,d}, Algorithm A* can output the i-th neighbor of v with time

complexity poly(|v], |i]).

Algorithm Description M*

1. Run the original RP algorithm M for all strings y lying within
a ball of radius ¢ around v,v ~,, V.

2. If for all these y, M (z,y) = 0, reject .
3. If M(z,y) =1 for any y, accept z.

Note: Algorithm M™* uses an (N/2, A)-expander, where N = 2". The
parameter c is satisfying 1/4A° < §.



Algorithm for Saving Random Bits (cont'd)

For any language L € RP and z € L, define
Bad, = {y|M(z,y) =0} B = {v|[l'.(v) C Bad.}
So M*(xz,v) =0 if and only if v € B.
By definition of RP, |Bad,| < N/4,N = 2", and
I';(B) CTi,1(B) C Bad,,V1 <i<c—1,
therefore |I'.(B)| > A°|B| and N/4 > |Bad,| > |I'.(B)| > A°|B|. Thus

PrM* (@) = 0] = Bl < 1

N Saa <°
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